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As a driving force of the fourth industrial revolution, deep neural networks are
now widely used in various areas of science and technology. Despite the success
of deep neural networks in making accurate predictions, their interpretability
remains amystery to researchers. From a statistical point of view, how to conduct
statistical inference (e.g., hypothesis testing) based on deep neural networks is still
unknown. In this paper, goodness-of-fit statistics are proposed based on
commonly used ReLU neural networks, and their potential to test significant
input features is explored. A simulation study demonstrates that the proposed test
statistic has higher power compared to the commonly used t-test in linear
regression when the underlying signal is nonlinear, while controlling the type I
error at the desired level. The testing procedure is also applied to gene expression
data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI).
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Introduction

Since the creation of backpropagation, neural networks have regained their popularity,
and deep neural networks are now the fundamental building blocks of sophisticated
artificial intelligence. For instance, in computer vision, convolutional neural networks
(CNNs) (LeCun, 1989) are commonly used for object detection, while recurrent neural
networks (RNNs) (Rumelhart et al., 1988), or more recently, transformers (Vaswani et al.,
2017) play vital roles in natural language processing.

One of the main reasons for the superior performance of deep learning models is that
neural networks are universal approximators. In fact, in the early 1990s, various research
established the universal approximation property for shallow neural networks, as well as
their derivatives with squashing activation functions—functions that are monotonically
increasing and approach 0 and 1 when the variable tends to negative and positive infinity,
respectively (Cybenko, 1989; Hornik et al., 1989; Pinkus, 1999) showed that any neural
network has the universal approximation property as long as the activation function is not a
polynomial. Recently, similar results have also been established for deep neural networks
with the Rectified Linear Unit (ReLU) activation function (Nair and Hinton, 2010). Another
important characteristic of shallow neural networks is that the approximation rate to certain
smooth functions is independent of the dimensionality of the input features (Barron, 1993),
making neural networks a great candidate to avoid curse of dimensionality. For example
(Shen et al., 2023; Braun et al., 2024), have shown that the rate of convergence of shallow
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neural networks is independent of the input dimension when the
underlying function resides in the Barron space.

Such nice approximation properties provide deep neural
networks with great potential for modeling complex genotype-
phenotype relationships, and a lot of research has been done in
this direction. For instance, a deep learning method known as
DANN (Quang et al., 2014) was proposed to make predictions
on the deleteriousness of genetic variants. In terms of predicting
effects of the non-coding regions, DanQ (Quang and Xie, 2016)
integrated CNNs and Bidirectional Long Short-Term Memory
networks to capture different aspects of DNA sequences and
outperformed other similar methods in various metrics. More
recently (Zhou et al., 2023), used deep neural networks to model
Alzheimer’s disease (AD) polygenic risk and the deep learning
methods outperform traditional methods such as weighted
polygenic risk score model and LASSO (Tibshirani, 1996).

Despite empirical and theoretical evidence on the powerful
prediction performance of deep neural networks, an overlooked
problem in deep learning is the interpretability of these models.
From a statistical perspective, the interpretability of deep learning
models can be improved if we know how to conduct statistical
inference using deep neural networks. In recent years, several works
have been done in this direction. For example (Horel and Giesecke,
2019), proposed a significant test based on shallow neural network
using empirical process theory. However, the asymptotic
distribution of the test statistic is hard to compute. Recently,
Shen et al. (2021) and Shen et al. (2022) proposed two testing
procedures for shallow neural networks with sigmoid activation
function. Both of these testing procedures are easier to implement
and have better performance compared to t-test or F test in linear
regression. Dai et al. (2024) also proposed a black box testing
procedure to test conditional independence between features and
response. Below we would like to point out several challenges one
needs to conquer in order to develop hypotheses testing based on
deep learning models:

1. Classical statistical hypothesis testing techniques in parametric
models are difficult to apply in DNNs. One reason is that the
parameters (weights and biases) are unidentifiable in general
(Fukumizu, 2003), making them hard to interpret. For
example, in linear regression, testing the significance of a
covariate is equivalent to testing the coefficient attached to
it is equal to 0 or not. However, in a DNN, there are many ways
to make the covariate vanish in the model. As an example one
can let all the weights directly attached to an input feature be
0 or one can also let all the weights for each hidden-to-output
unit to be 0.

2. The number of tuning parameters to train a DNN is large.
There is no general guideline on how to choose the number of
layers and the number of hidden units in each layer to achieve
desirable performance in a DNN. Additionally, in the training
process, how to wisely select the learning rate and the number
of iterations needed is also unclear. Without carefully choosing
these tuning parameters, it is likely that the trained DNN will
overfit the data. Although overfitting might be acceptable for
prediction, it generally needs to be avoided when conducting
statistical hypothesis testing.

3. There is lack of theoretical guarantees to ensure the
performance of DNNs as tools in genetic association
studies. Current theories on DNNs mainly focus on
evaluating the generalization errors of DNNs. Many results
available are based on the assumption of high-dimensional
regime, where the sample size and the number of features are of
the same order, or in the polynomial regime, where the sample
size grows polynomially as the number of features (Mei et al.,
2022; Mei and Montanari, 2022). These conditions are easily
satisfied in tasks like image classification, where one can use the
data augmentation strategy to manually generate new samples.
In genetic studies, however, researchers usually face a limited
sample size but a huge number of genetic variants, making
those results less attractive in genetic studies.

In this paper, we proposed a goodness-of-fit test based on deep
ReLU neural networks, extending the work of (Shen et al., 2021).
The rest of the paper is organized as follows: Section 2 provides a
brief introduction to deep neural networks, followed by the
proposed goodness-of-fit test. Results from simulation studies
and real data analyses are presented in Section 3, and
conclusions are drawn in Section 4.

Methods

Deep neural networks (DNNs)

A perceptron (Rosenblatt, 1958) originated from mimicking the
functionality of a neuron in the human brain. As shown in
Figure 1A, the green node is the only computation unit in a
perceptron, and it outputs a nonlinear transformation of the
linear combination of input units. Such a transformation in a
computation unit is often called an activation function. By
stacking multiple perceptrons together, a shallow neural network,
shown in Figure 1B, is obtained. The blue computation nodes in the
middle are known as the hidden units. Each of them computes a
nonlinear activation of a linear combination of the nodes in the
input layer. The green nodes are known as output units, and each of
them applies a linear or nonlinear activation to a linear combination
of the outputs from the hidden units. When the number of hidden
layers is more than one, as shown in Figure 1C, a deep neural
network is obtained.

Throughout the remainder of the paper, we consider deep neural
networks with only one output unit and linear activation is applied
to the output unit. In particular, the output of a deep neural network
with L hidden layer can be represented as

f x( ) � WL+1σ WLσ /W2σ W1x( )( )( ), (1)
where W l is an nl × nl−1 matrix containing the weights between the
(L-1)th layer and the lth layer. Here nl is the number of nodes in the
lth layer. By convention, the 0th layer represents the input layer,
while the (l+1)th layer represents the output layer and therefore,
n0 � p and nL+1 � 1 by our model assumption. σ: R → R is a
nonlinear activation function and in this paper, we considered
one of the most used nonlinear activation functions, the Rectified
Linear Unit (ReLU) activation function (Nair and Hinton, 2010).
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That is, σ(x) � max x, 0{ }. In (1), when σ is applied to a matrix or a
vector, it is considered as an elementwise operation.

Goodness-of-fit test based on DNNs

We consider the following nonparametric regression model:

Yi � f0 Xi( ) + εi, i � 1, . . . , n

where (Xi, Yi), i � 1, . . . , n are i.i.d pairs of data points with Xi �
[Xi1, . . . , Xip]T ∈ Rp being the vector of covariates for the ith
individual and Yi being the response for the ith individual.
ε1, . . . , εn are i.i.d. random errors with mean 0 and variance σ2.
Moreover, f0 is an underlying function to be estimated using deep
neural networks through minimizing the squared error loss:

f̂n � argminf∈FDNN

1
n
∑n
i�1

Yi − f Xi( )( )2,
where FDNN is the class of deep neural networks of the form
Equation 1, that is,

FDNN � f x( ) � WL+1σ WLσ /W2σ W1x( )( )( ): f
���� ����∞ ≤M{ }.

In addition, we assume that Xi come from a continuous
distribution, Yi ∈ [−M,M] for some M > 0 and the underlying
function is bounded, that is ‖f0‖∞≤M. These assumptions are
required to provide an upper bound for ‖f̂n − f0‖L2 as demonstrated
in (Farrell et al., 2021).

Our goal is to develop a statistical hypothesis testing procedure
to test whether certain covariates should be included in the model or
not based on the deep neural network estimator f̂n. In other words,
for S ⊂ 1, . . . , p{ }, a subset of indices of covariates, the null
hypothesis is H0: Xj, j ∈ S are not significant. To gain some
insights of the testing procedure, recall that in multiple linear
regression, testing the significance of a predictor is equivalent to
testing whether its coefficient is zero or not. This is the well-known
t-test procedure. However, due to the unidentifiability of neural
network parameters, such a method cannot be easily applied to
neural networks. On the other hand, such a t-test is equivalent to an
F test by comparing the mean squared error under the full model
where the predictor is involved and the reduced model where the
predictor is excluded from the model. Our goodness-of-fit test for
deep neural networks is constructed based on such an idea.

Following (Shen et al., 2021), we proposed to use a goodness-of-
fit (GoF) type statistic for genetic association studies using DNNs.
Here are the steps to construct the GoF test statistic.

1. Randomly partitioned the dataset into two parts. Denote
0< γ≤ 0.5 to be the proportion of the first part among the
total n data points. Also let m � �γn� be the number of data
points in the first part so that n −m is the number of data
points in the second part. For simplicity, we denote
(X1, Y1), . . . , (Xm, Ym) to be the first part of the data and
(Xm+1, Ym+1), . . . , (Xn, Yn) to be the second part of the data.

2. Use the first part is used to fit the data under the null
hypothesis H0 and this is done by training a deep neural
network whose input layer only involves the covariates
Xj, j ∉ S. The second part is used to fit the data under the
alternative hypothesis which is done by fitting a deep neural
network using all the covariates. The mean squares errors of
these two model fittings are given by

T0 � 1
m
∑m
i�1

Yi − f̂H0
Xi( )( )2,

T1 � 1
n −m

∑n
i�m+1

Yi − f̂H1
Xi( )( )2.

3. The asymptotic distribution of T0 and T1 can be obtained in a
similar fashion as of (Shen et al., 2021). Combining Lemma 3 in
(Shen et al., 2021) and Theorem 2 in (Farrell et al., 2021), it follows
that under the null hypothesisH0, bothT0 andT1 are asymptotically
standard normally distributed when BnLn logBn log n � o(n)
where Bn is the number of parameters in the DNN and Ln is
the number of hidden layers in the DNN. Therefore,

1
m

+ 1
n −m

( )κ[ ]−1
2

T0 − T1( )→d N 0, 1( ),

where κ � E(ε4) is the fourth moment of the random error
provided that BnLn logBn log n � o(n).

4. The GoF test statistic can be obtained by replacing κ by a
consistent estimator:

T � 1
m

+ 1
n −m

( ) κ̂n[ ]−1
2

T0 − T1( ),

FIGURE 1
Architectures of (A) a perceptron, (B) a shallow neural network and (C) a deep neural network.
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As mentioned in (Yatchew, 1992), a possible choice for κ̂n is

κ̂n � 1
n
∑n
i�1

Yi − f̂H0
Xi( )( )4 − 1

n
∑n
i�1

Yi − f̂H0
Xi( )( )2⎛⎝ ⎞⎠2

.

5. The p-value of the test is then calculated the same way as in a
two-sided Z-test. In other words, p � P(|T|> |t|), where t is the
observed test statistic.

Network structures

A sufficient condition, as has been mentioned above, to ensure
asymptotic normality is BnLn logBn log n � o(n). In fact, this
condition provides some guidance on how to choose the network
structure. Since Bn is the number of parameters in a DNN,
Bnpn*

2
Ln, where n* � max n1, . . . , nLn{ }. Therefore,

BnLn logBn log npn*
2
L2n log(n*Ln)log n. Now we consider the

following scenarios:

• If Ln � O(1), such as a shallow ReLU neural network, then the
sufficient condition is equivalent to n*

2
log n* log n � o(n). In

this case, one can choose n* � O(n1
2−α) for some 0< α< 1

2.
• If n* � O(1), i.e., each hidden layer has a bounded number of
hidden units, then the sufficient condition is equivalent to
L2n logLn log n � o(n). In this case, one can choose Ln �
O(n 1−α

2 ) for some 0< α< 1.
• If both n* and Ln can increase with the sample size, then one
can choose n* � O(nα) and Ln � O(nβ) as long as α and β

satisfy 0< α + β< 1
2.

Results

Simulation 1

In this section, we conducted a simulation study to evaluate our
proposed test’s type I error and power. Since in genetic studies,
linear models are the most used method to detect genetic
associations, we compared our proposed test with the t-test in
linear regression. Specifically, we generated the response variable
via the following equation:

Yi � f0 Xi1( ) + εi, i � 1, . . . , n,

where Xi � [Xi0, Xi1]T, i � 1, . . . , n are i.i.d. random vectors
sampled from a uniform distribution on the square [−1, 1]2. εi, i �
1, . . . , n are i.i.d. random variables sampled from a normal
distribution N (0, 0.52). In the simulation, we consider two
different functions f0. One is the quadratic function f0(x) � x2

and the other one is a trigonometric function f0(x) � cos(2πx).
Since the first component does not involve in the simulation

equation, it was used to evaluate the performance of the type I error
of the proposed test. The null hypothesis to be tested isH0: X0 is not
significant, or equivalently, the index set for this null hypothesis is
S � 0{ }. The second component in Xi was involved in generating the
response, it was therefore to be used to evaluate the power of the
proposed test. In this case, the null hypothesis to be tested isH0: X1

is not significant, or equivalently, the index set for this null
hypothesis is S � 1{ }. To test significance of each component, we
applied the testing procedure as mentioned above. We started by
partitioning the data set into two parts with ratio γ � 0.1 and γ � 0.5.
Then the majority of the data was used to train a shallow or a deep
ReLU neural network under the alternative hypothesis while the
minority of the data was used to calculate the mean squared error
under the null hypothesis. When we trained the neural networks, the
following three network structures were used:

• A shallow ReLU neural network with the number of hidden
units being �n1/3�.

• A deep ReLU neural network with the number of hidden layer
being �n1/3� and each hidden layer has 18 hidden units.

• A deep ReLU neural network with �n1/4� hidden layers and
each hidden layer has �n1/4� hidden units.

All the three network structures used here meet the requirement
as mentioned in section 2.3. In the simulation, we considered sample
sizes being 200, 500, 1,000 and 2000. The stochastic gradient descent
algorithm was applied, and the batch size was determined so that
20 batches were used for each sample size. 200 epochs were used to
run the stochastic gradient descent. To further alleviate the possible
overfitting, we applied dropout to each hidden unit in the network
with a dropout rate being 0.05. To obtain the empirical type I error
and the empirical power, 1,000 Monte Carlo replications were
conducted. Tables 1, 2 below summarize the simulation results.

Based on Tables 1, 2, it can be easily seen that linear models and
the proposed GoF test can control the empirical type I error very well
at level 0.05, except that the proposed GoF test is slightly
conservative when the sample size is small for the quadratic
signal for the split-ratio γ � 0.1, while the empirical type I error
rate of the GoF test is slightly inflated for small sample size when the
split ratio γ � 0.5. The empirical powers of proposed GoF test based
on ReLU neural networks are consistently much higher compared to
the t-test in linear model, which suggests that the proposed GoF test
can outperform the t-test in linear model when the underlying signal
is nonlinear. On the other hand, it is worth noting that when γ � 0.1,
shallow ReLU neural networks achieve higher empirical power than
deep ReLU neural networks in both cases, especially when the
sample size is relatively large. On the contrary, when the
underlying function is the cosine function and the sample size is
200, deep ReLU neural networks have higher power compared to the
shallow ones. Similar situations can also be seen for γ � 0.5, but for
the cosine signal, deep neural networks with structure 1 (growing
number of hidden layers and fixed number of hidden units in each
layer) achieve higher power compared to shallow neural networks.
Therefore, we believe that these observations suggest that the rule of
parsimony still applies in ReLU neural networks.

Simulation 2

In many situations, a response variable can be related to multiple
causal variables. In this simulation, we investigated the performance
of the proposed method under such a scenario. In particular, the
response variable in this simulation was generated based on the
following equation:
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Yi � X1i| | + 2X2
2i + cos 2πX3i( ) + ϵi,

where all the covariates X0i, X1i, X2i, X3i are i.i.d. random variables
from Uniform[-1,1]. The random error term is sampled from
N (0, 0.52). Similar to Simulation 1, the variable X0 is not
involved in the underlying function, so it was used to check type
I error of the test, and the other three variables were used to evaluate
the power of the test.

In this scenario, the hypotheses of interest are H0: Xj is not
significant for j ∈ S with S � 0{ } for type I error and S � 1{ }, 2{ }, 3{ }
respectively for the three variables used to evaluate power. We used
the same deep neural network structures and the same choices of
tuning parameters as we did in Simulation 1. Table 3 summarize the
empirical type I error rates and the empirical power of the proposed
method, linear model, and the black-box test under the sample sizes
200, 500, 1,000, and 2,000.

As we can see from Table 3, both linear model t-test and the
proposed GoF test can control the type I error rate very well. Similar
to what we saw from Simulation 1, even the underlying function
contains multiple causal variables, the proposed GoF test can still
detect the significance of the variables having nonlinear associations
with the response variable.

Real data analyses

Alzheimer’s disease (AD) is one of the most common
neurodegenerative diseases with a substantial genetic component
(Karch et al., 2014; Sims et al., 2020). Therefore, it is of great
importance to have an efficient method to screen the genetic
components that are associated with AD pathogenesis so that
early treatments can be applied for disease management
(Zissimopoulos et al., 2015). To investigate the performance of
our proposed GoF test in identifying AD-related genes, we
applied our proposed method to the gene expression data from
Alzheimer’s Disease Neuroimaging Initiative (ADNI).

The hippocampus region plays a vital role in memory (Mu and
Gage, 2011) and the shrinkage of hippocampus volume is an early
symptom of AD (Schuff et al., 2009). Therefore, we chose the
hippocampus volume as the phenotype in the real data analysis.
After removing individuals with missing values for hippocampus
volume and merging data from individuals having both gene
expression information and hippocampus volume, a total of
464 individuals and 15,837 gene expressions were obtained. We
then regressed the scaled hippocampus volume onto some
important predictors including age, gender and education status.

TABLE 1 Comparisons between linear model and goodness-of-fit test based on ReLU neural networks under quadratic signal.

γ � 0.1 γ � 0.5

Sample size 200 500 1,000 2,000 200 500 1,000 2,000

Type I Error Linear Model 0.047 0.047 0.055 0.048 0.041 0.041 0.038 0.054

Shallow ReLU NN 0.028 0.053 0.050 0.053 0.102 0.066 0.056 0.053

Deep ReLU NN 1 0.030 0.054 0.049 0.052 0.108 0.066 0.053 0.050

Deep ReLU NN 2 0.046 0.048 0.039 0.042 0.088 0.061 0.055 0.051

Power Linear Model 0.058 0.071 0.068 0.076 0.073 0.068 0.058 0.063

Shallow ReLU NN 0.152 0.367 0.580 0.858 0.484 0.736 0.955 1.000

Deep ReLU NN 1 0.098 0.295 0.543 0.787 0.594 0.774 0.952 0.998

Deep ReLU NN 2 0.056 0.176 0.448 0.738 0.273 0.513 0.830 0.944

TABLE 2 Comparisons between linear model and goodness-of-fit test based on ReLU neural networks under cosine signal.

γ � 0.1 γ � 0.5

Sample size 200 500 1,000 2,000 200 500 1,000 2,000

Type I Error Linear Model 0.063 0.046 0.062 0.051 0.055 0.048 0.049 0.060

Shallow ReLU NN 0.057 0.050 0.056 0.063 0.072 0.079 0.056 0.050

Deep ReLU NN 1 0.054 0.048 0.056 0.059 0.081 0.075 0.048 0.050

Deep ReLU NN 2 0.039 0.061 0.040 0.052 0.064 0.076 0.048 0.052

Power Linear Model 0.051 0.058 0.061 0.055 0.062 0.050 0.043 0.068

Shallow ReLU NN 0.106 0.483 0.876 0.952 0.551 0.858 0.966 0.996

Deep ReLU NN 1 0.228 0.295 0.413 0.425 0.970 0.982 0.981 0.922

Deep ReLU NN 2 0.042 0.083 0.262 0.622 0.218 0.541 0.789 0.911
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The residual obtained will be used as the response variable to train
ReLU neural networks. The network structures and
hyperparameters in the ReLU neural networks used in the real
data analysis were the same as in the simulation studies. Table 4
summarizes the top 10 significant genes selected from t-test in linear
model and the GoF tests based on ReLU neural networks.

As can be seen from Table 4, the significant genes selected from the
GoF test do not overlap with the ones selected from the linear models,
and different network structures picked out similar genes. On the other
hand, in (Shen et al., 2022), the top 10 significant genes selected using a

testing procedure based on shallow sigmoid neural networks have large
overlap with the ones selected from the linearmodel. This indicates that
ReLU neural networks may be able to detect different signals that are
hard to detect when using linear models or shallow sigmoid neural
networks. Among them, the gene GRM2 is the top pick. Although the
biological mechanism of the association between these genes and AD
needs further validation, it is worth pointing out that a recent study has
shown that the metabotropic glutamate receptor 2 (mGluR2), a protein
encoded by the gene GRM2 plays a role in the pathogenesis of AD
(Srivastava et al., 2020).

TABLE 3 Comparisons between linear model and goodness-of-fit test based on ReLU neural networks under multiple causal variables.

γ � 0.1 γ � 0.5

Sample size 200 500 1,000 2,000 200 500 1,000 2,000

Type I Error (X0) Linear Model 0.058 0.046 0.044 0.043 0.052 0.047 0.056 0.048

Shallow ReLU NN 0.046 0.043 0.044 0.064 0.076 0.064 0.048 0.054

Deep ReLU NN 1 0.044 0.044 0.045 0.065 0.071 0.061 0.046 0.055

Deep ReLU NN 2 0.047 0.043 0.042 0.063 0.063 0.064 0.046 0.054

Power (X1) Linear Model 0.066 0.061 0.056 0.042 0.040 0.045 0.049 0.041

Shallow ReLU NN 0.049 0.064 0.108 0.127 0.128 0.134 0.172 0.287

Deep ReLU NN 1 0.050 0.068 0.070 0.078 0.130 0.131 0.136 0.181

Deep ReLU NN 2 0.048 0.055 0.058 0.074 0.084 0.072 0.075 0.107

Power (X2) Linear Model 0.081 0.075 0.065 0.062 0.074 0.065 0.070 0.087

Shallow ReLU NN 0.057 0.387 0.710 0.967 0.533 0.859 0.974 0.998

Deep ReLU NN 1 0.076 0.106 0.119 0.146 0.514 0.777 0.912 0.952

Deep ReLU NN 2 0.051 0.057 0.072 0.321 0.170 0.361 0.647 0.834

Power (X3) Linear Model 0.045 0.055 0.065 0.059 0.040 0.050 0.054 0.064

Shallow ReLU NN 0.046 0.082 0.373 0.568 0.163 0.228 0.273 0.314

Deep ReLU NN 1 0.054 0.093 0.203 0.263 0.404 0.633 0.749 0.666

Deep ReLU NN 2 0.050 0.042 0.055 0.119 0.077 0.111 0.171 0.309

TABLE 4 Top 10 significant genes selected from t-test in linear model and the GoF tests based on different ReLU neural network structures.

Linear model Shallow ReLU neural network Deep ReLU neural network 1 Deep ReLU neural network 2

SNRNP40 GRM2 GRM2 GRM2

PPIH DGCR6 DGCR6 DGCR6

GPR85 GPRC5D BRCA2 NDRG1

DNAJB1 SMARCB1 KIF1C GPRC5D

WDR70 NDRG1 NDRG1 KIF1C

CYP4F2 KIF1C GPRC5D KLF13

NOD2 NUDT22 NUDT22 COX20

MEGF9 BRCA2 COX20 NUDT22

CTBP1-AS2 COX20 SMARCB1 OR4A5

PHYKPL REG1A STAG3L4 STAG3L4
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Discussions and conclusion

In this paper, we have proposed a goodness-of-fit test based on
ReLU neural networks. The proposed test can be used to detect the
significance of a predictor. Once the network structures are suitably
chosen, the test statistics have an asymptotically normal distribution,
making it easy to implement in practice. Simulation results have
demonstrated that the proposed method can detect nonlinear
underlying signals, and real data analysis also showed the potential
that ReLU neural networks may detect signals that are hard to identify
from linear models or even shallow sigmoid neural networks.

On the other hand, although the theoretical framework of the
GoF test was proposed in this paper, in practice, the performance of
a deep ReLU neural network also depends on the optimization
algorithm used and the hyperparameters (e.g., learning rate, number
of epochs, etc.) selected. So, there is still a gap in how the DNN can
be used to conduct statistical inference on detecting significant
variables. This will be our future work. In addition, while we
mainly focused on testing a single variable (such as a gene
expression in the real data analysis) in this paper, it is
worthwhile to also investigate the performance of our proposed
method on a wider range of datasets to evaluate the performance of
the GoF test when testing a set of variants in a genetic region, such as
in a chromosome or in a pathway. In addition, various significant
testing procedures based on neural networks nowadays and as a
future work, we plan to conduct a comprehensive comparison on
these methods.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found in the article/supplementary material.

Author contributions

XS: Conceptualization, Formal Analysis, Methodology, Project
administration, Supervision, Writing–original draft,
Writing–review and editing. XW: Formal Analysis, Investigation,
Software, Writing–original draft, Writing–review and editing.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Acknowledgments

ChatGPT 4o was used to correct grammatical mistakes.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Barron, A. R. (1993). Universal approximation bounds for superpositions of a
sigmoidal function. IEEE Trans. Inf. Theory 39, 930–945. doi:10.1109/18.256500

Braun, A., Kohler, M., Langer, S., and Walk, H. (2024). Convergence rates for shallow
neural networks learned by gradient descent. Bernoulli 30, 475–502. doi:10.3150/23-
BEJ1605

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function.Math.
Control Signal Syst. 2, 303–314. doi:10.1007/BF02551274

Dai, B., Shen, X., and Pan, W. (2024). Significance tests of feature relevance for a
black-box learner. IEEE Trans. Neural Netw. Learn. Syst. 35, 1898–1911. doi:10.1109/
TNNLS.2022.3185742

Farrell, M. H., Liang, T., and Misra, S. (2021). Deep neural networks for estimation
and inference. Econometrica 89, 181–213. doi:10.3982/ECTA16901

Fukumizu, K. (2003). Likelihood ratio of unidentifiable models and multilayer neural
networks. Ann. Statistics 31, 833–851. doi:10.1214/aos/1056562464

Horel, E., and Giesecke, K., 2019. Towards explainable ai: significance tests for neural
networks. arXiv preprint arXiv:1902.06021.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks are
universal approximators. Neural Netw. 2, 359–366. doi:10.1016/0893-6080(89)90020-8

Karch, C. M., Cruchaga, C., and Goate, A. M. (2014). Alzheimer’s disease genetics:
from the bench to the clinic. Neuron 83, 11–26. doi:10.1016/j.neuron.2014.05.041

LeCun, Y. (1989). “Generalization and network design strategies,” in Connectionism
in perspective. Editors R. Pfeifer, Z. Schreter, F. Fogelman, and L. Steels

Mei, S., Misiakiewicz, T., and Montanari, A. (2022). Generalization error of random
feature and kernel methods: hypercontractivity and kernel matrix concentration. Appl.

Comput. Harmon. Analysis, Special Issue Harmon. Analysis Mach. Learn. 59, 3–84.
doi:10.1016/j.acha.2021.12.003

Mei, S., and Montanari, A. (2022). The generalization error of random features
regression: precise asymptotics and the double descent curve. Commun. Pure Appl.
Math. 75, 667–766. doi:10.1002/cpa.22008

Mu, Y., and Gage, F. H. (2011). Adult hippocampal neurogenesis and its role in
Alzheimer’s disease. Mol. Neurodegener. 6, 85. doi:10.1186/1750-1326-6-85

Nair, V., and Hinton, G. E. (2010). “Rectified linear units improve restricted
Boltzmann machines,” in Proceedings of the 27th international conference on
machine learning, Haifa, June 21, 2010, 807–814.

Pinkus, A. (1999). Approximation theory of the MLP model in neural networks. Acta
Numer. 8, 143–195. doi:10.1017/S0962492900002919

Quang, D., Chen, Y., and Xie, X. (2014). DANN: a deep learning approach for
annotating the pathogenicity of genetic variants. Bioinformatics 31, 761–763. doi:10.
1093/bioinformatics/btu703

Quang, D., and Xie, X. (2016). DanQ: a hybrid convolutional and recurrent deep
neural network for quantifying the function of DNA sequences. Nucleic acids Res. 44,
e107. doi:10.1093/nar/gkw226

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage
and organization in the brain. Psychol. Rev. 65, 386–408. doi:10.1037/h0042519

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1988). Learning representations
by back-propagating errors. Cogn. Model. 5, 1. doi:10.1038/323533a0

Schuff, N., Woerner, N., Boreta, L., Kornfield, T., Shaw, L. M., Trojanowski, J. Q., and
The Alzheimer’s; Disease Neuroimaging Initiative (2009). MRI of hippocampal volume

Frontiers in Systems Biology frontiersin.org07

Shen and Wang 10.3389/fsysb.2024.1460369

https://doi.org/10.1109/18.256500
https://doi.org/10.3150/23-BEJ1605
https://doi.org/10.3150/23-BEJ1605
https://doi.org/10.1007/BF02551274
https://doi.org/10.1109/TNNLS.2022.3185742
https://doi.org/10.1109/TNNLS.2022.3185742
https://doi.org/10.3982/ECTA16901
https://doi.org/10.1214/aos/1056562464
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/j.neuron.2014.05.041
https://doi.org/10.1016/j.acha.2021.12.003
https://doi.org/10.1002/cpa.22008
https://doi.org/10.1186/1750-1326-6-85
https://doi.org/10.1017/S0962492900002919
https://doi.org/10.1093/bioinformatics/btu703
https://doi.org/10.1093/bioinformatics/btu703
https://doi.org/10.1093/nar/gkw226
https://doi.org/10.1037/h0042519
https://doi.org/10.1038/323533a0
https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2024.1460369


loss in early Alzheimer’s disease in relation to ApoE genotype and biomarkers. Brain
132, 1067–1077. doi:10.1093/brain/awp007

Shen, X., Jiang, C., Sakhanenko, L., and Lu, Q. (2021). A goodness-of-fit test based on neural
network sieve estimators. Statistics and Probab. Lett. 174, 109100. doi:10.1016/j.spl.2021.109100

Shen, X., Jiang, C., Sakhanenko, L., and Lu, Q. 2022. A sieve quasi-likelihood ratio test for
neural networkswith applications to genetic association studies. doi:10.48550/arXiv.2212.08255

Shen, X., Jiang, C., Sakhanenko, L., and Lu, Q. (2023). Asymptotic properties of neural
network sieve estimators. J. Nonparametric Statistics 35, 839–868. doi:10.1080/
10485252.2023.2209218

Sims, R., Hill, M., and Williams, J. (2020). The multiplex model of the genetics of
Alzheimer’s disease. Nat. Neurosci. 23, 311–322. doi:10.1038/s41593-020-0599-5

Srivastava, A., Das, B., Yao, A. Y., and Yan, R. (2020). Metabotropic glutamate
receptors in alzheimer’s disease synaptic dysfunction: therapeutic opportunities and
hope for the future. J. Alzheimers Dis. 78, 1345–1361. doi:10.3233/JAD-201146

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Stat. Soc.
Ser. B Methodol. 58, 267–288. doi:10.1111/j.2517-6161.1996.tb02080.x

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
(2017). “Attention is all you need,” in Advances in Neural Information Processing
Systems 30: Annual Conferenceon Neural Information Processing Systems, Long
Beach, CA, December 4–9, 2017, 5998–6008.

Yatchew, A. J. (1992). Nonparametric regression tests based on least squares. Econ.
Theory 8, 435–451. doi:10.1017/S0266466600013153

Zhou, X., Chen, Yu, Ip, F. C. F., Jiang, Y., Cao, H., Lv, G., et al. (2023). Deep learning-
based polygenic risk analysis for Alzheimer’s disease prediction. Commun. Med. 3,
49–20. doi:10.1038/s43856-023-00269-x

Zissimopoulos, J., Crimmins, E., and St.Clair, P. (2015). The value of delaying
alzheimer’s disease onset. Forum Health Econ. Policy 18, 25–39. doi:10.1515/fhep-
2014-0013

Frontiers in Systems Biology frontiersin.org08

Shen and Wang 10.3389/fsysb.2024.1460369

https://doi.org/10.1093/brain/awp007
https://doi.org/10.1016/j.spl.2021.109100
https://doi.org/10.48550/arXiv.2212.08255
https://doi.org/10.1080/10485252.2023.2209218
https://doi.org/10.1080/10485252.2023.2209218
https://doi.org/10.1038/s41593-020-0599-5
https://doi.org/10.3233/JAD-201146
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1017/S0266466600013153
https://doi.org/10.1038/s43856-023-00269-x
https://doi.org/10.1515/fhep-2014-0013
https://doi.org/10.1515/fhep-2014-0013
https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2024.1460369

	An exploration of testing genetic associations using goodness-of-fit statistics based on deep ReLU neural networks
	Introduction
	Methods
	Deep neural networks (DNNs)
	Goodness-of-fit test based on DNNs
	Network structures

	Results
	Simulation 1
	Simulation 2
	Real data analyses

	Discussions and conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


