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Introduction: The availability of large-scale multi-omic data has revolution-ized
the study of cellular machinery, enabling a systematic understanding of biological
processes. However, the integration of these datasets into Genome-Scale
Models of Metabolism (GEMs) re-mains underexplored. Existing methods
often link transcriptome and proteome data independently to reaction
boundaries, providing models with estimated maximum reaction rates based
on individual datasets. This independent approach, however, introduces
uncertainties and inaccuracies.

Methods: To address these challenges, we applied a principal component analysis
(PCA)-based approach to integrate transcriptome and proteome data. Thismethod
facilitates the reconstruction of context-specific models grounded in multi-omics
data, enhancing their biological relevance and predictive capacity.

Results: Using this approach, we successfully reconstructed an astrocyte GEM
with improved prediction capabilities compared to state-of-the-art models
available in the literature.

Discussion: These advancements underscore the potential of multi-omic inte-
gration to refine metabolic modeling and its critical role in studying
neurodegeneration and developing effective therapies.
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1 Introduction

Astrocytes perform essential functions in the central nervous system (CNS) for the
maintenance of its function and health. The inflammatory response of these cells can be
triggered as part of a process termed astrogliosis, which has been widely associated with
neurodegeneration (Osorio et al., 2020; Phatnani and Maniatis, 2015; Takuma et al., 2004;
Sofroniew and Vinters, 2010). Astrogliosis is a cell response to several challenges in the CNS,
such as injuries, infections, or diseases, which involvemolecular, morphological, and functional
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changes (Escartin et al., 2019). However, the precise mechanism by
which this response becomes neurodgenerative is yet to be described.
To that end, genome-scalemetabolicmodels (GEMs) have been crucial
to better understanding underlying relationships with
neurodegenerative diseases (Nielsen, 2017). For example, previous
efforts in our laboratory had led to the identification of several
metabolic pathways involved in palmitic acid (PA)-induced toxicity
using hybrid computational-wet lab strategies (Osorio et al., 2020;
Angarita-Rodríguez et al., 2022; Vesga-Jiménez et al., 2022).

GEMs are a highly used approach in systems biology with
applications ranging from the basic understanding of genotype-
phenotype relationships to solutions in industrial biotechnology and
systems medicine (Bernstein et al., 2021; Wang et al., 2021a). GEMs
are mathematical representations of the metabolic network of an
organism at a system level, representing its entire metabolic
functions, mainly through the definition of a stoichiometric
matrix, which represents the relations between reactions and
metabolites (Orth et al., 2010). Another essential aspect of GEMs
is the definition of gene-protein-reaction (GPR) rules that associate
the biochemical reactions to their corresponding genes and enzymes
(Figure 1). The latter is used to contextualize species-specific
knowledge and omic data from different sources, by mapping
them into the metabolic network. In this sense, many diseases
that are attributed to metabolic disorders, including cancer and
neurodegenerative diseases, have been modeled through this

approach (Osorio et al., 2020; Somvanshi and Venkatesh, 2014;
Wang et al., 2021b); it is important to highlight that GEMs have also
been used to describe the metabolic condition of specific tissues, cell
types, and contexts at the system level by integrating omic data
which better reflects the state of the cell (Bernstein et al., 2021; Wang
et al., 2021b; Passi et al., 2022).

In recent years, high-throughput techniques have gained
popularity for the study of neurodegenerative diseases, mainly for
the identification of relationships between the measured molecules
and neuronal degeneration (Diaz-Ortiz and Chen-Plotkin, 2020).
Even though the omic data produced by these techniques provide a
holistic view of the organism, the analysis of data from a single omic
source is a challenge itself due to its complexity and size, as well as
the fact that a single omic source only represents one step of a series
of complex steps in cellular behavior, something that prevents us
from predicting more complex cellular phenotypes. Therefore, since
most biological mechanisms involve multiple biomolecules, a single
omic source misses the interaction between these biological layers
(Hassan et al., 2022; Haas et al., 2017). In this sense, GEMs work as a
framework to integrate and analyze multi-omic data while
considering these interactions, allowing us to give plausible
predictions closer to biological reality (Kim et al., 2016; Cho
et al., 2019; Väremo et al., 2015).

To date, all genome-scale metabolic models of astrocytes
(Osorio et al., 2020; Martín-Jiménez et al., 2017) are

FIGURE 1
Gene-Protein-Reaction (GPR) rules map the relationship between key components of a metabolic network reconstruction. Those interactions are
represented as GPR rules in the GEM (OR, AND); and how they are also associated with the stoichiometric matrix. P1 is the only gene necessary for
reaction R1 to take place. either P2 or P3 are necessary so reaction R2 takes place. Genes P4 and P5 must be expressed so reaction R3 can take place.
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reconstructed with transcriptome data and information gathered
from the literature; but they are not contextualized with multi-omic
data. One of the state-of-the-art GEMs for astrocytes was created by
our laboratory using multi-omic data (Osorio et al., 2020). Following
these efforts, in the current work, we reconstructed a tissue-specific
human astrocyte GEM based on transcriptomic and proteomic data
directly obtained by our laboratory. The experimental data were
taken from astrocytes under basal conditions, stimulated with PA,
and pre-treated with tibolone (Tb) followed by PA stimulus, the
same biological scenarios used by (Osorio et al., 2020).

However, although rich in biological information, both
transcriptome and proteome data have shortcomings when used
independently to reconstruct a GEM. Specifically, it is hard to
extrapolate the metabolic fluxes from the gene expression levels
observed in transcriptomic data (Cho et al., 2019). In contrast, the
proteome is closer to the metabolic activity, but its coverage and
accuracy are often lower than the former data type (Cho et al., 2019).
To address these limitations, several studies have proposed methods
that integrate transcriptomic and proteomic data. For instance
(Bordbar et al., 2014), introduced GIMMEp to overcome the
limitations of algorithms that rely on predefined objective functions
to create context-specific GEMs. This algorithm involves three steps:
defining objective functions from proteome data, extracting individual
subnetworks thatmeet each objective function based on transcriptomic
data, and combining these subnetworks to form the final GEM.
However, although this approach provides a robust framework, it
can expand the solution space when applied to astrocyte GEMs with
well-defined objective functions, potentially making the resulting
model less predictive than desired.

In another interesting approach (Väremo et al., 2015), the
proteome is assessed, contrasting highly abundant proteins with
the transcriptome; then, the genes with high expression are added to
the subset of abundant proteins supported by the transcriptome. In
this approach, the transcriptome is considered the ground truth,
ignoring its limitations and using it to evaluate proteome data,
without considering the reverse evaluation.Haga clic o pulse aquí
para escribir texto.

In our approach, we propose a novel integration of
transcriptomic and proteomic data by leveraging the gene-
protein-reaction rules included in GEMs. Instead of assessing
each data type separately, we perform dimensional reduction on
the combined data using principal component analysis (PCA),
creating a single-vector representation. To our knowledge, this
approach has been applied to dimensionally reduce RNAseq data
but not protein abundance data (Ou et al., 2021). We then used this
single-vector to contextualize a human GEM model, leading to the
most comprehensive and accurate astrocyte-specific GEM to date.

2 Materials and methods

2.1 Transcriptomic and proteomic data

The proteome and transcriptome data were derived from a
human astrocyte cell line (Lonza), cultured in Astrocyte Basal
Medium supplemented with SingleQuots (Lonza). They were
cultured at 37 °C and 5% of CO2. Then, the respective
treatments were applied to obtain data for the following three

scenarios: astrocytes under basal conditions, stimulated with
Palmitic Acid (PA), and pre-treated with Tibolone (Tb) followed
by PA stimulus. The Tb pre-treatment at 10 mM was applied for
24 h (Martin-Jiménez et al., 2020); then the cells were treated with
concentrations 2000 µM of PA during 24 h (Martin-Jiménez et al.,
2020); finally, the control group (under basal conditions) included
bovine serum albumin, free of fatty acids, and carnitine at 2 mM
(Martin-jiménez et al., 2020).

To profile the transcriptome, the total RNAwas extracted with the
RNeasy mini kit (Qiagen, United States), following the manufacturer’s
instructions. RNase-free DNase I was used to avoid contamination
with genomic DNA. Samples were stored at −80°C in a nuclease-free
buffer to be sequenced on an Illumina HiSeq 2000 machine with a
150 bp paired-end configuration, yielding ~75 million reads per
sample. This data is available in the Gene Expression Omnibus or
GEO repository under the identifier GSE166500 (https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE166500). We assessed RNA-
seq quality with QUARS (QUAlity control for RNA-Seq; github.com/
tluquez/QUARS), a workflow that integrates several tools included in
Nextflow (v18.10.1). Following best practices (Conesa et al., 2016), the
genes that had fewer than 10 total reads were discarded after adding the
read counts from technical and biological replicates on any treatment.

For protein extraction, the medium was removed, and the
container was cleaned with 1 mL of cold 1X PBS, then extracted
with a pipette. Then, a preparation of 72 mL of the RIPA cocktail
plus protease inhibitors were added. The samples were then
centrifuged at 15,200 rpm and −4°C for 13 min. The proteins
were quantified by the bicinchoninic acid method (BCA1 Sigma-
Aldrich kit). The digested peptides were analyzed by LC-MS/MS in a
Thermo Scientific Q-Exactive Orbitrap mass spectrometer together
with Proxeon Easy-nLC II HPLC (Thermo Scientific) and a Proxeon
nanospray source. The MS/MS spectrum was obtained using a
method of the top 15, where the 15 main ions of the spectrum
were subjected to a HCD (High Energy Collisional Dissociation). In
selecting the precursor ions, an isolation mass window of 2.0 m/z
was used, and fragmentation was done at 27% normalized collision
energy. For dynamic exclusion, a duration of 22 s was used.

In the processing of the resulting files, the following parameters
were used: maximum 2 missing cleavages, minimum 50% in the
identification of ion precursors, and search for razer and unique
peptides. Valid proteins were obtained from the SwissProt human
database. Using the program proteome discoverer 2.3, they are
quantified without labels in the search engine Sequest and
AMANDA. In addition, MaxQuant v1.6.10.43 v1.6.10.45 and
Perseus were used to identify valid proteins.

Finally, to obtain the relative count, non-normalized protein
intensities were imported into R version 4.0.1 (R Core Team,
2019). First, the data were transformed with log2 to obtain a more
symmetric distribution before analysis, and all proteins were
maintained with 70% of valid values per group, that is, 6 replicates
per group (Karpievitch et al., 2012); In the transcriptomic data analysis,
the raw counts were transformed into log2 scale to achieve a more
symmetric distribution, which facilitates comparison between groups
and reduces skewness in the data. This transformation, alongwithVSN
variance stabilization, ensured that the variance remained constant
across the data range, thus enhancing the interpretability of the results.
As with protein data, missing values in the transcriptomic dataset were
imputed using K-Nearest Neighbor (KNN) Imputation, with a KNN
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value of 10, following recommended best practices (Chai et al., 2014;
Välikangas et al., 2017). For this a KNN value of 10 was used as
suggested by (Välikangas et al., 2017).

2.2 Data mapping to reactions

We next map RNAseq and protein abundance data to each
reaction present in the model. To do so, we use Recon3D’s GPR
association rules, which use Boolean expressions to encode non-
linear relationships between genes, proteins, and reactions (Di
Filippo et al., 2024) (Figure 2, part 2). In this sense, when there
is more than one entity related to a single reaction, we take the
minimum value when the relationship between the entities is AND,
and the maximum when the relationship is OR (Figure 2). As a
result, we obtain two Rn vectors for each dataset, where n is the
number of reactions. One vector represents the abundance of the
enzymes that catalyze the reaction, based on the proteome data,
while the other vector represents the expression of the genes that
code for those enzymes, based on the transcriptome data.

2.3 Principal component analysis:
transformation of transcriptome and
proteome data

A methodology to transform transcriptome and proteome data
has been previously described and published by our research group
(Angarita-Rodríguez et al., 2022). This method generates a single
vector that integrates the information from both measurements,

addressing the lack of expected linear correlation between protein
abundance and gene expression (Figure 2, part 2).

Before performing the principal components analysis (PCA), we
standardized (z-score scaling) the input data. Because the scale
difference between the transcriptome and proteome can distort the
PCA (Jollife and Cadima, 2016). The standardization, also known as
z-score scaling, was performed by subtracting the mean from each
value and dividing by the standard deviation. Subsequently, the
variance and covariance matrix were calculated, obtaining the
eigenvalues and eigenvectors, as well as the principal components.
This process was implemented usingMATLAB® (Hyduke et al., 2011).

2.4 Context-specific model reconstruction

We employed iMAT to contextualize the model (Zur et al.,
2010). This method uses two manually selected thresholds to
categorize expression and abundance levels into three states:
high, medium and low. These states help identify active reactions
that should be included in the GEM (Figure 2, part 1). Due to
distribution skewness, we applied a logaritmic transformation,
which stabilizes variance and improves the reliability of the
thresholds iMAT uses to classify reactions by metabolic activity
levels. Afterward, we used the single-dimensional vector obtained
from PCA as described above to reduce the base model, Recon3D
(Brunk et al., 2018), by applying the iMAT implementation from the
COBRA toolbox v3.0 (Heirendt et al., 2011) through the function
createTissueSpecificModel. This algorithm identifies a balance
between the inclusion of reactions with high activity and the
elimination of the low ones (Zur et al., 2010). The defined

FIGURE 2
General overview of methodology. 1) Overview of the methodology used for integrating transcriptomic and proteomic data, highlighting key steps
and outcomes. 2) Raw data obtained and deposited by our laboratory (GSE166500) were retrieved and mapped to the generic Recon3D model. The
dimensionality of the transcriptomic and proteomic data was reduced, and then, 3) these data were used to restrict the generic model, generating a
context-specific model. The model was further curated using the fastGapFill algorithm, with restrictions defined according to the metabolic state
context. 4) The restricted model was subjected to flux balance analysis and other optimization-based algorithms.
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thresholds to classify the reactions by activity were −500 for the low
threshold, and 500 for the high one. Lastly, we used the exp2flux
algorithm (Osorio et al., 2016) to create three astrocyte models:
healthy, inflamed, and tibolone pre-treatment. As the input, we used
dimensionally-reduced data from each specific scenario as described
in the previous section.

2.5 Model curation

2.5.1 Gap-filling
The reconstruction process often leaves some gaps in the model,

which are identified from metabolites that can be produced but not
consumed, or vice versa. We used the fastGapFill algorithm (Thiele
et al., 2014) in the COBRA Toolbox v3.0 (Heirendt et al., 2011),
which uses the universal biochemical reaction databases to fill the
gaps with stoichiometrically consistent reactions (Figure 2, part 3).

2.5.2 Stoichiometric consistency
To ensure the consistency of the model, we searched for leak and

siphon metabolites with the method findMassLeaksAndSiphons
available in the COBRA Toolbox v3.0 (Heirendt et al., 2011). Leak
metabolites are those that are still produced when closing the
nutritional inputs of the model. Therefore, they are produced “from
nothing”. Siphon metabolites are those produced when closing the
outputs; thus, they are consumed “for nothing”. The presence of these
species in the model implies a violation of the law of mass conservation
(Heirendt et al., 2011). In this sense, we identified the minimum set of
reactions responsible for each leaked and siphonedmetabolite by using
the function findMinimalLeakageModeRxn available in the COBRA
Toolbox v3.0 (Heirendt et al., 2011). Then, we identified pairs of
reactions with common metabolites, one on the product side and the
other on the reactant side. Lastly, we used the Stoichiometric tools
package to search for the null space in the elementsmatrix for each pair
of reactions, and the missing metabolites to balance the reaction
were added.

2.5.3 Nutritional input definition
As the composition of ABM (Advanced Basal Medium) is not

available, we defined the nutritional input based on the composition
of Dulbecco’s Modified Eagle Medium (DMEM) enriched with fetal
bovine serum (FBS) at 10%, which is the same one used by Osorio
et al. (2020). Then, we took the metabolic composition of DMEM
defined by Tejera et al. (2020). Conversely, as FBS is a natural
medium, the metabolite composition and concentration can vary
significantly, even between batches from the same supplier, which
can introduce variability in experimental outcomes and affect the
consistency of metabolic analyses (Yang and Xiong, 2012). Thus, we
used different sources to build Supplementary Table 2 (Yang and
Xiong, 2012; Branzoi et al., 2010).

2.6 Simulation and prediction assessment

To simulate the experimental conditions, we converted the
millimolar (mM) concentrations of the relevant metabolites into
metabolic fluxes (mmol gDW⁻1 h⁻1) using a standard method.
Specifically, the concentrations were normalized based on cell dry

weight (gDW), assuming a standard composition of the astrocyte
cells. For each scenario, the substrate concentrations (e.g., palmitic
acid, Tibolone) were converted into corresponding flux values using
the method described by (Shinfuku et al., 2009), where metabolite
uptake or secretion rates were calculated based on the experimental
concentration values. This approach allowed us to integrate
experimentally derived concentrations into the Flux Balance
Analysis (FBA) framework for accurate simulation of metabolic
activities under each condition.

Therefore, we defined four metabolic scenarios: (i) a basal state,
simulating the standard conditions of an astrocyte; (ii) an ischemic
condition, in which oxygen and glucose availability were
progressively reduced from 2.5 to 0 mmol gDW⁻1 h⁻1 (millimoles
per Gram of dry weight per hour); (iii) a challenge condition with
0.208 mM/g of PA (palmitic acid); and (iv) a pre-treatment with
70 μM/g of Tb (tibolone) followed by exposure to the same
concentration of PA (González-giraldo et al., 2019). For each
scenario, flux balance analysis (FBA) was performed using the
COBRA Toolbox with the loopless flag enabled, minimizing
thermodynamically infeasible loops that could otherwise affect
predictions (Schellenberger et al., 2011).

In each of these simulations, the same objective function
(biomass) was used, but input fluxes were adjusted according to
the specific scenario requirements. For instance, in the ischemic
condition, the input fluxes of oxygen and glucose were progressively
decreased, whereas in the challenge and pre-treatment scenarios,
specific fluxes for PA and Tb were added sequentially. This approach
allowed us to capture the metabolic adaptations of astrocytes under
distinct environmental stresses, providing insights into how these
cells manage resources in different contexts.

Finally, the models by Osorio et al. (2020) and our model were
evaluated against experimental flux data obtained from Amaral et al.
(2011). After incorporating the nutritional input, a flux balance
analysis (FBA) was performed to calculate the biomass value, which
was then compared with experimentally measured values reported
by Amaral et al. (2011). Subsequently, the objective function was
fixed at 0.32, and a flux variability analysis (FVA) was conducted.
This analysis allowed for a comparison of the flux ranges of key
reactions with experimental metabolite values.

3 Results

3.1 Integration of omic data

In the Recon3D model, only 56.7% of the reactions are associated
with one or more genes through the GPR rules, and only 49.9% of the
reactions are linked to one or more proteins. This means that
experimental data can contextualize only about half of the
metabolic network in the model. After mapping the experimental
data to the GPRs, we performed a Principal Component Analysis
(PCA) on the mapped data. As a complementary step, individual
PCAs were performed for gene expression and protein abundance
data, and these results are shown in Supplementary Figure 1. Based on
the screen plot (Figure 3) and the proportion of variance explained
criterion, we selected the first two principal components for
dimensionality reduction, as described in the methodology. The
resulting vector was correlated with each environment to assess
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how well it represented the original data. Therefore, we applied a
logarithmic transformation to the resulting vector to improve iMAT
performance, which relies on a threshold-based approach to identify
the reactions that should be retained in the model.

3.2 Tissue-specific astrocyte GEM

Given that only approximately 50% of the reactions were
mapped using Recon3D, we can hypothesize that the other 50%
of reactions present in the RNAseq/proteome dataset may not have
been fully captured. This suggests that there could be additional
reactions in the dataset that are either context-specific or not
represented in the base model. As a result of the
contextualization process, we obtained a tissue-specific GEM that
includes 6,520 metabolites and 10,586 reactions, with
5,297 reactions being reversible and 5,289 irreversible. The
integration of omics data likely contributed to the unique
reactions captured in this model, reflecting the metabolic
activities specific to the tissue or condition being studied.

Thus, this model accounts for 9 compartments that include cytosol
[c], extracellular medium [e], Golgi apparatus [g], internal
mitochondrial compartment [i], lysosome [l], mitochondria [m],
nucleus [n], endoplasmic reticulum [r], and peroxisome/glyoxysome
[x]. Figure 4A shows the distribution of enzymatic functions based on
Enzyme Commission (EC) numbers and identifiers from the
Transporter Classification Database (TCDB). Regarding the exact
distribution of the enzymatic function: 63 electrochemical potential-
driven transporters, 38 group translocators, 10 primary active
transporters, and 1 channel/pore. In contrast, 1,371 enzymes are
transferases, 1,132 oxidoreductases, 933 hydrolases, 233 lyases,

231 ligases, and 103 isomerases. Nevertheless, out of the
5,880 reactions that are not in compartments: 1,834 exchanges and
4,056 are transport reactions. While the compartments are divided as
follows: 2,167 were in the cytosol, 621 in the mitochondria, 475 in the
endoplasmic reticulum, 269 in the peroxisome/glyoxysome, 220 in the
Golgi apparatus, 206 in the extracellular medium, 165 in the lysosome,
and 80 in the nucleus (Figure 4B).

To assess the completeness of our multi-omics model, we
compared it against those from (Osorio et al., 2020) and
(Martín-Jiménez et al., 2017), we examined the reaction and
metabolite identifiers across these models, Recon 3D, and the
model reconstructed here (Figures 4C, D). For clarity, we will
refer to the models by the last name of the associated authors.

The comparison of reaction identifiers revealed that the Osorio
(blue) and Martín-Jiménez (green) models do not share common
reactions due to differences in identifier systems, indicating potential
variations in how reactions are represented or defined. In contrast, the
Recon3D model (red) shares reactions with all other models,
suggesting it provides broader coverage of common metabolic
reactions. The Mendoza model (orange) includes an additional
7,001 reactions that are not found in existing models, suggesting a
significant expansion or enhancement in the metabolic representation.
The inclusion of these additional reactions could be due to several
factors. First, theMendozamodelmight have integrated reactions from
other data sources or experimental evidence not covered by Recon3D,
such as organism-specific pathways or context-dependent reactions.
Additionally, this expansion may result from manual curation or the
integration of omics data (e.g., transcriptomics and proteomics) that
suggest context-specific metabolic activities.

Moreover, Mendoza shares 2,219 reactions with Osorio and
865 with Martín-Jiménez. This implies that some reactions shared
between Martín-Jiménez and Recon3D were not active in the
astrocyte model, and further, 506 reactions shared by Osorio and
Recon3D were omitted from Mendoza based on experimental data.

Regarding metabolites, Martín-Jiménez does not share any
metabolites with other models, due to a different notation system
for metabolite identification. Nevertheless, Recon3D and Osorio
each have unique metabolites—2,095 in Recon3D and 34 in Osorio.
They also share 158 metabolites not found in the other models.
Mendoza shares 4,382 metabolites solely with Recon3D and an
additional 1,764 with both Recon3D and Osorio. This comparison
highlights the quality and completeness of the reconstructed model
relative to existing ones. A model that shares many reactions and
metabolites with others is generally more consistent with prior
knowledge, whereas models introducing new reactions may offer
novel insights. Mendoza’s inclusion of additional reactions and
metabolites suggests improvements in metabolic representation,
potentially enhancing the accuracy of metabolic simulations.

During the model curation, we identified 2,205 leaks and
2,312 siphon metabolites. Thus, as described in the methods, we
stoichiometrically balanced each reaction and pairs of inconsistent
reactions. As a result, we eliminated the leak metabolites, but none of
the siphon metabolites were removed. Therefore, during the
simulations, we optimized the model with loopless COBRA, to
discard the thermodynamically infeasible cycles that may then be
generating erroneous outcomes (Schellenberger et al., 2011). We
applied the nutritional input composition to the boundaries of
the model.

FIGURE 3
Dimensional reduction with PCA of omic data. This PCA plot
represents the multi-omics data (e.g., transcriptomic and proteomic
profiles) across various experimental conditions or biological groups.
Each point corresponds to a sample, color-coded by condition,
highlighting the variance in omics profiles between groups. The axes
represent the first two principal components (x-axis as PC1 (60.8%
variation); y-axis as PC2 (31.0% variation), which capture the highest
variance in the dataset.
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3.3 Model predictions and experimental
comparisons

Using Flux Balance Analysis (FBA) as described above, our
model predicted a biomass flux of 0.33 mM gDW⁻1 h⁻1 (Table 1),
employing the biomass function defined in Recon3D. In the case of
astrocytes, which do not primarily grow in terms of biomass, the
predicted biomass flux in the model could instead be interpreted as a
measure of cellular maintenance rather than actual proliferation
(Verkhratsky and Nedergaard, 2018; Çakir et al., 2007). Astrocytes

engage in metabolic activities that maintain their cellular function
and homeostasis rather than supporting rapid biomass
accumulation (Çakir et al., 2007). From the model’s perspective,
biomass synthesis predictions are being calculated, but in reality, the
experimental data (based on transcriptomic and proteomic
measurements) likely reflect the metabolic activity required for
maintaining the cell’s integrity and functionality rather than
growth per se.

The experimental data, which include transcriptomic and
proteomic profiles, were derived from cultured human astrocytes

FIGURE 4
Distribution of the enzymes and reactions included in the astrocyte GEM. The upper part depicts the reactions classified by (A) type of protein, where
those that begin with “E:” are enzymes and “T:” are transport proteins.While (B) shows the distribution by cellular compartment. Conversely, the lower part
shows two Venn diagrams of the similarities of metabolites (C) and reactions (D) between the different models.

TABLE 1 Comparison of metabolic fluxes for different models without fixing the biomass objective function against experimental data and reported
experimental values by Amaral et al. (2011) (mmol gDW⁻1 h⁻1).

Model Biomass Glutathione Glutamine Lactate

Experimental 0.32 00,015 0.26 0.158

Mendoza Healthy 0.33 0.74 1.25 0.68

Osorio Healthy 0.37 0.3 3.11 1.06

Mendoza PA 0.22 0.204 0.59 0.30

Osorio PA 0.18 0.35 2.13 1.53
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(Lonza) under different conditions (basal, stimulated with palmitic acid,
and pre-treated with Tibolone followed by PA stimulus). These datasets
represent the metabolic shifts occurring under these conditions and
provide insights into how astrocytes adjust their metabolic processes to
maintain cellular homeostasis rather than focusing on biomass growth.
Therefore, using the biomass objective function could serve as a proxy
for the overall metabolic load required for maintenance.

This prediction is in close agreement with the in vitro growth
flux of 0.32 mM gDW⁻1 h⁻1 reported by Prah et al. (2019), which is
closer to our value than the 0.37mM gDW⁻1 h⁻1 reported in the latest
model by Osorio et al. (2020) (Figure 5A). It is important to note that
the experimental value was converted from cell count to mM
gDW⁻1 h⁻1 using the method proposed by Shinfuku et al. (2009).

3.4 Metabolic simulations

The biomass growth predictions from our models were
consistent and closely matched the reported experimental value
(Prah et al., 2019) (Figure 5). However, for the metabolites analyzed
(lactate, glutamine, and glutathione), the flux values predicted by
flux balance analysis (FBA) deviated from experimental values.
Upon performing a flux variability analysis (FVA) (Table 2), we

obtained flux ranges for each metabolite when the objective function
was fixed at 0.32 mm gDW⁻1 h⁻1, consistent with the experimentally
reported biomass value (Figure 5A).

The flux results indicate that the experimental values fall within the
predicted ranges, and by fixing the experimental biomass growth value,
the metabolite flux ranges become even closer to the experimental
values (Figures 5B–D). For example, (Amaral et al., 2011), reported a
glutamine flux of 0.26 mM gDW⁻1 h⁻1, while the (Osorio et al., 2020)
model predicted a flux of 3.11 mM gDW⁻1 h⁻1 for control astrocytes
and 2.13mM gDW⁻1 h⁻1 for PA-treated astrocytes. Ourmodel predicts
a flux of 1.25 mM gDW⁻1 h⁻1 for control astrocytes and 0.47 mM
gDW⁻1 h⁻1 for PA-treated astrocytes (Figure 5C).

Notably, the experimental flux data used in our comparison do
not incorporate certain metabolic pathways that could significantly
contribute to the patterns observed in our model. The metabolic flux
data comprise 47 fluxes, 10 of which were measured experimentally,
either as production or consumption rates of glucose, lactate, alanine,
glutamine, leucine, isoleucine, valine, and cystine, or obtained from
the literature (citrate and glutathione release rates) (Amaral et al.,
2011). These fluxes were derived through metabolic flux analysis
(MFA), which calculates fluxes based on experimental measurements
rather than flux balance analysis (FBA). From these data, we infer that
astrocytes consistently release glutamine. However, discrepancies

FIGURE 5
Validation of the astrocyte model against experimental data. The figure illustrates the validation of the astrocyte model by comparing simulated
metabolic fluxes with experimental measurements. The pink line represents the experimentally determined flux value for each metabolite (Amaral et al.,
2011) (mmol gDW⁻1 h⁻1). The blue bars depict the flux variability ranges derived from a flux variability analysis (FVA), with the objective function constrained
to a value of 0.32, as reported in experimental data (Prah et al., 2019). The black bars indicate the FVA-derived flux ranges without the application of
this constraint. Dots represent the optimized flux values obtained through flux balance analysis (FBA) for the corresponding exchange reactions. (A)
Comparison of biomass values between themodels and the reported experimental value. (B) Flux Variability Analysis (FVA) for glutathione in each model;
the pink line indicates the experimentally measured value. (C) Flux Variability Analysis (FVA) for glutamine in each model; the pink line indicates the
experimentally measured value. (D) Flux Variability Analysis (FVA) for lactate in eachmodel; the pink line indicates the experimentally measured value. The
findings indicate a strong concordance between themodel-predicted fluxes and experimental data, with the experimentally observed values consistently
falling within the simulated flux ranges.
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between observed fluxes and expected values may be attributed to
variations in metabolic activity, substrate availability, or glutamine
transport efficiency (Bröer and Brookes, 2001).

Therefore, additional experimental data would be required to
reliably identify unknown metabolic fluxes that could influence the
optimal values of these metabolic fluxes in the model.

Regarding glutathione, our model predicted metabolic fluxes
that differed from the experimental value reported (0.0015 mM
gDW⁻1 h⁻1) (Amaral et al., 2011), although the results of the FVA
analysis remain in the lower part of the flux range (Figure 5B). A
significant increase in the metabolic flux of a metabolite could reflect
changes in the cellular metabolic state, such as stress responses or
metabolic alterations, which could impact critical cellular functions,
neuronal communication, or the maintenance of the brain’s
extracellular environment (Vicente-Gutierrez et al., 2019). For
astrocytes, this could affect neurotransmitter regulation,
potassium homeostasis, or responses to injury or disease.

For lactate (Osorio et al., 2020), reported fluxes of 0.3 mM
gDW⁻1 h⁻1 for control astrocytes and 1.53 mM gDW⁻1 h⁻1 for PA-
treated astrocytes. Our simulated values of 0.68 mM gDW⁻1 h⁻1 and
1.06 mM gDW⁻1 h⁻1 for the control and treated states, respectively,
compared to reported values of 0.158 mM gDW⁻1 h⁻1 under
homeostatic conditions, suggest that our predictions are closer to
experimental data (Figure 5D). This result further supports the
effectiveness of the multi-omics approach utilized in our study.

It is worth noting that out of the 47 fluxes in the metabolic
network, 10 were measured experimentally using isotopic transient
13C metabolic flux analysis (MFA) to estimate intracellular fluxes in
primary cultures of astrocytes (Amaral et al., 2011). Our predictions
indicate a significant glycolytic flux in astrocytes, with approximately
24.2% of the glucose (3.26 mM gDW⁻1 h⁻1) being converted into
lactate (0.79 mM gDW⁻1 h⁻1). Previously (Ben-Yoseph et al., 1996),
reported a basal pentose phosphate pathway flux in astrocytes of
approximately 7% of the total lactate produced from glucose, which
increased to 67% under oxidative stress conditions.

4 Discussion

The fundamental role of astrocytes in the brain, which contrasts
with the traditional neuron-centered view, highlights their
importance in maintaining the metabolic and functional balance
of the central nervous system (Mederos et al., 2018; Bélanger and
Magistretti, 2009; Robertson, 2018). This perspective underscores
the critical function of astrocytes in glucose uptake from blood
vessels and its conversion into lactate, which is then used as a crucial
energy source for neurons through oxidative phosphorylation
(Souza et al., 2019) (Figure 6A). Since neurons have limited
glycolytic capacity, they rely on astrocytic lactate to meet their
energy needs (Beard et al., 2022). This mechanism is central to
the astrocyte-neuron lactate shuttle hypothesis, in which astrocytes
convert glucose into pyruvate through glycolysis (Marty-Lombardi
et al., 2024; Alberini et al., 2019). This process can also involve the
mobilization of stored glycogen (Figure 6B). Pyruvate is then
converted into lactate by the enzyme lactate dehydrogenase and
released into the extracellular space via monocarboxylate
transporters (MCT1 and MCT4) (Alberini et al., 2019; Zhang
et al., 2023; Jakoby et al., 2014; Henn et al., 2022). Neurons take
up this lactate via MCT2, which is reconverted into pyruvate to enter
the mitochondria and participate in oxidative phosphorylation,
generating ATP (Zhang et al., 2023; Bélanger and Magistretti, 2009).

Lactate production in astrocytes is primarily driven by synaptic
activity, particularly by releasing neurotransmitters like glutamate
(Figure 6C) (Beard et al., 2022; Zhang et al., 2023). When glutamate
is released at the synapse and taken up by astrocytes, it stimulates
glycolysis (Henn et al., 2022). It increases lactate production, tightly
linking this process to neuronal activity and changes in the
extracellular microenvironment (Marty-Lombardi et al., 2024).
Additionally, astrocytes facilitate the conversion of glutamate into
glutamine, which is then transported back to neurons for recycling
as an essential excitatory neurotransmitter (Rose et al., 2013;
Schousboe et al., 2013; Pardo et al., 2013).

TABLE 2 FVA Flux values for each reaction with the objective function fixed at 0.32mmol gDW⁻1 h⁻1, corresponding to the experimentally measured value in
the healthy state (mmol gDW⁻1 h⁻1) (Amaral et al., 2011).

Reaction model Min Max Expermental value

Glutamine _ Mendoza_Healthy −1.29 1.25 0.26

Glutamine _ Osorio_Healthy 0 0.47 0.26

Gluthation_Mendoza_Healthy 0.00 0.51 00,015

Gluthation_Osorio_Healthy 0.00 0.18 00,015

Lactate _Mendoza_Healthy 0.00 0.50 0.158

Lactate _Osorio_Healthy 0.00 0.41 0.158

Glutamine _ Mendoza_PA 0.00 0.20 NAa

Glutamine _ Osorio_PA 0.00 1.00 NAa

Gluthation_Mendoza_PA 0.00 0.2 NAa

Gluthation_Osorio_PA −0.19 0.19 NAa

Lactate _Mendoza_PA 0.00 0.24 NAa

Lactate _Osorio_PA −0.27 0.16 NAa

aAt this moment we do not have experimental value for the metabolites associated with the inflammatory state.
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Our model emphasizes not only the role of astrocytes in lactate
provision but also their critical involvement in the regulation of
neurotransmission-related metabolites, specifically glutamate and
glutamine cycling. Astrocytes actively take up synaptically released
glutamate, preventing excitotoxicity, and convert it into glutamine
(Sheng et al., 2013). This glutamine is then transported back to
neurons for neurotransmitter recycling. In our model, the flux
through these cycles is closely linked to synaptic activity and
energy demands, demonstrating how astrocytes regulate
neurotransmitter availability and balance in real time.

Our model also captures the regulation of critical
neurotransmission-related metabolites, emphasizing the role of
astrocytes in glutamate uptake and processing. Astrocytes uptake
glutamate from the synaptic cleft via specific transporters, such as
EAAT1 and EAAT2, to prevent its accumulation and excitotoxicity
(Parkin et al., 2018). Once inside the astrocytes, glutamate is
converted into glutamine by the enzyme glutamine synthetase
(Hayashi, 2018). This conversion is crucial because it transforms
glutamate, an excitotoxic neurotransmitter, into glutamine, which
can be safely shuttled back to neurons.

The synthesized glutamine in astrocytes is exported to neurons
via transporters such as SNAT3, where it is reconverted into

glutamate by the enzyme glutaminase, allowing glutamate to be
reused as a neurotransmitter in the synapse. This cycle, known as the
glutamate-glutamine cycle, is essential for maintaining efficient
excitatory neurotransmission and preventing excessive glutamate
buildup in the synaptic cleft, which could lead to neuronal damage.

Quantitatively, the fluxes reported by theMendozamodel indicate
that the transport of glutamine from astrocytes to neurons occurs at a
rate of 1.25 mM gDW⁻1 h⁻1, while the conversion of glutamate into
glutathione (GSH), a key antioxidant, occurs at a rate of 0.74 mM
gDW⁻1 h⁻1 in astrocytes. This highlights a dual pathway for glutamate:
one in which it is recycled in the glutamate-glutamine cycle (Bröer and
Brookes, 2001), and another in which it is directed toward GSH
synthesis in astrocytes, contributing to the regulation of the redox
balance in the central nervous system (Bröer and Brookes, 2001;
Zielińska et al., 2022).

As seen in Figure 6C, the model clearly represents how synaptic
activity, particularly the release of glutamate, stimulates these
metabolic processes. In addition to astrocytic lactate production,
the representation of the glutamate-glutamine cycle and its role in
neurotransmitter homeostasis and redox balance is also captured
(Yamagata, 2022). The flux of metabolites between glutamate and
GSH suggests that astrocytes play a critical role not only in

FIGURE 6
Astrocyte-Mediated glucose uptake, lactate production, and glutamate-glutamine cycling. (A) Astrocytes uptake glucose and other metabolites
from the blood via specific transporters like GLUT. (B) Glucose is metabolizing it through glycolysis to produce lactate. This lactate is released into the
extracellular space, where neurons absorb it as an energy source, particularly during periods of high synaptic activity; (C)Concurrently, astrocytes capture
glutamate from the synaptic cleft using transporters, converting it into glutamine via glutamine synthetase. The non-excitotoxic glutamine is then
shuttled back to neurons, where it is converted back into glutamate by glutaminase, enabling its reuse as a neurotransmitter. The numbers represent the
material flow values (mmol gDW⁻1 h⁻1) reported by Mendoza model.
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supporting neuronal energy needs but also in providing antioxidant
protection, thereby linking energy metabolism with the regulation of
neurotransmission-related metabolites.

Although we lack experimental data on inflammatory flux levels
observed in the model, it is possible to determine from our results
that astrocytes can metabolize palmitic acid, a saturated fatty acid,
through β-oxidation (Ng and Say, 2018). However, elevated levels of
palmitic acid can induce pro-inflammatory responses in astrocytes,
impairing autophagy, which may lead to cellular stress and
contribute to neurodegenerative diseases (Vesga-Jiménez et al.,
2022; Ortiz-Rodriguez et al., 2019). Previous studies suggest that
palmitic acid influences astrocyte lactate production, promoting
increased generation while reducing glucose oxidation (Osorio
et al., 2020; Oliveira et al., 2018; Bonvento and Bolaños, 2021).
This shift toward greater reliance on glycolysis could represent an
alternative energy generation pathway during metabolic stress.

The interaction between glucose and palmitic acid metabolism
in astrocytes suggests that, while palmitic acid may not significantly
alter glucose uptake, it can shift the metabolic balance in ways that
could reduce lactate production rather than increase it, contrary to
what might be expected (Gradisnik and Velnar, 2023; Morant-
Ferrando et al., 2023). This reduction may stem from metabolic
reprogramming under inflammatory conditions, where astrocytes
may prioritize pathways other than glycolysis, such as fatty acid
oxidation or responses to oxidative stress (Beard et al., 2022;
Weightman Potter et al., 2019). Inflammatory signals triggered
by palmitic acid can lead to mitochondrial dysfunction,
impairing the efficiency of glucose oxidation and decreasing
pyruvate availability for lactate production.

Although the effects of palmitic acid on lactate transport are not
fully understood, evidence suggests that it may alter the activity of
monocarboxylate transporters (MCTs) in astrocytes, potentially
reducing the efficiency of lactate export to neurons (Angarita-
Rodríguez et al., 2022; Escartin et al., 2007; Weightman Potter
et al., 2019). Furthermore, palmitic acid’s effects on cell
membrane fluidity could affect MCT activity and expression,
especially in response to the oxidative stress it induces (Wang
et al., 2012). This could further contribute to a reduction in
lactate flux under inflamed conditions, as seen in our predictions.

Additionally, exposure to palmitic acid can increase oxidative
stress, raising the demand for glutathione, an essential antioxidant
(Morant-Ferrando et al., 2023; Wu et al., 2019; Nemecz et al., 2019).
However, our findings indicate that under palmitic acid exposure, the
demand for glutathione decreases, suggesting that other metabolic
pathways might compensate for the oxidative stress or that astrocytes
may reduce glutathione synthesis due to impaired metabolic
functions. This shift could alter the availability of glutamine for
other metabolic processes, as it is no longer being diverted
significantly toward glutathione synthesis (Alnahdi et al., 2019).
Maintaining a balance between these metabolites is critical for the
proper functioning of astrocytes and their ability to support neurons
throughmetabolic and antioxidant pathways (Morant-Ferrando et al.,
2023). Disruption of this balance, as seen with excessive palmitic acid
exposure, could negatively impact astrocyte function and brain health
(Oliveira et al., 2018; Báez Castellanos et al., 2020).

Further studies are required to support our model’s predictions
under inflammatory conditions. The inclusion of experimentally
measured fluxes in astrocytes under inflammation would provide a

robust comparison for validation, particularly in relation to palmitate
metabolism and lactate production. The use of synthetic growth
media, as opposed to fetal bovine serum (FBS), could also reduce
variability in flux predictions and improve consistency across
experiments. Moreover, integrating metabolomic data in future
work could enhance our predictions by providing additional layers
of information regarding metabolite availability and consumption
(Morant-Ferrando et al., 2023). This approach could also facilitate the
model’s adaptation to simulate other brain cell types, such as neurons
or microglia, broadening its utility in studying neurodegeneration.

Adopting a holistic perspective, our model emphasizes the
importance of the glutamate-glutamine cycle in the brain’s
metabolic balance. It highlights glutamine’s role not only as a
neurotransmitter precursor but also as an energy intermediate
through its conversion into α-ketoglutarate in the Krebs cycle
(Shen et al., 2009). This approach reaffirms the relevance of
astrocytes in regulating neurotransmission and energy
homeostasis in the central nervous system.

Our results demonstrated that our model achieved a prediction
accuracy of 96.88% compared to the previous model published by
Osorio et al. (2020), which integrated transcriptomic and proteomic
data and achieved an accuracy of 84.38% relative to the experimentally
predicted value by Prah et al. (2019). This accuracy was calculated by
determining the ratio of the difference between the model’s predicted
values and the experimental data, reflecting the model’s improved
ability to predict metabolic fluxes in this specific context.

However, the use of a universal biochemical reaction database for
gap filling, instead of Recon3D, may have introduced bias. We
acknowledge this potential limitation and suggest that using
Recon3D exclusively in future work may help address this concern
by providing reactions that are better suited for astrocytic metabolism.

The use of techniques such as PCA to combine transcriptomic
and proteomic data in the reconstruction of specific GEMs has
shown promising results, especially compared to previous methods
like iMAT and exp2flux (Angarita-Rodríguez et al., 2022, Angarita-
Rodríguez et al., 2024). These advances in GEM contextualization
underscore the utility of integrating multiple data layers to create
more accurate models applicable to studying complex pathologies
such as neurodegenerative diseases. The human astrocyte GEM we
have developed is, to date, the most complete in terms of the number
of genes, proteins, reactions, and metabolites, and its validation with
experimental data reinforces its usefulness as a tool to explore new
hypotheses regarding astrocyte function in health and disease.
Nevertheless, the advantages of one approach over the other still
require further investigation, as network reduction may be necessary
in cases where metabolic pathways need modifications without
experimental data support.

While the integration of transcriptomic and proteomic data has
improved predictions in ourmodel, it is important to acknowledge the
limitations of relying solely on these data sources. The use of
ribosomal profiling as an additional method to bridge the gap
between the transcriptome and proteome has shown promising
results (Ebrahim et al., 2016). However, ribosomal profiling data is
not widely available, which can affect the robustness of our findings.
Current approaches often prioritize one data type over the other,
potentially leading to inaccuracies in model predictions. Future
research should explore the application of ribosomal profiling
across various cell types, including astrocytes and neurons, to
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provide a more precise measurement of translation and enhance the
integration of multi-omics data in genome-scale metabolic models
(GEMs). This approach could deepen our understanding of cellular
metabolism and improve the accuracy of metabolic models.

Furthermore, while the integration of multiple data layers has led
to improved predictions, the quality of the input data remains a key
factor in determining the accuracy of the model’s outcomes. Although
we lack experimental flux values to fully validate the model’s behavior
under inflammatory conditions, the model still offers higher resolution
estimates of fluxes. Its flexible structure allows easy adaptation to
neuronal metabolic networks or even co-culture systems, enabling the
separation of distinct cellular compartments. Expanding the model to
describe metabolic interactions between astrocytes and neurons would
involve a significantly larger number of reactions and unknown fluxes,
which would necessitate a more comprehensive experimental dataset,
particularly measurements of specific metabolic rates and reserves for
astrocytes and neurons independently.

One potential source of error in our predictions is the variability in
the nutritionalmedium, such as FBS, whose composition can fluctuate
(Yang and Xiong, 2012). This variability could explain discrepancies
between model predictions and experimental data. Therefore, we
recommend measuring the concentrations in the nutritional medium
and adjusting the model, accordingly, preferably using a synthetic
growth medium with a fixed composition.

Finally, Recon3D, as the base GEM, allowed us to reconstruct
the most comprehensive human astrocyte GEM to date regarding
the number of genes, proteins, reactions, and metabolites. Its
contextualization with multi-omics data has improved its
predictive performance, as evidenced by comparing our results
with state-of-the-art astrocyte GEMs.

Future research should explore the integration of additional
omics data, such as metabolomics, to further enhance the predictive
capabilities of GEMs. Expanding the model to include a broader
array of omics data will likely improve the accuracy of predictions
and provide deeper insights into the metabolic interactions between
astrocytes and neurons. Additionally, future studies should examine
the broader implications of these findings, particularly in the context
of metabolic diseases and neurodegenerative disorders. This holistic
approach could lead to the discovery of novel therapeutic targets and
a better understanding of the metabolic underpinnings of
brain health.

Our current methodology, while focused on astrocytes, holds
potential for expansion to model other brain cell types, such as
neurons and microglia, which would enable a more comprehensive
view of brain metabolism in health and disease. Additionally,
developing a neuron-astrocyte interaction model using this approach
could provide insights into the cooperative metabolic processes critical
formaintaining homeostasis in the central nervous system. Future work
could leverage the current framework to explore metabolic crosstalk,
particularly under pathological conditions such as neurodegenerative
diseases. The integration of interaction data, combined with multi-
omics inputs, would facilitate a holistic perspective on how cellular
interactions influence brain metabolism and function.

This GEMwill be a crucial tool for studying themetabolic functions
of astrocytes and their relationship with neurodegeneration. By
integrating and contextualizing multi-omics data, the model can
help generate new hypotheses regarding both pathological and
normal processes in these cells. As research progresses, this model

may also guide the exploration of therapeutic interventions and
contribute to the development of strategies aimed at preserving or
restoring brain health.
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