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INTRODUCTION

Beta-band synchronous oscillations in the dorsolateral region of the subthalamic nucleus
(STN) of human patients with Parkinson’s disease (PD) have been frequently reported.
However, the correlation between STN oscillations and synchronization has not been
thoroughly explored. The simultaneous recordings of 2390 multi-unit pairs recorded by
two parallel microelectrodes (separated by fixed distance of 2mm, n= 72 trajectories
with two electrode tracks >4mm STN span) in 57 PD patients undergoing STN deep
brain stimulation surgery were analyzed. Automatic procedures were utilized to divide
the STN into dorsolateral oscillatory and ventromedial non-oscillatory regions, and to
quantify the intensity of STN oscillations and synchronicity. Finally, the synchronicity
of simultaneously vs. non-simultaneously recorded pairs were compared using a
shuffling procedure. Synchronization was observed predominately in the beta range
and only between multi-unit pairs in the dorsolateral oscillatory region (n=615). In
paired recordings between sites in the dorsolateral and ventromedial (n=548) and
ventromedial-ventromedial region pairs (n= 1227), no synchronization was observed.
Oscillation and synchronicity intensity decline along the STN dorsolateral-ventromedial
axis suggesting a fuzzy border between the STN regions. Synchronization strength
was significantly correlated to the oscillation power, but synchronization was no
longer observed following shuffling. We conclude that STN long-range beta oscillatory
synchronization is due to increased neuronal coupling in the Parkinsonian brain and
does not merely reflect the outcome of oscillations at similar frequency. The neural
synchronization in the dorsolateral (probably the motor domain) STN probably augments
the pathological changes in firing rate and patterns of subthalamic neurons in PD patients.
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2013) and local field potential (Kuhn et al., 2009; Chen et al.,

The subthalamic nucleus (STN) plays a critical role in the con-
trol of basal ganglia activity (Kitai and Kita, 1987; Nambu et al.,
2002). In Parkinson’s disease (PD), midbrain dopaminergic neu-
rons degenerate, leading to a cascade of physiological changes
that strongly affect the STN (Bergman et al., 1994; Hamani et al.,
2004). Inactivation (Bergman et al., 1990; Aziz et al., 1991; Alvarez
et al., 2009) and deep brain stimulation (DBS, Benazzouz et al.,
1993; Pollak et al., 1993; Benabid et al., 1994; Weaver et al.,
2009; Follett et al., 2010; Moro et al., 2010; Williams et al., 2010;
Bronstein et al., 2011; Lhommée et al., 2012; Odekerken et al.,
2013; Schuepbach et al., 2013) of the STN are highly effective in
the management of advanced PD.

Neuronal oscillations, at the level of action-potential (spike)
discharge (Rodriguez-Oroz et al., 2001; Kuhn et al., 2005; Moran
et al., 2008; Zaidel et al., 2010; Guo et al., 2012; Lourens et al.,

2010; Giannicola et al., 2010; Rosa et al., 2011) have been observed
in physiological studies of the STN of PD patients undergo-
ing DBS surgery. LFPs span the frequency range of 1-70 Hz
[or 1-400 Hz, if one include the high gamma peaks reported at
65-90 Hz and 250-350 Hz (Danish et al., 2007), but see (Yuval-
Greenberg et al., 2008) for possible confounding factors in the
high frequency regime of LFP], whereas spikes have their max-
imal power around 1000 Hz. Thus, although LFP oscillations
have been thought to imply spike synchronization (Brown and
Williams, 2005; Hammond et al., 2007; de-Solages et al., 2011),
they more likely represent sub-threshold phenomena such as
synaptic activity (Belitski et al., 2010; Buzsaki et al., 2012) which
is probably correlated with spike activity.

Conclusive evidence of the correlation (and causality) between
neuronal oscillations and synchronization in the PD STN has
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remained elusive. Physiological studies of neuronal synchroniza-
tion in the STN of the MPTP primate model are not yet reported.
Robust oscillatory synchronization patterns of STN spiking activ-
ity have been reported in the 6-hydroxydopamine rodent model
of Parkinsonism (Machado et al., 2006; Mallet et al., 2008a,b;
Lintas et al., 2012). In human PD patients, oscillatory synchro-
nization of spiking activity has been reported in several studies
(Levy et al., 2000, 2002a,b; Amirnovin et al., 2004; Weinberger
et al., 2006; Hanson et al., 2012; Alavi et al., 2013; Lourens et al.,
2013) but there have been no detailed descriptions of the depen-
dence of the neuronal synchronization on the oscillatory activity
or the spatial properties of the neuronal pairs (e.g., simultane-
ous recording of neurons from the oscillatory and non-oscillatory
regions of the STN, see below).

Previous studies have shown that the STN of PD patients
can be divided into a dorso-lateral oscillatory region (DLOR)
and ventro-medial non-oscillatory region (VMNR) (Moran et al.,
2008; Zaidel et al., 2010; Seifried et al., 2012; Guo et al., 2013).
The first aim of this study was to explore the properties of neu-
ronal (spike) synchronization of the STN of human PD patients,
principally within and between the different STN domains. The
second goal was to further explore the relationship between oscil-
lations and synchronization phenomena in the neural activity of
the STN.

To overcome the inherent technical difficulties of spike iso-
lation (Joshua et al., 2007; Hill et al., 2011) and spike sorting
(Lewicki, 1998) in the electrically noisy environment of the
human operating room, and to increase the sensitivity of corre-
lation analysis (Bedenbaugh and Gerstein, 1997; Gerstein, 2000)
this study used the unresolved collective (multi-unit) spiking
activity recorded by two different microelectrodes exploring the
boundaries and the domains of the STN during DBS procedures.
This enabled the exploration of the properties of long-range cor-
relation in the STN, in contrast to correlation studies of the
activity recorded by a single electrode (e.g., Moran et al., 2008)
which can only reveal short range correlations.

MATERIALS AND METHODS
PATIENTS AND SURGERY
Simultaneous microelectrode recordings from two electrodes in
patients with Parkinson’s disease (PD) undergoing surgery for
subthalamic nucleus (STN) deep brain stimulation (DBS) were
analyzed in this study. All patients met accepted criteria for STN
DBS and signed informed consent for surgery. Microelectrode
recording is performed to accurately localize STN borders and
domains, in order to optimize the placement of the DBS electrode
and thus enhance the therapeutic effects of the DBS procedure.
The data collection was therefore done as part of our routine
procedures and not part of a clinical trial. This study was autho-
rized and approved by the Institutional Review Board of Hadassah
University Hospital in accordance with the Helsinki Declaration
(reference codes: 0545-08-HMO and HMO: 10-18.01.08).
Surgery was performed using a CRW stereotactic frame
(Radionics, Burlington, MA, USA). STN target coordinates were
chosen as a composite of the indirect anterior commissure-
posterior commissure (AC-PC) atlas- based location and direct
(1.5 or 3 Tesla) T2 magnetic resonance imaging (MRI), using

Framelink 4 or 5 software (Medtronic, Minneapolis, USA). The
recordings used in this study were made while the patients were
awake without sedation. The patient’s level of awareness was
continuously assessed clinically and, if drowsy, the patient was
stimulated and awoken through conversation by a member of
the surgical team. Data were obtained while the patients were
off dopaminergic medication, which was stopped 12h prior to
surgery.

MICROELECTRODE RECORDINGS
Data were acquired with the MicroGuide system (Alpha-Omega
Engineering, Nazareth, Israel). Neurophysiological activity was
recorded using polyamide coated tungsten microelectrodes
(Alpha Omega) with impedance mean = standard deviation (SD)
0f 0.60 £ 0.11 MQ2 (measured at 1 kHz at the beginning of each
trajectory). The signal was amplified by 10,000, band-passed fil-
tered from 250 to 6000 Hz using four-pole Butterworth filter
hardware, and sampled at 48 kHz by a 12-bit A/D converter (using
=£5 V input range). Local field potentials were not recorded due to
constraints of electrical noise in the operating room.
Microelectrode recording was performed using two paral-
lel microelectrodes starting 10 mm above the estimated center
of the dorsolateral STN target, based on the pre-operative T2
MRI image. The two electrodes were simultaneously advanced,
and therefore the distance between the two electrodes was fixed
(2mm) during all recordings. Trajectories followed a double-
oblique approach (approximately 60° from the axial AC-PC
plane and 15° from the mid-sagittal plane) toward the STN
target. The angles of the trajectory were slightly modified to
avoid the cortical sulci, the ventricles and major blood vessels
as revealed by gadolinium-enhanced T1 MRI (Machado et al,,
2006). The “central” electrode was directed at the center of the
STN target, and an “anterior” (ventral) electrode was located
2mm anterior to the central electrode. Typically, the electrodes
were advanced in steps of ~100pm between successive record-
ings sites within the STN. Only trajectories where both elec-
trodes had passed through the STN for at least 4 mm were used
in this study (yielding 72 trajectories of 2 electrodes from 57
PD patients undergoing bilateral STN deep brain stimulation
surgery). After identification of the STN ventral border by the
electro-physiologist, the STN and its sub- regions were automat-
ically detected using the Hidden Markov model (HMM) method
(Zaidel et al., 2009).

DATABASE

We studied 72 STN trajectories (each of 2 electrodes) from 57
PD patients, 40 males and 17 females, aged 58.9 & 10.3 years
(mean =+ standard deviation, SD) and with disease duration of
10.3 £ 4.7 years (mean £ SD). The UPDRS motor part score,
UPDRS 1III, was 49.2 +17.8 (mean £ SD) when assessed off
dopamine replacement therapy before surgery. Patient details and
clinical effects of the surgery are given at Table 1.

The minimal recording time duration of a STN pair to be
included in this study was 5s (analysis of the subset of record-
ing with minimal recording duration of 10 s reveal similar results,
data not shown). A total of 2390 multi-unit pair sites, in which
both electrodes were judged to be inside the STN for the minimal
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duration, were studied. The same data base was used for the
single site (oscillation) analysis, yielding 4780 single STN sites.
Recording (and analysis) time duration of the STN pairs equaled
23.7 &+ 25.3 s (mean =+ SD).

ANALYSIS OF SYNCHRONIZATION AND OSCILLATIONS

All data analysis utilized custom-made MATLAB 7.10b (R2010.b)
routines. The local field potential frequency domain was filtered
out by the recording apparatus. Burst frequencies below the range
of the operating room band-pass filter (250-6000 Hz) could be
detected using the rectified signal, which follows the envelope
of multi-unit activity (Moran et al., 2008; Halliday and Farmer,
2010; Moran and Bar-Gad, 2010; Zaidel et al., 2010). The raw
250-6000 Hz analog signal was therefore rectified by the “abso-
lute” operator and the global mean was subtracted. Thus, the
resulting analysis represents only spike activity.

The average power spectrum density (PSD) at each site was
calculated using Welch’s method with a 1.5s Hamming window
(50% overlap), after removing the local window mean, and with
a 131,072 FFT points (nfft), yielding spectral resolution of 1/3 Hz
[nfft = 2" round(log2(Fs/f_res)), where Fs = sampling frequency
and f_res is the spectral resolution]. PSD amplitude is affected by
the amplitude of the recorded neural activity, which is impacted
by non-physiological factors such as the impedance of the elec-
trode (Zaidel et al., 2010). To create homogenous PSD results for
all recorded sites, the “relative” (normalized) power spectral den-
sity was calculated by dividing it by the total power of the signal
between 0 and 3000 Hz. This relative, or normalized, power spec-
tral density therefore estimates the spectral peak in relation to the
other peaks in the spectrogram.

To compute coherence, the magnitude squared (MS-) coher-
ence method (Kay, 1988; Miller and Sigvardt, 1998) was used.
Welch’s method was utilized, with a 1.5s Hamming window
(50% overlap), after removing the local window mean and with
a spectral resolution of 1/3 Hz (same conventions as for PSD).
Coherence values are limited (by definition) between 0 and 1. All
coherence averages were therefore calculated in Fisher’s transform
domain (Miranda de Sa et al., 2009) and then reversed.

By definition, the removal of each window mean in the spec-
trum and the coherence analysis eliminate any power at 0 Hz
(DC). We therefore start all the spectrum and coherence plot of
this manuscript at 1 Hz.

A constant baseline level emerged in our coherence results
(e.g., Figures 4A,B). This baseline probably resulted from the
finite sampling of two “random noise” sources. To verify this,
pairs of Gaussian random noise sources were simulated. The
simulated data were subjected to the same filters and absolute
operator as the real neuronal data and the same analysis tools.
The magnitude of the coherence baseline dropped exponentially
as time duration increased. Therefore, the baseline level seen
in the STN coherence is most likely due to the finite (and rel-
atively) short duration (mean = 23.7s) of the recordings in
human patients. The coherence functions were normalized by the
subtraction of the average coherence of the randomly shuffled
(10,000 times) pairs from the same STN domain. Note that the
normalized coherence functions can therefore display negative
coherence values.

SYNCHRONIZATION AND OSCILLATION STRENGTH (SYNC AND O0SCIL
SCORES)

Rosenberg and Halliday (Halliday et al., 1995, 2000; Farmer
et al.,, 1997; Farmer, 1998) proposed a very useful method to
estimate coherence significance. However, this method employs
a threshold confidence level, and does not offer a quantita-
tive measure of synchronization strength. Therefore, a Z-score
like method (effective Z-score: Z*) was devised to determine
the synchronization and oscillation strength. The Z-score of a
given parameter is defined as the number of standard devia-
tions above (or below) the mean. In this case the parameter
was the maximum value (peak value) of the smoothed PSD
or coherence (see below). However, instead of using the stan-
dard deviation of the entire frequency range, a tail standard
deviation (o) was defined in the frequency range of 35 to
70Hz. In this range, no coherence or power spectrum phe-
nomena were observed in our dataset (Figures 1D, 2A-C, 3A,B,
4B). To smooth the coherence, a simple moving average (SMA)
was calculated, with a window size of 23 samples (7.67 Hz),
and a delta of one sample (i.e., the frequency resolution of
1/3Hz). The synchronization strength or score was defined as
Z* = (MAX(SMA(C (f))) — i/0wil). MAX(SMA (C (1)) is the
maximum value of the coherence after smoothing with the
moving average, and | is the coherence mean. To find the fre-
quency in which the spectrum or the coherence achieved maximal
value, the arg-max(SMA(C(f))) was calculated. The coherence
(C(f)) maximal peaks were defined in the smoothed coher-
ence function with minimal distances of 5Hz between them.
The search for the coherence peak was started at the lower fre-
quency, and progressed to the largest value of the smoothed
coherence function. All calculations (max, mean and arg-max)
were performed in the frequency range between 1 and 70 Hz.
Negative scores were found in a few cases, due to residual high
power at the low (1-2Hz) frequency range, and these were
ignored.

To determine the oscillation strength, the same effective Z-
score as for the synchronization was used and defined as the
oscil score. The maximum value of the smoothed PSD (by a
simple moving average, with window size of 23 samples, and
delta of one sample, i.e., 1/3 Hz), and the tail standard deviation
(Otil) in the frequency range of 35-70 Hz were calculated. The
oscil score was defined as Z* = (MAX(SMA(PSD (f))) — i /0il)-
MAX(SMA(PSD (f))) is the maximum value of the PSD after
smoothing with the moving average; | is the PSD mean.

To explore the relationship between oscillation and syn-
chronization a statistical measure of the oscillation strength
of the two oscillatory sites was used. The average PSD* =
(PSD1 + PSD2)/2 was calculated, where PSD1 and PSD2 were
the power spectrum densities of each site in the neuronal pair,
and the oscil score of PSD* was calculated. Additionally, other
estimates of oscil scores of the two sites were calculated as:
min(oscily, oscily); max(oscily, oscily); and as the geometric mean
of the two scores where oscily, oscil, were the oscil scores of
each PSD site. The geometric mean was calculated as: oscil =
sign(oscill * oscil2) * GeoMean(|oscill|, |oscil2|), where sign was
the sign operator of oscil; and oscil, product, in the case of
negative values.
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FIGURE 1 | An example of synchronous oscillations between two
recording sites in the STN. (A) Raw analog data. Data is recorded by two
microelectrodes separated horizontally by a distance of 2mm, hardware band
pass filtered between 250 and 6000 Hz, and digitally sampled at 48 KHz. The
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Synchronization or oscillations were defined to be significant
when the scores reached the Z* > 2 (i.e., the coherence or the
PSD peak value was higher than 2 SD of the mean values of these
functions).

COHERENCE CONFIDENCE LEVEL

To assess the validation of sync score the confidence level (CL) of
the coherence analysis (Halliday et al., 1995) was used. We divided
the microelectrode records of duration R into L non-overlapped
disjoint segments of duration S (R=L*S). The total spectrum
was calculated using the average of the magnitude-squared (MS)
of the discrete Fourier transform (periodogram), after remov-
ing the local mean in each segment S. Each segment contained
S =216 samples with a frequency resolution of 0.7336 Hz. Only
complete segments were analyzed; data points at the end of the
record that did not make a complete segment were not included in
the analysis. The procedures were implemented using Neurospec
free MATLAB toolbox: http://www.neurospec.org. To obtain the
approximate confidence interval for 95% and 99% from the data
points, the level thresholds: CLgs = 1 — 0.05Y/€ =D and CLgg =
1 —0.01/@ =D respectively, were used. Figure 4B depicts exam-
ples of the relations between MS-coherence estimates (Z-scores)
we used in the manuscript with coherence confidence levels of
95% and 99% respectively.

ASSESSING THE CAUSAL RELATIONS BETWEEN OSCILLATIONS

AND SYNCHRONY

Spurious synchronization can arise from non-coupled oscilla-
tory sites that oscillate in the same frequency bands (i.e., two
atomic clocks might be synchronized due to their exact frequency
although there is no physical coupling between them (Strogatz,
2003). To rule out this spurious oscillation-synchronization, the
mean coherence of randomly shuffled pairs (10,000 times) was
calculated for each category (all pairs, DLOR-DLOR, VMNR-
VMNR, and DLOR-VMNR) of the STN. The shuffling was per-
formed using the Mersenne Twister algorithm (Matsumoto and
Nishimura, 1998) with a different seed number in each iteration.

RESULTS
SYNCHRONIZATION OCCURS ONLY BETWEEN DLOR PAIRS
Figure 1 show an example of synchronous oscillatory activity as
recorded by two electrodes inserted into the STN of a PD patient
during DBS procedures. The raw analog data is shown in two time
scales in Figures 1A,B. The power spectrums and the coherence
function of this recording are shown in Figures 1C,D, respec-
tively. One can easily observe the synchronous oscillations in the
beta range (~20 Hz) in this example.

To explore the properties of STN neuronal synchronization,
STN spiking activity simultaneously recorded from two electrodes
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was analyzed (Figure 2). In total, 2390 multi-unit pairs along 72
STN trajectories (with >4 mm STN span in both electrodes) from
57 PD patients undergoing DBS surgery were included in the
analysis.

Previous physiological studies of the basal ganglia in the rodent
(Mallet et al., 2008a,b) and primate (Bergman et al., 1994; Nini
et al., 1995; Raz et al., 1996, 2000, 2001; Goldberg et al., 2002)
models of PD have indicated abnormal synchronicity of basal
ganglia neurons as one of the major changes occurring in the
network following dopamine depletion. Nevertheless, when the

neuronal synchronization of simultaneously recorded STN sites
(over the entire STN 2390 pairs) was measured, no distinguish-
able synchronization was found.

The STN can be spatially differentiated into sub-regions
according to neural activity (Zaidel et al., 2010). Two areas
could be robustly discriminated in our recording: the dorsolat-
eral oscillatory region (DLOR, n = 1778 sites, Figure 3A) and
the ventromedial non-oscillatory region (VMNR, n = 3002 sites,
Figure 3B). Figures 3C,D show the distribution of the oscil scores
in the DLOR and VMNR, respectively. As expected, significantly
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FIGURE 2 | Synchronization found only between sites in the DLOR. (A)
Substantial coherence at beta frequency range exists between sites within
the DLOR (from the STN entrance to the DLOR\WMNR border). However, the
relative coherence is around zero in the beta range for pairs recording from
the VMNR (B), or between sites of the DLOR and VMNR (C). HMM was
used to automatically define the DLOR-VMNR border. The first row is

0.06 2 mm from the HMM 0.06 °
S
oo 0.04 N =302 310
8 o
$0.02 0.02 )
s ]
S 0 0 c5
o ©
]
0.02 -0.02 | E
0.04 -0.04 0.4
1 10 20 30 40 50 60 70 1 10 20 30 40 50 60 70

Frequency (Hz)

DLOR normahzed depth

calculated using the HMM defined border, and lower rows calculated with a
progressively increasing gap from the HMM border. N is the number of pairs,
and the shaded areas represent the standard error of the mean (SEM) of the
relative coherence function for each population. (D) Distribution of
oscillations scores along the normalized DLOR depth. For each trajectory the
DLOR length was normalized for 0-entry, 1-end of DLOR.
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higher oscil score values were observed in the DLOR than in
the VMNR.

The division of the STN into the DLOR and VMNR domains
enabled testing of the synchronization of STN pairs from the same
and different regions. Significant synchronization, mainly in the
frequency band of 8-30 Hz was found, but only between pairs in
the DLOR itself (DLOR-DLOR, n = 615 pairs, Figure 2A, upper
subplot). This synchronization was not observed in pairs of elec-
trodes at DLOR and VMNR (n = 548 pairs, Figure 2B, upper
subplot) or in the VMNR (n = 1227 pairs, Figure 2C, upper
subplot). This finding is consistent with previous multiple elec-
trode studies of the human Parkinsonian STN (Levy et al., 2000,
2002a,b; Amirnovin et al., 2004; Weinberger et al., 2006, 2009;
Alavi et al., 2013; Lourens et al., 2013) which reported coher-
ence between STN oscillations in a small fraction of STN pairs.
However, our findings indicated that the topographical location
of the STN electrodes affected the probability of finding a corre-
lation between STN sites, and coherence was only and robustly
found between DLOR-DLOR multi-unit pairs.

Recent imaging studies (Lambert et al., 2012; Haynes and
Haber, 2013) have clarified that the boundaries between the func-
tional subdomains of the STN are fuzzy, and an overlap of motor
and non-motor projections can be found in the transition areas
between the STN domains. Therefore, the average coherence at
the dorsolateral and ventromedial STN was tested with increas-
ing gaps (0.5-2mm) from the HMM borders. These results are
shown in the lower five rows of Figure 2, and reveal a sharpen-
ing and increase of the average coherence peak in the STN DLOR
when the gap is increased. Similarly, when the oscillation scores
are calculated along the normalized depth of the DLOR, a gradual

A B
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5 Ngjies™ 1778 S Ngjpe= 3002
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© kS
[0} [0}
14 14
1 10 20 30 40 50 60 70 1 10 20 30 40 50 60 70
Frequency (Hz) Frequency (Hz)
C D
50 100
40 80
30 60
xR X
20 40
10 20
0 0
1 5 10 15 20 25 1 5 10 15 20 25
Oscil score Oscil score
FIGURE 3 | Oscillatory activity in the STN DLOR and VMNR. Average
power spectra of STN activity of DLOR (A) and VMNR (B) recordings. The
shaded areas represent the standard error of the mean (SEM) of the
spectrum function for each population. Nsjtes is the number of sites
averaged. (C,D) Distribution of the oscil scores in the DLOR and the VMNR
recordings. Note the different scales of the Y-axes. Oscil scores below zero
and above 20 (n = 68 and 153 out 4780) are appended to the first and last
bin respectively to enhance visualization of the results.

decrease in the oscillatory scores is observed as the DLOR lower
border is approached (Figure 2D).

The above results were obtained by averaging over pairs
recorded for different durations. The average coherence results
(Figure 2) was further compared to the average coherence results
of the same pairs with homogenous intervals (only the first 10's
of each recording was included, and recordings with durations
shorter than 10s were excluded). Similar results (data not shown)
were obtained.

SYNCHRONIZATION vs. OSCILLATIONS IN THE DLOR AREA

Next, correlation between the oscillations and synchronization
in the STN was analyzed. The oscillation and synchronization
strengths were calculated using the oscil and sync scores for
each pair in the DLOR area. Figures 4A,B depict three exam-
ples of power spectrum and coherence function of STN activity
with their relative oscil and sync scores, respectively. See also
Figure1 for an example of a simultaneous recording of two
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FIGURE 4 | Examples of power spectra and coherence functions with
different oscillation and synchronization scores. (A) Three examples of
power spectra with low, medium, and high oscillation (oscil) scores. (B)
Three examples of STN coherence functions with low, medium, and high
synchronization (sync) scores. The dashed horizontal and continuous lines
denote the confidence interval of 99 and 95% respectively. Sampling
duration equals 33.4, 14.5, and 35.1 s for the power spectra examples and
40.2, 41.5, and 40.6 s for the coherence examples (yielding similar
confidence intervals for the coherence functions).
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sites in the STN, and their corresponding values of oscil and
sync scores.

Figure 5B depicts the scatter plot of the oscil and sync scores for
all DLOR pairs. Different indicators for the oscillation strength of
pairs of STN sites were used: the minimal and maximal oscil score,
the arithmetic average of the PSDs, and the geometric mean of
oscil scores. In all cases, the scatter plot of the sync score vs. the
oscil score of the pairs within the DLOR area (n = 615) indicated
a significant correlation (r > 0.24, p < 0.001) between the syn-
chronization and the oscillations. Here (Figure 5B) we show only
the data for the arithmetic mean of the oscil. scores.

The correlation between the oscillation and synchronization
strength could imply that the synchronization pattern was depen-
dent on the homogeneity of the neuronal oscillations within the
DLOR. If the neural oscillations in different sites of the STN
of a single patient have a very stable and equal frequency, the
existence of synchronization may not be the result of physical cou-
pling between the STN neurons. Therefore, the DLOR pairs of
each trajectory were randomly shuffled and the synchronization
between the shuffled (non-simultaneously recorded) pairs was
re-quantified in each trajectory. After shuffling, the oscillations
remained in the same frequency band, but the synchronization
was no longer apparent. Figures 5A,C show the average coherence
functions before and after shuffling of the DLOR-DLOR pairs
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FIGURE 5 | Synchronization is no longer apparent between
non-simultaneously recorded (shuffled) STN DLOR pairs. (A) A
significant average coherence between non-shuffled pairs within the STN
DLOR. N = 615 represents the number of DLOR-DLOR pairs. (B) Scatter
plot of synchronization (sync) and oscillation (oscil) scores in the STN DLOR
reveals that the two measures are correlated. Each square represents the
synchronization (Y-axis) vs. average (arithmetic mean) of the two oscillation
scores of one of the 615 pairs within the DLOR. r is the Spearman
correlation coefficient and p is the probability that r = 0 (no correlation
between the scores). (C) Synchronization is no longer seen between
non-simultaneously recorded (shuffled) STN DLOR-DLOR pairs. Inset:
Schematic illustration of the shuffling procedure. The shuffling procedure
was repeated 10,000 times for each pair. (D) Scatter plot of shuffled
oscil-sync score values. Same conventions as in (B).

(n = 615), respectively. Figures 6A,B depict the average sync and
oscil scores before and after shuffling in the STN DLOR and the
VMNR. As expected, shuffling had no significant effect on the
oscil score in either area (oscillation is a property of a single
element and therefore should not be affected by the shuffling pro-
cedure). However, the average sync score of the DLOR pairs, but
not the VMNR pairs declined significantly after the shuffling pro-
cedure (Figure 6A). Finally, Figure 5D depicts the scatter plot of
the sync and oscil scores of the shuffled pairs within the DLOR.
The Spearman correlation between the sync score and oscill score
dropped dramatically from r1 = 0.34 to r2 = 0.05 (p < 0.001
for the null assumption that r1=r2). The mean PSD estimate for
the average oscil score (as in Figure 5B) was used for this analysis.
Similar results were obtained for the other indicators of oscillation
strength of the STN pairs.

COHERENCE IS MAINLY IN THE BETA FREQUENCY RANGE

Next, the frequency value where each spectrum (Figure 7A) and
coherence (Figure 7C) reached its maximal value was calculated.
In both cases, a bi-modal distribution was observed, with a
dominance of tremor frequency (3—7 Hz) and beta (12-30 Hz)
oscillations, for the auto-spectrums and the coherence functions,
respectively. Figures 7B,D show the scatterplot of the maximal
oscil and sync scores, respectively, as a function of their frequency.
While the oscil scores had similar values in the beta and the tremor
range, the values of the maximal sync scores were much higher
in the beta than in the tremor range. These results are in line
with our previous primate studies (Raz et al., 2000) that revealed
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FIGURE 6 | Average values of synchronization (sync score) in the
DLOR, but not average VMNR synchronization or oscillations scores in
both STN domains, are affected by the shuffling procedures. (A)
Synchronization (Sync) scores before (white) and after (black) shuffling, lines
indicate standard error of the mean (SEM). (B) Oscillation (Oscil) scores
before and after shuffling. Same conventions as in (A).
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FIGURE 7 | Dominance of coherence at the beta frequency range vs.
tremor frequency and beta oscillations in the power spectrums in the
STN DLOR. (A) Frequency distribution of the frequencies with maximal
power in the power spectrums of STN DLOR recording sites. (B) Scatter
plot of oscillations (oscil) scores vs. the frequency with maximal power.
(C,D) show the frequency distribution and scatter plot, respectively, for the
coherence, same conventions as in (A,B). N = 1230 single DLOR sites and
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mainly 5Hz peaks in the auto-correlations vs. higher frequen-
cies (10 Hz) in the cross-correlations functions of pallidal units
and pairs recorded in the globus pallidus after MPTP treatment.
However, we cannot rule out the possibility that the 10 Hz activ-
ity in this study is not tremor related and a harmonic feature (or
n:m locking) of the tremor or of the neuronal oscillations at the
tremor frequency.

LACK OF POSITIVE CORRELATION BETWEEN THE STN 0SCI/L AND
SYNC SCORES vs. PD SYMPTOMS

Previous studies have suggested that STN oscillations and syn-
chronization are correlated with tremor in PD patients (Levy
et al., 2002a). This would indicate that the STN synchronized
oscillations are driven by the tremor (which may be gener-
ated by an independent neuronal loop). The above findings of
robust synchronization in the beta rather than in the tremor
frequency range (Figure 7D) are not in line with this hypoth-
esis. Nevertheless, we looked for correlations between the oscil
and sync scores of our patients and their pre-operative (OFF
medication) UPDRS scores. We did not find significant posi-
tive correlation between the average oscil score and sync scores
of STN activity and the UPDRS scores of the tremor in the
contra-lateral upper limb(s), all tremor (including axial) scores,
and all UPDRS III motor scores. There is a trend for STN syn-
chronized beta oscillations to be more robust in patients with
less tremor. While these results might point to a correlation
between STN beta oscillations and akinetic/rigid Parkinsonian
symptoms (an issue that requires clarification in future stud-
ies with bigger sample of patients and with intra-operative
clinical assessment), they definitely indicate that the STN beta

synchronized oscillations are not a by-product of the PD
tremor.

DISCUSSION

In this manuscript, synchronization within the human
Parkinsonian subthalamic nucleus was investigated. No sig-
nificant synchronization was found over the STN as a whole.
After dividing the STN into two electro-physiologically dis-
tinct regions, the dorsolateral oscillatory region (DLOR) and
the ventromedial non-oscillatory region (VMNR), significant
synchronization in the beta range was observed, however, only
within the DLOR. The strength of the DLOR synchronization was
correlated with the strength of the oscillations of the multi-unit
pairs. Nevertheless, shuffling between DLOR pairs abolished
synchronization, suggesting that STN synchronization is an
independent phenomenon and not a mere reflection of neuronal
oscillations at similar frequencies.

Previous studies have shown significant spatial overlap
between the DLOR and the STN sensorimotor area (Rodriguez-
Oroz et al., 2001; Zaidel et al., 2010). The finding that the STN
VMNR (considered to be part of the limbic and associative basal
ganglia network) remains unsynchronized is consistent with the
predominantly motor nature of PD. However, the (normal) lack
of synchronization in the STN VMNR may be due to a selection
bias of our DBS patients. Since conventional inclusion criteria
were used to select candidates for DBS, patients were usually
severely motor-impaired and had few of the non-motor features
of the disease. Furthermore, the DLOR may reflect the patho-
logical area of the STN which progressively invades the limbic
domains of the STN as the disease advances. Finally, our results
are in line with a fuzzy rather than a sharp boundary between
the STN sub-domains (Lambert et al., 2012; Haynes and Haber,
2013).

THE STN SPIKING POPULATION ACTIVITY IS SYNCHRONIZED

In this study population spiking (multi-unit) activity was used
as a measure of the spiking activity of the STN rather than the
more classical parameter of single unit activity (Perkel et al., 1967;
Abeles, 1982; Lemon, 1984; Eggermont, 1990). This was primar-
ily for practical reasons. The goal of physiological recording in
the operating room (OR) is to enable better identification of
the borders of the subthalamic nucleus and its sub-regions. The
electrode is therefore advanced in 100 pm steps rather than 2—
5 um steps as is customary in the research laboratory setup. The
sampling duration at each step is also limited (Shamir et al.,
2012) and the OR conditions often do not allow stable record-
ings (as compared to 30-90 min stable recordings in a research
setting). On the other hand, the cross-correlation of composite
spike trains derived from several un-discriminated cells recorded
on a single electrode (multi-unit activity) enhances the sensi-
tivity of correlation methods. First, the higher discharge rate of
multi vs. single unit recording reduces the asymmetric sensitiv-
ity of correlation methods to excitation vs. inhibition (Aertsen
and Gerstein, 1985). Second, multi-unit cross-correlation can be a
more sensitive detector of a neuronal relationship than single-unit
cross-correlation (Bedenbaugh and Gerstein, 1997). Thus, use of
a multi-unit signal is warranted for both practical and theoretical
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reasons. Furthermore, the use of signals recorded by two different
electrodes in this study reveal the long range (2 mm) synchroniza-
tion of STN DLOR. It is hoped that future studies of STN units
using objective metrics for quantification of the quality of the unit
isolation (Joshua et al., 2007; Hill et al., 2011) will shed more light
on synchronization in the STN and other basal ganglia structures
of human patients.

SYNCHRONIZATION ONLY OCCURS BETWEEN DLOR PAIRS IN THE STN
Early studies described neuronal synchronization in the STN as
an epiphenomenon found mainly in patients presenting with
tremor (Levy et al., 2000, 2002a). More recent studies (Hanson
et al., 2012; Alavi et al., 2013; Lourens et al., 2013) have reported
that synchronization can be found between some but not all
STN pairs. On the other hand, beta-band LFP and spike oscil-
lations have been described as a consistent feature of human
PD in the dopamine depleted state (Brown and Williams, 2005;
Foffani et al., 2005; Little et al., 2012). Moreover, many stud-
ies have documented the consistency of beta-band oscillations in
both the spatial and temporal domains (Bronte-Stewart et al.,
2009; de-Solages et al., 2010; Zaidel et al., 2010; Abosch et al.,
2012; Little et al., 2012). In this study, synchronization within
the Parkinsonian STN DLOR was indeed found to correlate with
oscillations. However, the shuffling procedure revealed that STN
synchronization was not due to independent oscillators with a
similar oscillation frequency (Strogatz, 2003). If this had been
the case, a significant synchronization should also have been
observed between the shuffled (non-simultaneously recorded
pairs of the same patient) DLOR-DLOR pairs. Thus, the syn-
chronization of the simultaneously recorded STN pairs probably
reflects the increased coupling between these neurons in the
dopamine depleted state of Parkinson’s disease. This increased
coupling is probably due to the increased efficacy of the common
inputs to the STN cells, either from the cortex (Nambu, 2004; Kita
and Kita, 2012) or from the external segment of the globus pal-
lidus (Plenz and Kitai, 1999; Tachibana et al., 2011). However, at
this stage the possibility of increased coupling by lateral connec-
tivity within the STN cannot be ruled out (Parent et al., 2000;
Parent and Parent, 2007).

The finding that most of the energy of the STN synchronous
oscillations is in the beta range suggest that these oscillations are
not generated by feedback of the peripheral tremor. It is interest-
ing to note that synchronous oscillations in the basal ganglia of
MPTP treated primates are mainly found in the 10 Hz domain,
where human oscillations span the full beta range (12-30 Hz).
Future studies should reveal if this is due to species difference,
or due to differences between the MPTP model and human
idiopathic Parkinson’s disease.

CONCLUDING NOTES

In this study we show that the STN domain most affected by
PD dopamine depletion (the DLOR, probably the STN motor
domain) exhibited both oscillations and synchronization. This
suggests that synchronization reflects an additional property of
the Parkinsonian STN. Previous studies in the basal ganglia of
MPTP treated primates have demonstrated that synchronization
can be completely independent of oscillatory activity (Heimer

et al., 2002). The previous and the current findings can serve to
recast the relationship between oscillations and synchronization
in the Parkinsonian basal ganglia (Raz et al., 2000; Amirnovin
et al., 2004; Moran et al., 2008). In addition to changes in dis-
charge rate and pattern, synchronization within the STN may be
another pathophysiological marker of Parkinson’s disease. The
potential consequences of synchronization (as opposed to other
attributes like rate and pattern change) are probably mainly due
to reduced information capacity of the basal ganglia neurons.
However, the different pathological changes in the parkinsonian
basal ganglia are probably not mutually exclusive. Synchronized
oscillations have stronger effects than less synchronized oscil-
lations and completely unsynchronized oscillations might have
no effect on target neurons. Furthermore, future studies toward
adaptive DBS (Rosin et al., 2011) should investigate which of the
pathophysiological changes in the STN activity might be used as
the optimal trigger for closed loop DBS.
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