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Introduction

Neuroscientists have traditionally taken a reductionist approach to understanding the
immense complexity of nervous systems. As is the case in other fields of biology, the method
of reducing nervous systems into their constitutive parts has proven useful for
understanding neural circuits and how they function. As a result, modern neuroscience
has thrived on cataloging and scrutinizing individual components of complicated neural
systems. However, substantial gaps persist in understanding how these disparate
components connect and interact to generate higher-order functions. Bridging these
gaps requires a concerted effort to integrate knowledge across sub-fields in neuroscience
and, more broadly, across biology. Systems biology is a scientific approach used to examine
complex biological processes at the level of systems, rather than focusing on individual
discrete parts (Kitano, 2002; Mesarovic, 1968). A “system” is a group of mutually dependent
components that work together to form a unified whole. The goal of a systems approach is
to understand a holistic big picture in the context of integrated systems that are dynamic
and interrelated. By taking a systems biology approach to understanding the nervous
system, we can attempt to integrate and understand interactions between the different
neural components that give rise to higher-order emergent phenomena (Geschwind and
Konopka, 2009; Grillner et al., 2005).

The struggle between understanding individual parts and the larger whole has been a
part of neuroscience since its origin as a scientific discipline. Over a century ago, the field
was shaped by the opposing theories of two leading neuroanatomists, Santiago Ramón y
Cajal and Camillo Golgi. On the one hand, Golgi’s reticular doctrine posited that the
nervous system was an interconnected nerve network (“a large syncytium”) that was
seamless and continuous (Glickstein, 2012). In contrast, Cajal proposed the neuron doctrine
which stated that individual nerve cells were the basic structural and functional units of the
nervous system (Cajal, 1888; Cajal, 1899). The structural evidence from the microscopes
and stains available to scientists at the time supported Cajal’s neuron doctrine. In fact, it was
actually Golgi’s la reazione nera or “black reaction” (now known as the Golgi stain) that
produced the most convincing structural evidence that neurons were structurally separated
elements. The introduction of the electron microscope in the 1940s definitively
demonstrated that neurons were not continuous but were instead distinct entities
separated by synapses with extracellular space in between them (Palay, 1956; Porter
et al., 1945). While both Ramón y Cajal and Golgi were awarded the Nobel Prize in
1906 for their work on the structure of the nervous system, it was Ramón y Cajal who would
widely be considered as the founder of modern neuroscience, and his neuron doctrine has
long served as a foundation for the field.
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Perhaps because of this foundation on the neuron doctrine,
many of the workhorse techniques and methods in modern
neuroscience have been catered to investigating individual
components that make up neural circuits. For example, Golgi
stains and patch-clamp electrophysiology highlight individual
neurons. This conceptual focus on individual neurons has led to
a compartmentalization of knowledge that has obscured, to some
extent, our ability to integrate data on how individual functions
enable higher-order processes (Yuste, 2015). Moreover, the
reductionist bias and a reliance on big data or methods-driven
approaches in neuroscience has left us with many descriptions, but
few explanations (Krakauer et al., 2017). As a result, what is
generally lacking in the field are accepted theories of nervous
system function that explain how individual neurons or groups
of neurons (e.g., circuits) contribute to neural systems that then give
rise to behavior, cognition, or other emergent properties of
nervous systems.

Integrative systems neuroscience: mind
the gaps

This section of Integrative Systems Neuroscience seeks to address
some of the knowledge gaps through work that incorporates
interdisciplinary and multiscale analyses of nervous systems.
Integrative systems neuroscience represents the union of systems
biology and integrative neuroscience.

Using a systems biology approach, the goal is to understand
complexity by integrating disparate components to understand
function as a whole, rather than merely the sum of individual
parts. For example, in integrative neuroscience, this is
accomplished by considering data from various biological
levels to identify structure-function relationships and
determine how subregions connect to enable higher-order
emergent processes, such as behavior. Emergent properties are
features of a complex system that are not evident in the individual
components of a system in isolation and, therefore, cannot be
predicted by only studying individual parts. Comprehensive
models or computer simulations can be used to test how
different biological components of the nervous system interact
and contribute to these emergent processes. These models would
ideally also account for the fact that many interactions amongst
neural components are dynamic and may be non-linear in nature.
And because science advances based upon models that make
testable predictions, these models can be revised or refined based
on new empirical data. Without models or theoretical
frameworks in place, the potential hypothesis space becomes
too large and hinders our ability to establish first principles that
govern lower-level interactions.

A typical strategy for addressing potential knowledge gaps is
to start with the data and go toward abstraction, such that you
start from first principles and then ascend. But nervous systems
are often so complex and dynamic that this cannot be
accomplished logically. For example, if we have structural
biology data that includes angstrom-level resolution to resolve
the crystallography of individual proteins, such as ion channels,
then how can we map this to a single neuron’s structure and
function? How do we map microscopic information at the level of

synapses and receptors to brain-wide circuits? As recent work
using electron microscopy (EM) and machine learning
algorithms has shown, a single neuron in the human cortex
can have more than 5,000 individual synaptic connections,
and there are hundreds of millions of synapses within a single
cubic millimeter of cortical tissue (Shapson-Coe et al., 2024).
Therefore, the scale of the structural datasets quickly becomes
enormous at the microscopic level. Furthermore, this large
amount of structural EM data does not include any dynamic
functional information, such as synaptic activity that would vary
over time at many, if not all, of the synapses. The scale of the
complexity, if we were to include all these variables, impedes
facile interpretation. Additionally, if we approach the problem
from the “top-down” (e.g., circuits to proteins), we also quickly
encounter large gaps in our understanding before we reach the
level of individual neurons. These knowledge gaps are where a
systems biology approach can leverage large amounts of
quantitative information across different levels to draw
important insights.

One particular challenge for integrating information in nervous
systems is that the constitutive components operate over many
orders of magnitude, at least six in the spatial domain (Figure 1A)
and at least nine in the temporal domain (e.g., milliseconds to years;
Lichtman and Denk, 2011). As a result, we are often left with gaps in
knowledge between several spatiotemporal scales and domains that
preclude a more general holistic understanding of regional function
or whole organism behavior. Additionally, each scale often requires
different modalities to image or record the relevant neural activity,
presenting additional obstacles to functional integration (Figure 1B).
One strategy to span some of these divides is to perform multimodal
assessments in the same animals or subjects to examine the “ground
truth” of what different signals mean at the biological and molecular
levels (Caplan et al., 2011; Foxley et al., 2021). These types of ground
truth studies give us information that can be directly measured or
observed, rather than obtained through indirect measures. For
example, in functional magnetic resonance imaging (MRI)
studies, the blood-oxygen-level-dependent (BOLD) signal reflects
changes in the oxygen level of the blood within a region of the brain.
This BOLD signal is associated with changes in brain activity, but it
is only a surrogate for the actual neural activity. Multimodal ground
truth studies performed in non-human primates to specifically
address this issue showed that the BOLD signal does, in fact,
reflect changes in the local field potential within specific
frequency bands (Goense and Logothetis, 2008; Logothetis et al.,
2001). While the specifics of this correlation and the precise
molecular mechanisms underlying the signals are still debated
(Turner, 2016), these multimodal types of studies allow us to
connect the different levels and scales of nervous system
organization (Figure 1B). In some of my lab’s own research, we
have used these within-sample approaches to combine widely used
noninvasive imaging modalities (e.g. diffusion tensor imaging) with
markers of what they are assumed to measure at the cellular and
molecular level to assess how well these measures align with one
another (Chang et al., 2016; Chang et al., 2017). Other studies have
combined multiple imaging modalities spanning up to five spatial
scales to perform within-sample comparisons of millimeter-
resolution MRI data to nanometer-resolution EM data (Allegra
Mascaro et al., 2015; Foxley et al., 2021).
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The development of novel tools for precise neural circuit
manipulation, such as optogenetics and chemogenetics, has
elevated our ability to explore causal connections between
dynamic activity patterns and specific behavioral outputs
(Alexander et al., 2009; Rajasethupathy et al., 2016). Experiments
combining these cell-type specific manipulations with multiple
neural recording modalities, especially during animal behavior,
have advanced our mechanistic understanding of neural systems-
level processes (Adam et al., 2019; Fan et al., 2023). While these tools
for manipulating genetically-defined circuits are powerful for going
beyond simple correlational evidence, one should keep in mind that
disrupting or intervening in a circuit does not necessarily explain
how that circuit produced the specific behavior or function (Bickle,
2015; Wolff and Ölveczky, 2018). This is particularly true if that
function is distributed across many large and diverse neural
networks, each with its own systems and principles of operation.
Of course, a primary feature of nervous systems is that many circuits
are interconnected, so precise manipulations in one part of a circuit,
even if transient, can produce unexpected effects in other parts of the
system (Otchy et al., 2015). Such experimental outcomes further
emphasize the need for developing integrative theoretical
frameworks and mechanistic models that can help us make sense
of emerging empirical datasets.

Omic approaches and connectomes

The advent of omics technologies such as genomics,
transcriptomics, proteomics, and metabolomics (known as the
“Big Four”; Dai and Shen, 2022) has transformed the landscape
of biological research. Starting in the 1990s, high-throughput DNA
sequencing and mass spectroscopy introduced a new generation of
large quantitative datasets that could systematically capture genetic
and molecular changes with high accuracy. For example, by using
genomic approaches, scientists can identify specific genes and
genetic variations associated with disease conditions, enabling the
development of targeted personalized therapies and interventions
based on the biology of a specific individual (Hood et al., 2004). One
aspect of these large-scale omics approaches is that they are mostly
hypothesis-free, which can be advantageous in avoiding scientific
biases. However, this unbiased approach could be a double-edged
sword because it may be difficult to interpret or understand the
functional significance of some of these very large datasets. While
functional genomics and techniques, such as single-cell RNA
sequencing and spatial transcriptomics, are starting to gain
traction in neuroscience (Bhattacherjee et al., 2023; Jung and
Kim, 2023), the adoption of these big data omic approaches has
lagged behind that of other fields. This may be due in part to a

FIGURE 1
Spatial scale of nervous systems. (A) Nervous systems span many spatial scales, from molecules at the sub-micron level to whole-brain networks
that span centimeters or more. (B) Each level of the nervous system requires distinct imaging and recording modalities to measure its relevant neural
activity, presenting challenges to integration across modalities.
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reluctance by neuroscientists to engage in studies that do not have
clearly defined hypotheses or because there is a lack of systems-level
models to properly frame the resulting large datasets (Geschwind
and Konopka, 2009).

One specific omics approach that is particularly relevant to
neuroscience is connectomics. This approach aims to
comprehensively map the synaptic connections between neurons
within a piece of neural tissue or an entire organism’s nervous
system (Lichtman et al., 2014). Connectomics displays the anatomic
hard wiring that underlies information processing and, as such,
provides important ground truth data for computational models and
simulations. Because the synaptic connections between neurons can

only be resolved at the nanometer scale, EM is currently the standard
approach for collecting this information, but the acquisition,
reconstruction, and error-free labeling of EM datasets is
notoriously challenging. Up until recently, neuroscientists had
only mapped the full connectomes of a handful of organisms: the
nematode roundworm Caenorhabditis Elegans, the larva of the sea
squirt Ciona intestinalis, and the marine annelid Platynereis
dumerilii. The roundworm is the most complex of these, with
302 neurons making approximately 7,000 connections (White
et al., 1986). However, very recently the connectome of the fruit
fly Drosophila melanogaster has been completed in a larval brain
(Winding et al., 2023) and an adult brain (Dorkenwald et al., 2024).
These are major accomplishments for the field as fruit flies are
capable of many sophisticated behaviors and their brains are orders
of magnitude more complex than that of nematode roundworms.
The adult fruit fly brain contains about 140,000 neurons and over
50 million synapses, all contained within a structure less than 1 mm
wide. For comparison, a mouse brain has about 70 million neurons,
and the human brain has 86 billion neurons, so mapping the
connectome of higher animal species will require major advances
in technologies and strategies (Figure 2). Nonetheless, the full
connectivity diagram for these simpler species allows for
structure-function models to be constructed of the full network
architecture, which has been done in the roundworm brain (Brittin
et al., 2021) and has enabled certain functional connectivity
predictions in the fruit fly hemibrain (Turner et al., 2021;
Scheffer et al., 2020). Already, computational models of the full
fruit fly brain have been developed to understand sensorimotor
processing with experimentally testable hypotheses (Shiu et al.,
2024). Moreover, having these comprehensive wiring diagrams
allows scientists to predict phenomena based on the connectivity
data alone, which has now been demonstrated in a part of the fruit
fly visual system (Seung, 2024). Predicting visual function from the
underlying neural structure is important in fruit flies, as most of its
brain is dedicated to vision. Additional work analyzing these
connectome datasets will allow scientists to eventually perform
full brain simulations based on mapped neuroanatomical data
down to the level of individual neurons, axons, and dendrites.
The broader aspiration of this approach is that connectomics will
yield details about the underlying logic of neural wiring that can then
be used to understand how neurons are connected with one another
to drive systems-level processes.

Connectomics has allowed scientists to visualize and understand
the nervous system at unprecedented levels of detail. However, many
open questions and challenges remain as an organism’s connectome
is not a static map. For example, synaptic connections are not all
equal in weight, and there are important differences between
structurally similar synaptic connections that are not visible
through connectomics. In fact, the structural mechanism for
memory formation in the brain is dependent on the plasticity of
synaptic connections (Borczyk et al., 2021; Lamprecht and LeDoux,
2004). So if synapses are changing all the time, throughout an
organism’s life, how can this structural plasticity be accounted
for within connectomes? Moreover, while connectomics produces
the complete wiring diagram of nervous systems, there is also
wireless communication. A recent study in nematode
roundworms showed that wireless signaling occurs through a
neuropeptide network that is remarkably dense and has

FIGURE 2
Different types of nervous systems. Among invertebrates, simple
diffuse nerve nets in Hydra have connected neurons that span the
organism’s body with no signs of centralization. Insects, such as
earthworms and flies, have a brain and nerve cord with
distributed ganglia. Amongst vertebrates, nervous systems (only brains
are shown for simplicity) tend to be more centralized, complex, and
specialized. As species evolved, more neurons were devoted to the
neocortex to subserve higher-order processes. Notably, the human
brain does not have the most number of neurons, as the brains of
dolphins and whales actually have a higher amount.
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important effects on neural circuit function (Ripoll-Sánchez et al.,
2023). In addition to neuropeptides, many other forms of
communication occur within the nervous system that would not
be captured in a synaptic connectome, including signaling by
hormones, endorphins, gap junctions, or glial cells. To fully
appreciate structure-function relationships, we need to have the
dynamic real-time neural activity data to know what information is
being communicated along the wires, as well as outside of the wires.
These types of studies are already underway and will hopefully serve
to provide important structure-function relationships for existing
and future connectomes (Randi et al., 2023). There are substantial
challenges to overcome in connectomics, however, having large
volumes of digitized brain tissue at EM resolution will allow
scientists to answer many questions about structure and
connectivity in great detail (Morgan and Lichtman, 2017).

No matter what one generally thinks of connectomics and other
big data omic approaches to solving biological problems, these high-
throughput techniques can identify biologically relevant targets or
patterns that can then be interrogated separately in hypothesis-
driven experiments. By integrating data from multiple omics
approaches, neuroscientists and systems biologists can create
sophisticated foundational models that connect genetic and
molecular information with the structural and functional
properties of nervous systems.

Emergence and convergence

While many people may instinctively assume that the main goal
of neuroscience is to understand the human brain, there is, in fact,
much to learn from much simpler nervous systems. The sheer
diversity of nervous systems found within biology tells us that
there are many different neural solutions to the various
environments in which different organisms live. When
considering the functions or goals of specific neural circuits at
the systems level, we can look to lower animal species to glean
insights into how evolution has designed specific solutions. For
example, the original action potential work from Alan Hodgkin and
AndrewHuxley was performed on the squid giant axon and revealed
the general basic unit of functional communication, the action
potential, used by neurons (Hodkin and Huxley, 1952).
Incredibly, action potentials in the squid are more or less the
same as those in a grasshopper, mouse, or human. Similarly,
early foundational work on the visual system was conducted on
photoreceptors from one of the oldest animals on earth, the
horseshoe crab Limulus polyphemus (Fahrenbach, 1975). Many of
the fundamental principles of learning and memory that we assume
operate similarly in mammals were originally discovered and
demonstrated in the sea slug Aplysia (Castellucci and Kandel,
1976; Kandel et al., 2014). The comparative approach is an
important but often neglected sub-field in neuroscience that has
the potential to unveil general principles in “lower” neural systems
that remain relevant within higher-evolved animals.

Across the animal kingdom, there are many different body plans
and accordingly, nervous system designs (Figure 2). While
vertebrates typically have a central nervous system with a brain,
invertebrates and other lower animal species differ widely in their
nervous system organization. For example, the cephalopod octopus

has a central brain structure in its body, but it actually has a total of
nine different brains with one in each of its eight arms. And, the axial
nerve cord at the center of each arm contains many more neurons
than its central brain, which allows it to perform many complex
coordinated motor movements and functions with nearly infinite
degrees of freedom (Olson and Ragsdale, 2023). Recent work
performing EM reconstruction of small portions of the octopus
arm has identified new neural circuits and organizational features
that enable some of these complex smooth movements that have
long fascinated humans (Olson et al., 2024). Although these features
are likely specialized for controlling octopus tentacles, the principles
extracted from this work can have explanatory power in other
nervous systems. Similarly, empirical studies in bats, barn owls,
and zebra finches were all fundamental to our understanding of
computational maps in the brain, which we use as a framework for
understanding maps in other animal models (Laurent, 2020). As
goal-directed spatial navigation is important for many animals,
there are likely to be similarities in the spatial encoding of
information amongst vertebrates, with potential comparable
circuits in insects (Basu and Nagel, 2024). By taking a
comparative approach to understanding how different nervous
systems encode spatial representations, as one example, we can
extract important common principles that have been conserved
across evolution and also identify how differences between species
may be linked to different species-specific behavioral or cognitive
capacities.

In addition to maintaining a diversity of animal models to study,
there should also be a focus on neural systems outside of the CNS
and the brain so we can bring an improved understanding of
physiology and function on the whole-organism level. Concerted
efforts to study the peripheral and autonomic nervous systems in
certain species are already underway in mammals (https://sparc.
science), and lab groups are beginning to reveal important
organizing principles about the structure, function, and genetics
of peripheral neural circuits, such as the vagus nerve (Huerta et al.,
2023; Prescott and Liberles, 2022; Zhao et al., 2022). Of course, the
enteric nervous system (ENS), with its myriad cell types and
functions, can be considered an integrative nervous system of its
own. As the ENS has its own set of reflexes, pattern generators, and
autonomic processes, there are likely important systems-level
principles that can be used to understand other parts of the
nervous system (Furness et al., 2014; Sharkey and Mawe, 2023).

In our search for the basic organizing rules that govern neural
circuits, there is still much to learn from animals with simpler
nervous systems. Studies in other animal species, such as the
zebrafish Danio rerio, have examined whole-brain and whole-
body neural activity to obtain a more holistic understanding of
neural activity patterns. Because zebrafish bodies are transparent,
scientists are able to perform live optical imaging of neural activity
using fluorescent indicators and various dyes. This intact in vivo
imaging approach is valuable as zebrafish are a vertebrate model
with substantial homology to the mammalian brain and can engage
in relatively sophisticated behaviors (Cong et al., 2017; Hasani et al.,
2023). In fact, recent work has shown that zebrafish can compute a
3D model of their spatial environment, a visual perception ability
that was previously thought to only exist in animals with more
complex nervous systems (Zwaka et al., 2022). Since zebrafish
perform sophisticated perceptual computations and their bodies
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can be imaged entirely intact, they represent a promising model
system where multiple levels (e.g., behavior, circuits, neurons,
whole-body physiology) can be simultaneously assessed for the
purposes of integration.

Technology and teams

“Progress in science depends on new techniques, new
discoveries and new ideas, probably in that order”

– Sydney Brenner, PhD. 2002 Nobel Laureate in Physiology
or Medicine

Just as technological innovations drove the prior decades of
neuroscience discoveries, there is similarly a new era of advances tied
to developments in modern computing which have been a driving
force behind progress in systems biology and integrative systems
neuroscience (Kanter et al., 2022; Yuste, 2015). High-throughput
sequencing, advanced neuroimaging techniques, and powerful
computational tools have enabled the collection and analysis of
vast amounts of data, propelling our understanding of neural
circuits to new heights. Moreover, artificial intelligence and
machine learning algorithms have played a pivotal role in
making sense of the enormous datasets generated by omics
approaches, including for connectomics. A recent study mapped
a single cubic millimeter of human cortical tissue at EM resolution,
containing 57,000 cells and 150 million synapses that were
individually segmented and labeled using machine-learning
algorithms to produce high-resolution 3D rendering (Shapson-
Coe et al., 2024). The resulting dataset was 1.4 petabytes
(1,000 terabytes) in size, and this was only a single cubic
millimeter of human brain tissue. Since the whole human brain
is estimated to have more than a quadrillion (1015) synaptic
connections, it is very likely that future connectomic datasets will
be exabytes (1,000 petabytes) or larger in size. The immense scale of
these datasets necessitates advanced computing approaches to even
manage, let alone extract useful understanding from. But this is
where machine learning and artificial intelligence can help humans
to identify new patterns in complex multidimensional data that may
not have been uncovered using traditional scientific approaches. For
example, machine learning algorithms have been incorporated into
various brain-computer interface devices to decode human brain
activity, producing impressive outcomes in neural prostheses for
human vision (Borda and Ghezzi, 2022) and language (Metzger
et al., 2024; Silva et al., 2024). The incorporation of machine learning
in biology and medicine has already led to significant advances in
how we decode physiological signals and diagnose certain
neurological diseases (MacEachern and Forkert, 2021;
Myszczynska et al., 2020). As neuroscience datasets continue to
grow in size and artificial intelligence-based tools continue to evolve
rapidly, it is very likely that the next major discoveries in integrative
systems neuroscience will be machine-assisted.

In 2020, a group of neuroscientists reflected upon the past
5 decades of neuroscience research and what they expect to see
from the field in the next 5 decades (Altimus et al., 2020). One
takeaway message is that modern neuroscience as a field is extremely
vast and we must ask ourselves how to best study this vast “system of

systems”. The best course is likely through interdisciplinary
collaborations integrating the expertise of mathematicians,
engineers, and biologists. Moreover, the next-generation of
neuroscientists should be trained to be integrative and learn
different methods that span scales, as well as fields (Buhusi et al.,
2023; Grillner et al., 2005). Multidisciplinary multi-institutional
collaborative efforts are already ongoing with projects such as the
International Brain Laboratory, which “joins together diverse
experimental and theoretical neuroscience teams to pursue a
common goal: to develop a unified brain-wide theory of complex
behavior, at the neuronal level” (International Brain Laboratory and
International Brain Laboratory, 2017). The Brain Research through
Advancing Innovative Neurotechnologies Initiative Cell Census
Network (BICCN) is another large interdisciplinary team
consisting of hundreds of scientists with the goal of cataloging
brain cell types across humans, non-human primates, and mice
(Chiou et al., 2023; Siletti et al., 2023). Together with the many “Big
Science” endeavors being pursued at the Allen Institute and the
Chan Zuckerberg Initiative, there has been a clear shift towards large
team-based approaches to answer some of the most complex
fundamental questions in neuroscience. The fruit fly connectome
project called FlyWire consisted of hundreds of researchers,
including citizen scientists, spread out over 127 institutions
working together to segment, label, and proofread imaging data
that was processed by artificial intelligence-assisted automated
pipelines (Dorkenwald et al., 2024). Importantly, the FlyWire
team has made the fruit fly connectome data freely available and
open to explore with multiple online resources and databases,
allowing anyone with an internet connection to access the
information. Other large institutions, such as the Allen Institute,
have also embraced an Open Science policy to increase transparency
and accelerate the rate of discovery (http://brain-map.org; Koch and
Jones, 2016). This scale of teamwork, openness, and cross-
disciplinary collaboration, in combination with machine-assisted
automation, is the type of large-scale effort that can lead to major
foundational discoveries.

Conclusion

The Integrative Systems Neuroscience section of Frontiers in
Systems Biology aims to be a journal destination for work that
integrates findings across scales and disciplines to better
understand the nervous system. In the spirit of a
multidisciplinary approach and diverse viewpoints, the journal
will include studies from a wide range of animal models and
human subjects, in addition to computational work exploring
explanatory frameworks. In this Specialty Grand Challenge
article, I have highlighted only a handful of studies that reflect
how we can pursue a better understanding of neural circuits
through integration. It is my hope that new experimental
approaches and frameworks will bring about new theories that
will bridge the disciplines of systems biology and integrative
neuroscience.

Modern high-throughput technologies and big data approaches
will continue to provide us with massive troves of molecular, genetic,
and neurophysiological information. But information is not the
same as knowledge. The challenge now is to integrate these different
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levels and types of data to develop foundational models that move
beyond descriptors and advance our understanding. As the
neuroscientist David Marr famously observed, “Trying to
understand perception by studying only neurons is like trying to
understand bird flight by studying only feathers: It just cannot be
done” (Marr, 1982). Marr’s work emphasized that describing
phenomena at individual levels will only provide us with
descriptions rather than explanations. If we limit our
understanding to those individual levels, then we will have a very
difficult time understanding any systems, let alone whole
nervous systems.
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