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In the context of in silico clinical trials, mechanistic computer models for
pathophysiology and pharmacology (here Quantitative Systems Pharmacology
models, QSP) can greatly support the decision making for drug candidates and
elucidate the (potential) response of patients to existing and novel treatments.
These models are built on disease mechanisms and then parametrized using
(clinical study) data. Clinical variability among patients is represented by
alternative model parameterizations, called virtual patients. Despite the
complexity of disease modeling itself, using individual patient data to build
these virtual patients is particularly challenging given the high-dimensional,
potentially sparse and noisy clinical trial data. In this work, we investigate the
applicability of simulation-based inference (SBI), an advanced probabilisticmachine
learning approach, for virtual patient generation from individual patient data andwe
develop and evaluate the concept of nearest patient fits (SBI NPF), which further
enhances the fitting performance. At the example of rheumatoid arthritis where
prediction of treatment response is notoriously difficult, our experiments
demonstrate that the SBI approaches can capture large inter-patient variability
in clinical data and can compete with standard fitting methods in the field.
Moreover, since SBI learns a probability distribution over the virtual patient
parametrization, it naturally provides the probability for alternative
parametrizations. The learned distributions allow us to generate highly probable
alternative virtual patient populations for rheumatoid arthritis, which could
potentially enhance the assessment of drug candidates if used for in silico trials.
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1 Introduction

Quantitative Systems Pharmacology (QSP) models provide mechanistic insights into
the dynamic interactions between complex pathophysiological reactions and
pharmacological interventions, which yield dynamic responses of protein biomarkers
and clinical endpoints (Bradshaw et al., 2019; Sorger et al., 2011). Different model
parameterizations can represent variability in disease mechanisms and thereby capture
a large range of patients and endotypes. An individual parameter set θ for the QSP model is
here denoted as a virtual patient and determines its biomarker and disease score response to
a specific treatment (QSP(θ)). Finding and identifying these parameterizations θ within the
disease biology network allows us to model and assess virtual patients individually and
predict their disease progression and treatment response to novel drugs.
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The generation of virtual patients is either driven by hypothesis, to
capture, for example, high-level features of responses observed in the
clinic where no data is available (Friedrich, 2016), or driven by
collected clinical outcome data. Often, such data comes as
summary statistics over the patient population and requires the
use of parameter searches and parameter weighting methods (e.g.,
prevalence weighting (Klinke, 2008; Howell et al., 2012; Schmidt et al.,
2013; Allen et al., 2016)). Ideally, the clinical data includes individual
patient-level data which makes an explicit fit of real patients possible
(Björnsson et al., 2019; Allen et al., 2021; Luo et al., 2022). The latter
approach requires data preparation, high performance fitting
algorithms and efficient computation pipelines to achieve a robust
quantitative representation of several hundreds of patients given
noisy, locally sparse and high-dimensional individual clinical data.
Since the results of the individual patient fits are used to guide drug
development decisions, we here seek a broad understanding of virtual
patients in terms of how likely it is that they indeed describe the real
patient data.

Integrating machine learning (ML) approaches to QSP
modeling is a powerful strategy to tackle the computational
challenges associated with mechanistic modeling of such complex
biological systems (reviewed extensively in (Aghamiri et al., 2022)
and (Zhang et al., 2022)). ML has been successfully implemented in
parameter estimation (Wajima et al., 2009), model-order reduction
(Derbalah et al., 2022), virtual patient generation (Rieger et al., 2018;
Parikh et al., 2022) and the assessment of stochastic effects
(McComb et al., 2022).

Here, we investigate the applicability of a novel ML approach for
building virtual patients. We use simulation-based inference (SBI)
that has, to the best of our knowledge, not been applied to such large
QSP models yet. As an example, we use a proprietary QSP model for
rheumatoid arthritis and fit it to individual patient data where patients
have been treated with an anti-TNF drug. SBI approaches are
advanced ML techniques for inferring a parameterization of a
simulator given prior knowledge and empirical data (Lueckmann
et al., 2021). While classic fitting algorithms output a point estimate
for a parametrization (Byrd et al., 2000; Egea et al., 2009), SBI
produces a probability distribution over the parametrization space,
yielding a much more informative result. Prior knowledge in terms of
an expert-designed reference patient parametrization is used to build
an initial belief about the desired probability distribution. The belief
then gets updated based on clinical data observations. The resulting
learned probability distribution provides the probability of specific
patient parameterizations and thus technicallymakes it possible to not
only discover a single patient parameterization of high probability but
multiple ones. The probability distribution could hence be used to
generate new realistic virtual patients during in silico trials that may
participate in future studies.

In a second step, we propose to leverage knowledge from already
built virtual patients (from the same population) to enhance the
performance of the algorithm. Instead of using the reference
parametrization as prior knowledge for a new patient fit, we use
an already learned parametrization of a similar patient. The so-
called nearest patient fit (SBI NPF) thus starts from an improved
initial belief. We expect a more consistent fit among patients of
similar type, which would support an easier identification of virtual
patient subgroups. To identify a similar patient, we define a vicinity
criterion on the clinical data.

2 Methods

2.1 Clinical data

The individual patient data was taken from theMONARCHstudy
[NCT02332590, anti-TNF study arm: n = 155 (Burmester et al., 2017;
Gabay et al., 2017; Gaby et al., 2020)]. A total of 133 patients were used
for individual patient fitting. Individual patients were fitted amongst
others to cell counts (lymphocytes, macrophages), blood protein
biomarkers (CRP, MMP-3, RANKL, OPG, OC, CXCL13, sICAM-1
and IL6) as well as clinical readouts (SJC28, TJC28, DAS28-CRP). The
data was taken at baseline until 24 weeks of treatment with up to eight
measurement time points. Population statistics of the data is available
at https://zenodo.org/doi/10.5281/zenodo.12808208.

2.2 QSP model and simulation

The QSP model (built in SimBiology®, https://mathworks.com/
products/simbiology.html) contains 96 ordinary differential equations
(ODE) definitions, 260 reactions, 100 initial and repeated assignments
and over 1,000 literature references for parameterization of
450 parameters. For simulation in Julia (version 1.8.3, https://
julialang.org/), the Julia Package Sundials (package that interfaces
SUNDIALS 5.2.0 library, https://github.com/SciML/Sundials.jl) with
the solver CVODE_BDF() and absolute and relative tolerances of 1E-
6 were used to solve the ODE system. The QSP model is shown in
Supplementary Figure S1 (supplement).

The reference parametrization of the QSP model is a pre-
implemented solution to an anti-TNF treatment based on various
clinical, in vitro and animal in vivo experiments ranging from
mechanistic to clinical outcome data (Biesemann et al., 2023).

2.3 Global sensitivity analysis

Global sensitivity analysis allows us to determine the importance of
QSP parameters on relevant simulation outputs. The analysis was
performed during drug treatment, since this is the for the parameter
optimization relevant scenario. We defined the parameter ranges by
a ±30% interval around the reference parametrization and used Saltelli’s
sampling scheme (provided by the Python SALib module https://salib.
readthedocs.io/en/latest/api.html#sobol-sensitivity-analysis, version 1.
3.12). For a given parameter θi and a relevant QSP output variable Xj

we calculated the total order sensitivity index SXj,θi following the Sobol
procedure (Sobol, 2001). To deduce a single sensitivity value for each
parameter θi, we aggregated the total order sensitivity SXj,θi over the
relevant output variables weighted by their variance as

Saggθi
� ∑n

j�1SXj,θiVar Xj[ ]∑n
j�1Var Xj[ ] (1)

2.4 Simulation-based inference

Simulation-based inference (SBI) is a class of methods which
apply statistical inference to learn the parameters of stochastic
simulators (Lueckmann et al., 2021), and hence are applicable for
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learning parameters of QSP models. Statistical inference combines a
prior distribution with empirical observations to conclude a
posterior distribution. More precisely, given a prior probability
distribution p(θ) over a parametrization θ ∈ Rn and observed
data xo ∈ Rd, it deduces the posterior probability distribution
p(θ |xo). Following Bayes theorem (Lee, 1989), the posterior is
calculated based on the likelihood function p(x|θ). Since the
analytical or numerical computation of the likelihood function is
often intractable for complex simulations (Cranmer et al., 2020), SBI
estimates the posterior in a “likelihood-free” manner, only relying
on samples of the simulator x ~ sim(θ).

In this work, we evaluate an SBI approach which learns the
posterior distribution with a density estimation neural network
(neural posterior estimation). More precisely, the desired posterior
p(θ |x) is assumed to be a member of a family of probability densities
qκ parametrized by κ that can be of various not-predefined shapes (e.g.,
multimodal). The distribution parameters κ are learned with a neural
network F(x,w), wherew denotes the adjustable weights of the neural
network and x denotes its input, i.e., p(θ|x) ≈ qF(x,w)(θ). The weights
of the neural network are trained by minimizing the loss function
L(w) � ∑M

i�1 − log qF(xi,w)(θi) over generated training samples
(θi, xi){ }i where the parameters θi are sampled from the prior
θi ~ p(θ) and the corresponding simulation results xi are sampled
from the QSP model xi ~ QSP(θi). Since QSP simulations are
expensive, we use the sample efficient algorithm sequential neural
posterior estimation (Greenberg et al., 2019). Only those training
samples (θi, xi) are considered relevant, where the simulation result
xi is close to the clinical data xo of the patient to be fitted. Such training

samples are generated by drawing parametrizations θi from a
sequentially refined posterior estimate ~p(θ|x) which is called
proposal posterior, cf. Figure 1, point 3. Since the posterior under a
proposal does not coincide with the desired posterior under the prior,
the authors in (Greenberg et al., 2019) present a re-parameterization of
the problem to automatically transform between estimates of the
proposal posterior ~p(θ|x) and the true desired posterior p(θ |x).
The sequential procedure leads to more informative and thus overall
fewer training samples from the simulator.

2.4.1 Usage for individual patient fitting
To run the selected SBI approach, a variety of hyperparameters

must be configured which are problem specific. First, to reduce the
complexity of the optimization task, we selected an appropriate
subset of the QSP parameters for fitting using global sensitivity
analysis (Section 2.3) and expert knowledge. Second, we chose a
prior distribution over the fitting parameters. Third, we selected the
neural network-based density estimator F which models the
posterior, the number of rounds in the sequential procedure of
the algorithm as well as the number of samples drawn per round
used to produce a posterior estimate.

Additional tuning of data and simulation outcome was applied:
To handle the measurement noise of the patient data, we introduced
(multiplicative lognormal) noise to the QSP simulation output
during training leading to a stochastic simulator. We considered
the scale parameter of the lognormally distributed noise as a fitting
parameter which allowed us to regulate and learn the appropriate
amount of noise per patient.

FIGURE 1
Workflow of the nearest patient fit pipeline (SBI NPF), steps 1–5. The SBI fitting procedure is depicted in step 3. Ellipses represent patient fits and
boxes represent processing steps.
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Due to the high dimensionality of the patient data, we reduced it
to summary statistics for fitting. More precisely, we represented each
biomarker timeseries by its median and the difference between its
0.9- and 0.1-quantile, indicating the rate with which a biomarker
increases or decreases. For 16 biomarkers, this resulted in a 32-
dimensional representation of the clinical data.

2.4.2 Nearest patient fit (SBI NPF)
The described SBI algorithm fits each patient individually and

independently. We investigated an additional approach for boosting
the performance by leveraging knowledge of an already learned
similar patient.

Since the raw biomarker time series data in the clinical study is
sparse, we used the introduced representation of the clinical data in
terms of a set of statistical features and computed the similarity
between patients as the Euclidean distance in the normalized feature
space. More precisely, we used the Euclidean metric proposed in
(Dixon, 1979) which is designed for the presence of missing data
since not all patients have measurements for all 16 biomarkers:

d Pi, Pj( ) � �����������������������������������������������������������∑
b∈CB

2 CB| |
32

median Pi,b( ) −median Pj,b( )( )2 + Q0.9 Pi,b( ) − Q0.1 Pj,b( )( )2( )√
(2)

where CB denotes the set of common biomarkers of patient Pi and
patient Pj,median (Pi,b) is the normalized median of biomarker b for
patient Pi, and Qx(Pi,b) for x ∈ (0, 1) is the normalized x-quantile.

To implement the suggested nearest patient fit approach, we
considered the fitting process of the patient cohort as a sequential
procedure, cf. Figure 1. In each step, we fit a batch of patients in parallel
and the procedure terminates when all patients are fitted. Throughout
the process, the knowledge we gain from successful patient fits is
collected in a so-called knowledge container which makes the
knowledge available for the subsequent patient fitting experiments.
The developed pipeline is described in detail in the following:

• The knowledge container is initialized with the reference
patient, which is generated with the reference
parametrization in the QSP model (Figure 1, step 1).

• Aprocessingmodule selects a batch of patients forfitting (Figure 1,
step 2), which are nearest to the current patients in the container
according to our similarity metric (Equation 2). The prior for each
patient fit is defined based on the learned parametrization of its
most similar patient in the knowledge container.

• Each selected patient is fitted with the SBI algorithm
(Figure 1, step 3).

• The quality of each resulting patient-specific posterior
distribution is assessed by a processing module (Figure 1,
step 4). If the learned parameterization is better than the
reference parametrization according to the loss function in
Section 2.6, the patient fit is put into the knowledge container.
If not, its knowledge is not reused for the subsequent SBI
experiments, but it is still part of our learned virtual patient
population (Figure 1, step 5).

2.4.3 Implementation
We chose a cross-platform implementation to combine fast

and robust ordinary differential equation solvers from Julia with
high performance SBI methods from Python (version 3.9.12,

https://www.python.org/). We used the Python SBI implementation
provided by (Lueckmann et al., 2021) and customized the simulation
and patient data handling as described above. Information exchange
between the SBI algorithm and the QSPmodel was handled using hdf5-
files (in Python: https://pypi.org/project/h5py/, version 3.6.0, in Julia:
https://juliaio.github.io/HDF5.jl/stable/, version v0.16.16). The fitting
experiments were performed on a Linux server with Intel(R) Xeon(R)
Gold 6226R 65 core CPU that has 775 GB memory available, resulting
in fitting times of approximately 4 h per patient.

2.5 Benchmarks

Scatter search for MATLAB (SSm, Release 2014A) developed by
(Egea et al., 2009) and a gradient-based method (fmincon developed
by Mathworks) was used as benchmark on a Windows machine
(11th Gen Intel(R) Core(TM) i7-11850H) using MATLAB R2021b
and Simbiology version 6.2. Parameter bounds have been set twofold
around the reference parametrization. The computation time for a
single patient fit was set to 4 h, which met the convergence criterion.

2.6 Evaluation metrics

An individual patient fit yields a QSP parametrization θ. The
quality of the parametrization was assessed by comparing the
corresponding QSP output to the clinical data c as

L θ, c( ) �

���������������������������������
1∑B

b�1Tb

∑B

b�1∑Tb

t�1
QSPb,t θ( ) − cb,t

max cb,1, . . . , cb,Tb( )( )2

√√
(3)

where B denotes the number of biomarkers, Tb the number of clinical
measurement time points of biomarker b, QSPb,t(θ) the QSP output
for biomarker b at time twhen parametrizedwith θ, and cb,t the clinical
observation of biomarker b at time t. As biomarker values may be on
different scales, we used a maximum-scaling for equal weighting. Since
all considered fitting algorithms (SBI, SSm, fmincon) start from the
reference parametrization θref, we evaluated their performance against
the reference parameterization in terms of relative loss reduction as

gap θ, c( ) � L θref, c( ) − L θ, c( )
L θref, c( ) (4)

where θ denotes the parametrization determined by the respective
fitting algorithm. gap < 0 depicts worse data fits than the reference
parameterization while gap> 0 depicts improved data fits over the
reference parameterization with gap � 1 as the best possible case.
gap � 0 depicts no improvement over the reference parameterization.

For SBI, which produces a probability distribution over the
parametrization, we defined the ultimate parametrization θsbi as the
best one out of 100 samples drawn from the posterior. To evaluate
the quality of the posterior distribution, we also reported the fraction
of samples which are better than the reference parametrization,

f rac Dpost , c( ) � ∑100
k�11 L θk,sbi ,c( )< L θref ,c( ){ }

100
(5)

where θk,sbi denotes the k-th drawn sample from the learned
posterior distribution Dpost and 1 is the indicator function.
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3 Results

3.1 Selected hyperparameter values

The hyperparameters which control the sequential training
procedure (e.g., number of rounds) as well as the architecture of
the density estimation neural network, were optimized with grid
search (see Table 1 for an overview of the determined

hyperparameter values). A relevant subset of 25 QSP parameters
was selected for fitting based on biological expert knowledge, which
is often a reasonable first step (Cheng et al., 2022), and global
sensitivity analysis results. Figure 2 shows thirteen parameters
identified as key determinants of the model output by expert
priority (A), as well as the twelve most sensitive parameters (of
the remaining ones) identified by global sensitivity analysis (B)
(Equation 1). The parameters selected by expert priority were
categorized into “immune cell numbers in blood”, “sensitivity of
immune processes to cytokine levels” and “simulation of immune
cells”. Variability in the expert priority parameters across virtual
patients leads to variability in cell populations that play a significant
role in disease pathophysiology and response to treatment. Note that
the aggregated Sobol indices of the expert priority parameters are
comparable to those of the high sensitivity parameters.

For the 25 fitting parameters we chose a lognormal prior
distribution LogNormal(loc, scale) centered around the reference
parametrization with parameters loc � log (θref ) and scale � 0.25.
As the reference parametrization θref simulates a typical patient, the
prior can be an informed starting point for an individual patient fit.
The lognormal distribution was chosen to keep the range of
parameter values positive. Moreover, it covers the different scales
of the parameters with a single scale value since by definition the
amount of variance caused by the scale parameter also depends on
the parameter loc (the higher loc, the higher the variance) For SBI
NPF we derived the prior from the knowledge container (see Section
3.4) by centering the lognormal distribution around the
parametrization of the patient’s nearest container patient (and
using the same scale value as above).

TABLE 1 Table shows results of hyperparameter tuning.

Hyperparameter Value

Training procedure

Number of rounds 50

Number of simulations per round 100

Prior

Distribution Lognormal

Prior scale 0.25

Prior loc Reference parametrization + for noise: 0.2

Density estimator

Neural network “made”

Hidden features 100

Number of atoms 25

FIGURE 2
Aggregated Sobol indices for the 12 most sensitive parameters (B) and 13 expert priority parameters (A) selected by their role in the QSP RA model.
Parameters are grouped by the corresponding category (color).
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3.2 Virtual patient generation

Individual patient fits were performed for the presented SBI
approaches as well as for the selected benchmarks (SSm, fmincon)
and evaluated according to the loss function in Equation 3. For each
method, the distribution of the loss over all patients is depicted in
Figure 3A. All fitting algorithms lead to loss curves with smaller
mean loss values and smaller variance compared to the reference.
For each patient fit, the relative reduction of the reference loss is
shown in Figure 3B as a distribution over the population. The fitting
performance range is spanned by the two benchmarks fmincon and
SSm. While the performance distribution of SBI resembles fmincon,

SBI NPF yields a clear improvement which is similar to the SSm
performance distribution. For both SBI approaches there are a few
outlier patients, for which the reference is better than the respective
SBI result (i.e., negative relative reduction in Figure 3B). When
comparing the losses patient-wise, SBI NPF improves over SBI for
82% of the patients. SBI NPF does not only outperform SBI in terms
of the best posterior sample but also in terms of the whole learned
posterior distribution, cf. Figure 3C. It shows that for SBI typically
34% out of 100 posterior samples are better than the reference
parametrization, while for SBI NPF this number is around 80%.
Visual predictive checks on a biomarker level are presented in
Figures 4, 5 for the c-reactive protein(CRP) and a disease score

FIGURE 3
(A)Distribution of loss values (Equation 3) over the patient population (n = 133) for the different methods. (B)Distribution of the relative reduction of
the reference loss over the patient population (n = 133) shown for the different methods calculated using the gap function (Equation 4). Boxes represent
interquartile-ranges with a line at the median, whiskers extend to the last data point up to 1.5-fold of the interquartile range and circles represent outliers.
(C) Distribution of the fraction of posterior samples which outperform the reference fit (ref) for both SBI approaches (SBI and SBI NPF) calculated
from Equation 5.

FIGURE 4
Correlation between all patient’s observations from the clinical data (y-axis) and the respective simulation results (x-axis) depicted as a density plot
for a blood biomarker (CRP on the left) and a disease score (DAS28-CRP on the right). Simulation results were generated using the individual parameter
estimates from the four different algorithms (SBI, fmincon, SBI NPF and SSm). Dark-shaded areas indicate high density while soft-shaded areas indicate
low density.
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(DAS28-CRP). Figure 4 compares the clinical biomarker
observations of all patients (y-axis) at all time points to the
corresponding simulations of the model with the parameter sets
of the respective fitting algorithm (x-axis). This density
correlation plot illustrates that, similar to the benchmarks, the
SBI approaches are overall able to describe the clinical data
sufficiently well. The visual predictive checks also reflect that
SBI NPF leads to better fits than SBI. In Figure 5 we depict the
distribution of the clinical data and the obtained simulation
results (after 24 weeks of treatment) over the patient
population. Inter-patient variability is large in the clinical data
endpoints and the fitting methods are generally able to capture
this variability under the chosen parameter bounds. An example
of an individual fit obtained by SBI is shown in the
Supplementary Figure S2 for the CRP data. In summary, the
empirical evaluations demonstrate that the SBI approaches can
compete with classic fitting methods in the field in terms of fitting
quality and fitting speed. Moreover, the suggested SBI NPF
pipeline significantly improved over SBI.

3.3 Comparison of virtual patients

For each patient, SBI produces a posterior probability
distribution over the considered 25-dimensional parameter space.
Exemplary one-dimensional marginal posteriors are depicted in
Figure 6 for three different parameters. One column depicts the
marginal distribution for a specific QSP model parameter for three
different patients which all started from the same prior (grey). For
each parameter (column), the three learned patient-individual
posteriors (blue) differ significantly from each other. While a
learned posterior can have moved far away from the prior,
i.e., the reference parametrization, they can also resemble each
other, at least in the one dimension depicted in this figure
(similarity of the here depicted one-dimensional marginal prior

and posterior does not imply similarity of the 25-dimensional prior
and posterior distributions). Overall, we observe multiple shapes of
the marginal posteriors, which range from very concentrated
distributions to broader and flat ones.

Note that the sampled parameter sets from a patient posterior
distribution contain between-parameter relationships (example
given in the supplement as parallel coordinate plot, see
Supplementary Figure S3) and can be used to explore
correlations (example given in the supplement as correlation
matrix, see Supplementary Figure S4).

4 Discussion

4.1 Concept: Generation of virtual patients
by fitting individual patient data

QSP models are typically built in several steps. Individual
mechanistic parameters, such as binding or dissociation as well
as mechanistic pathway modules are first calibrated based on in vitro
and in vivo experiments and, in the final step, are then fitted to
clinical study data such as biomarker concentrations and disease
activity endpoints (Cheng et al., 2022).

Often this clinical data is only available as summary statistics,
which requires weighting methods to ensure a proper distribution of
the inferred parameter sets (Klinke, 2008; Schmidt et al., 2013). It
requires difficult assumptions on which patients may exist in the real
world and has consequences for prediction of drug efficacy.

Fitting of individual clinical data circumvents these assumptions
but is limited, in good cases, to only a few hundred patients where
the individual data is often provided without uncertainty statistics
(such as standard deviation). The lack of uncertainty statistics denies
the use of sophisticated approaches for generating alternative
parameterizations for a single patient, such as bootstrapping
(Tibshirani and Efron, 1986).

FIGURE 5
Depiction of clinical endpoints and corresponding simulation results as distributions over the patient population (n = 133) after 24 weeks of
treatment for DAS28-CRP (left) and CRP (right). Simulation results were generated using the individual parameter estimates from the four different
algorithms. Boxes represent interquartile-ranges with a line at the median, whiskers extend to the last data point up to 1.5-fold of the interquartile range
and circles represent outliers.
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By applying a simulation-based inference method, we generated
parameter probability distributions during the patient fit, directly
providing alternative parametrizations for real patients. More
precisely, sampling from the probability distributions yield
different highly likely parametrizations for an individual patient,
which can then be used to achieve a larger virtual patient population.
Thus, the above-mentioned limitations of individual patient data
have been overcome and the generated virtual population is based
on real patients, which is advantageous compared to weighting
methods and their assumptions.

The subsequent validation of the generated virtual
population, either from individual patient fitting or from
hypothesis-based methods, is usually achieved by predicting
the population outcome of other studies, for example, drugs
with different mode of action or different dosing schemes, under
consideration of the baseline characteristics of the study
population.

4.2 SBI for fitting individual patient data

In this work, we employ SBI to learn a distribution over the QSP
model parametrization for an individual rheumatoid arthritis
patient and build a virtual patient from it. The goal is to identify
regions in the parameter space which best explain the patient
observations, i.e., where the corresponding simulated biomarker
values match the patient’s clinical data.

The approach is particularly interesting for the described setup
since there may exist multiple optimal QSP parametrizations to
model the patient data. The learned probability distribution in the
parameter space naturally provides the probability of certain
parameterizations and can be used to explore alternative
parameterizations. Another benefit of SBI is that it treats the
simulation as a black box, similar to SSm and fmincon.

There exists a variety of SBI algorithms in the literature, see
(Lueckmann et al., 2021) for a detailed overview, from which we

FIGURE 6
Prior (grey) vs. selected patient-individual posterior (blue) one-dimensional marginal distributions for three model parameters. Every subplot stands
for an individual patient. Each column represents one specific parameter. X-axes represent the parameter value used in the QSP model (parameter-
specific units) and y-axes represent the density.
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chose the sample-efficient algorithm sequential neural posterior
estimation. The choice of the SBI approach as well as of the
stochastic global and deterministic local approach can yield
differences in the benchmarking as their performance needs to be
considered as partially problem specific (Egea et al., 2009).
Furthermore, the applied data statistics and the data noise
handling can influence the result performance.

4.3 Choice of hyperparameters

Within this challenging optimization problem, algorithms and
settings of hyperparameters are an impactful choice that is based
on the underlying optimization criterion and performance
assumptions. Alternative hyperparameter settings may yield
similar or better results and can be subject of further analysis.

To reduce the complexity of the optimization problem and to
achieve high quality model fits, we selected the most relevant
parameters for model fitting by assessing the parameter influence
on biomarker-related model outputs through global sensitivity
analysis (Sobol, 2001). In addition, expert priority parameters
have been included in the parameter estimation (Cheng et al.,
2022). The quantitative choice of 25 parameters seems arbitrary
but alternative parameter numbers did not improve the result of the
parameter estimation.

4.4 Performance of virtual patient
generation

The results of this work demonstrate that fitting of individual
patients can yield virtual patients that each outperform the
reference and that the model parameterizations can represent
the variability in clinical response typically seen in the data. The
variability in the patient data was very high, cf. Figure 5, which is
expected for rheumatoid arthritis as heterogeneous disease, and
poses a real challenge for individual patient fitting but also for
predicting response (Rehberg et al., 2021). Obviously, the inter-
patient variability is a consequence of phenotypic differences and
measurement noise. As noise cannot be explained biologically
with the mechanistic QSP model, a perfect correlation between
clinical data and model predictions in Figure 4 is difficult to
achieve (see also (Schmidt et al., 2013)). Yet the discussed
algorithms show a different fitting performance with fmincon
performing worst, SSm performing best and SBI being in
between. Fmincon generally is less suited for our optimization
task than the others as it searches for a local and not necessarily
global optimum. While fmincon and SSm provide only point
estimates, SBI provides a distribution, i.e., multiple parameter
estimates with corresponding probabilities. We note that the
fitting approach with SBI uses summary statistics of the clinical
data and not its raw observations like the benchmarks, which
could be a disadvantage. Yet overall, the SBI approaches get
reasonably close to SSm. Our results also illustrate that SBI can
handle a high-dimensional parameter space of 25 parameters and
make them suited for such kind of QSP problems. For
comparison, SBI approaches in the literature focused, so far,
on setups of only 2–10 parameters (Lueckmann et al., 2021; Reza

et al., 2022; Boelts et al., 2023; Boyali et al., 2021). The fact that
SBI could be improved with SBI NPF for 82% of the patients
demonstrates a high potential of the nearest patient fit pipeline
developed in this work. It showcases the influence and necessity
of good prior estimates for SBI algorithms. However, 18% of the
patients were better fitted with SBI, which starts from a
presumably less appropriate prior distribution. While SBI
approaches are inherently stochastic, the impact on fitting
quality was minor in repetitive experiments. We must assume
that the SBI NPF pipeline has room for improvement in defining
the patient vicinity criteria and/or that patient vicinity is not
always of benefit, as a QSP model may require very different
parametrizations to produce similar outputs (Duffull and Gulati,
2020). To conclude on the SBI NPF pipeline, the developed
concept of nearest patient fits is not specific to SBI but
represents a generic contribution that can be transferred to
any fitting algorithm which considers initial solutions.

4.5 Comparison of virtual patients

The patient-specific posterior marginal distributions show
that very diverse QSP model parametrizations can be necessary
to describe individual patients well, which SBI was able to learn.
The different shapes of the marginal posteriors indicate the
flexibility of the chosen SBI approach (sequential neural
posterior estimation) in modelling probability distributions.
While concentrated distributions can indicate a high certainty
in the virtual patient parametrizations, flat distributions may
point towards those that are uncertain. One advantage of the
learned distributions is that alternative virtual patient
parametrizations can directly be generated through sampling.
I.e., new highly-probable patient fits can be easily generated
without re-running the optimization solver or using other
metrics and assumptions such as prevalence weighting. These
alternate parameterizations of a virtual patient may describe the
fitted data equally well and may represent differences in the
disease mechanisms. Exploring alternate parametrizations is
fundamental to assess the range of treatment outcomes of an
individual patient.

On the population level, aggregation of the given patient-specific
posterior distributions may allow the application of population
statistics for assessment of subgroups, patient differences and
population spread.

4.6 General conclusion

In this work, we find SBI approaches to be powerful tools in
creating virtual patients using individual patient data. SBI achieved
the same performance in patient fits compared to benchmark
algorithms and provides parameter probability distributions,
which can be used to explore alternative parameterizations for
real patients to create more confidence in predicting clinical
outcomes for in silico trials. Furthermore, leveraging patient
similarities observed in the clinical data, improved the
performance and may be suited as a generalizable strategy in
generating virtual patients.
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SUPPLEMENTARY FIGURE S1
Schematic representation of key interactions in the QSP RA model. The
model is composed of a blood compartment (from which immune cells are
recruited) and a synovial tissue compartment (side of inflammation).
Thickness of connection dots illustrate the influence strength. Dots represent
positive influence, bars represent negative influence (only for Tregs).
Abbreviations: TNF: tumor necrosis factor, FLS: fibroblast-like synoviocytes
IL6R: interleukin-6 receptor, CRP: c-reactive protein, DAS28-CRP: disease
activity score 28 with CRP, TH: T helper cells, MAC: macrophages, Treg: T
regulatory cells, B: B cells.

SUPPLEMENTARY FIGURE S2
Individual patient fit of QSP model to c-reactive protein (CRP) data obtained
by SBI. The clinical patient data is depicted as circles. Data before treatment
start shows baseline characteristics of that individual patient and the drop in
CRP shows response to the treatment (treatment time: 24 weeks). Each
dashed blue line represents a fit obtained by SBI. More precisely, it
represents the QSP simulation result when parametrized with a sample
from the learned patient posterior. Note that the depicted fitting result was
obtained by fitting 16 clinical biomarkers and endpoints from that patient
simultaneously (including CRP).

SUPPLEMENTARY FIGURE S3
Parallel coordinate plot of parameter sets sampled from a patient posterior
distribution obtained by SBI. The 25 fitting parameters are depicted as p1, . . .,
p25 as columns, each equipped with a y-axis showing the respective
parameter value range. Each line (from p1 to p25) is one parameter set
derived from SBI for the given patient, obtained by sampling from the
learned patient posterior distribution. A line’s color represents the quality of
that parameter set in terms of the resulting fitting loss (Equation 3). Parameter
sets in dark green color illustrate low loss values while orange parameter
sets have higher loss values. A total of 100 parameter sets is shown.

SUPPLEMENTARY FIGURE S4
Parameter correlation calculated for the parameter sets shown in
Supplementary Figure S3: The heatmap shows the correlation between the
25 parameters shown as p1, . . ., p25 obtained from the 100 parameter sets
depicted in Supplementary Figure S3. Numbers are Pearson correlation
coefficients and are highlighted in red for positive correlation and in blue for
negative correlation.

References

Aghamiri, S. S., Amin, R., and Helikar, T. (2022). Recent applications of quantitative
systems pharmacology and machine learning models across diseases. J. Pharmacokinet.
Pharmacodyn. 49 (1), 19–37. doi:10.1007/s10928-021-09790-9

Allen, A., Siefkas, A., Pellegrini, E., Burdick, H., Barnes, G., Calvert, J., et al. (2021). A
digital twins machine learning model for forecasting disease progression in stroke
patients. Appl. Sci. 11 (12), 5576. doi:10.3390/app11125576

Frontiers in Systems Biology frontiersin.org10

Paul et al. 10.3389/fsysb.2024.1444912

https://www.frontiersin.org/articles/10.3389/fsysb.2024.1444912/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fsysb.2024.1444912/full#supplementary-material
https://doi.org/10.1007/s10928-021-09790-9
https://doi.org/10.3390/app11125576
https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2024.1444912


Allen, R. J., Rieger, T. R., and Musante, C. J. (2016). Efficient generation and selection
of virtual populations in quantitative systems pharmacology models. CPT
Pharmacometrics Syst. Pharmacol. 5 (3), 140–146. doi:10.1002/psp4.12063

Biesemann, N., Margerie, D., Asbrand, C., Rehberg, M., Savova, V., Agueusop, I., et al.
(2023). Additive efficacy of a bispecific anti–TNF/IL-6 nanobody compound in
translational models of rheumatoid arthritis. Sci. Transl. Med. 15 (15), eabq4419.
doi:10.1126/scitranslmed.abq4419

Björnsson, B., Borrebaeck, C., Elander, N., Gasslander, T., Gawel, D. R., Gustafsson,
M., et al. (2019). Digital twins to personalize medicine. Genome Med. 12 (1), 4. doi:10.
1186/s13073-019-0701-3

Boelts, J., Harth, P., Gao, R., Udvary, D., Yanez, F., Baum, D., et al. (2023). Simulation-
based inference for efficient identification of generative models in connectomics.
bioRxiv. doi:10.1371/journal.pcbi.1011406

Boyali, A., Thompson, S., andWong, D. R. (2021). “Identification of vehicle dynamics
parameters using simulation-based inference,” in 2021 IEEE intelligent vehicles
symposium workshops (IV workshops).

Bradshaw, E. L., Spilker, M. E., Zang, R., Bansal, L., He, H., Jones, R. D. O., et al.
(2019). Applications of quantitative systems pharmacology in model-informed drug
discovery: perspective on impact and opportunities. CPT Pharmacometrics Syst.
Pharmacol. 8 (11), 777–791. doi:10.1002/psp4.12463

Burmester, G. R., Lin, Y., Patel, R., van Adelsberg, J., Mangan, E. K., Graham, N. M.,
et al. (2017). Efficacy and safety of sarilumab monotherapy versus adalimumab
monotherapy for the treatment of patients with active rheumatoid arthritis
(MONARCH): a randomised, double-blind, parallel-group phase III trial. Ann.
Rheum. Dis. 76 (5), 840–847. doi:10.1136/annrheumdis-2016-210310

Byrd, R. H., Gilbert, J. C., and Nocedal, J. (2000). A trust region method based on
interior point techniques for nonlinear programming. Math. Program. 89, 149–185.
doi:10.1007/pl00011391

Cheng, Y., Straube, R., Alnaif, A., Huang, L., Leil, T., and Schmidt, B. (2022). Virtual
populations for quantitative systems pharmacology models. Methods Mol. Biol., 2486:
129–179. doi:10.1007/978-1-0716-2265-0_8

Cranmer, K., Brehmer, J., and Louppe, G. (2020). The frontier of simulation-based
inference. Proc. Natl. Acad. Sci. U.S.A. 117 (48), 30055–30062. doi:10.1073/pnas.
1912789117

Derbalah, A., Al-Sallami, H., Hasegawa, C., Gulati, A., and Duffull, S. B. (2022). A
framework for simplification of quantitative systems pharmacology models in clinical
pharmacology. Br. J. Clin. Pharmacol. 88 (4), 1430–1440. doi:10.1111/bcp.14451

Dixon, J. K. (1979). Pattern recognition with partly missing data. IEEE Trans. Syst.
Man. Cybern. Syst. 9 (10), 617–621. doi:10.1109/tsmc.1979.4310090

Duffull, S., and Gulati, A. (2020). Potential issues with virtual populations when
applied to nonlinear quantitative systems pharmacology models. CPT Pharmacometrics
Syst. Pharmacol. 9 (11), 613–616. doi:10.1002/psp4.12559

Egea, J. A., Vazquez, E., Banga, J. R., and Martí, R. (2009). Improved scatter search for
the global optimization of computationally expensive dynamic models. J. Glob. Optim.
43, 175–190. doi:10.1007/s10898-007-9172-y

Friedrich, C. (2016). Amodel qualificationmethod for mechanistic physiological QSP
models to support model-informed drug development. CPT Pharmacometrics and Syst.
Pharmacol. 5 (2), 43–53. doi:10.1002/psp4.12056

Gabay, C.,Msihid, J., Paccard, C., Zilberstein,M., Graham,N.M., and Boyapati, A. (2017).
FRI0227 Sarilumab significantly suppresses circulating biomarkers of bone resorption and
cardiovascular risk compared with adalimumab: biomarker analysis from the phase
3 monarch study. Ann. Rheum. Dis. 76, 570. doi:10.1136/annrheumdis-2017-eular.4534

Gaby, C., Burmester, G., Strand, V., Msihid, J., Zilberstein, M., Kimura, T., et al.
(2020). Sarilumab and adalimumab differential effects on bone remodelling and
cardiovascular risk biomarkers, and predictions of treatment outcomes. Arthritis
Res. and Ther. 22 (1), 70. doi:10.1186/s13075-020-02163-6

Greenberg, D., Nonnenmacher, M., and Macke, J. (2019). “Automatic posterior
transformation for likelihood-free inference,” in International conference onmachine learning.

Howell, B. A., Yang, Y., Kumar, R., Woodhead, J., Harrill, A., Clewell, H. 3., et al.
(2012). In vitro to in vivo extrapolation and species response comparisons for drug-
induced liver injury (DILI) using DILIsym™: a mechanistic, mathematical model of
DILI. J. Pharmacokinet. Pharmacodyn. 39 (5), 527–541. doi:10.1007/s10928-012-
9266-0

Klinke, D. (2008). Integrating epidemiological data into a mechanistic model of type
2 diabetes: validating the prevalence of virtual patients. Ann. Biomed. Eng. 36 (2),
321–334. doi:10.1007/s10439-007-9410-y

Lee, P. M. (1989). Bayesian statistics. London: Oxford University Press.

Lueckmann, J.-M., Boelts, J., Greenberg, D., Goncalves, P., and Macke, J. (2021).
“Benchmarking simulation-based inference,” in International conference on artificial
intelligence and statistics.

Luo, M. C., Nikolopoulou, E., and Gevertz, J. L. (2022). From fitting the average to
fitting the individual: a cautionary tale for mathematical modelers. Front. Oncol. 12,
793908. doi:10.3389/fonc.2022.793908

McComb, M., Blair, R. H., Lysy, M., and Ramanathan, M. (2022). Machine learning-
guided, big data-enabled, biomarker-based systems pharmacology: modeling the
stochasticity of natural history and disease progression. J. Pharmacokinet.
Pharmacodyn. 49 (1), 65–79. doi:10.1007/s10928-021-09786-5

Parikh, J., Rumbell, T., Butova, X., Myachina, T., Acero, J. C., Khamzin, S., et al.
(2022). Generative adversarial networks for construction of virtual populations of
mechanistic models: simulations to study Omecamtiv Mecarbil action.
J. Pharmacokinet. Pharmacodyn. 49 (1), 51–64. doi:10.1007/s10928-021-09787-4

Rehberg, M., Giegerich, C., Praestgaard, A., van Hoogstraten, H., Iglesias-Rodriguez,
M., Curtis, J. R., et al. (2021). Identification of a rule to predict response to sarilumab in
patients with rheumatoid arthritis using machine learning and clinical trial data.
Rheumatol. Ther. 8, 1661–1675. doi:10.1007/s40744-021-00361-5

Reza, M., Zhang, Y., Nord, B., Poh, J., Ciprijanovic, A., and Strigari, L. (2022).
“Estimating cosmological constraints from galaxy cluster abundance using simulation-
based inference,” in ICML 2022 workshop on machine learning for astrophysics.

Rieger, T. R., Allen, R. J., Bystricky, L., Chen, Y., Colopy, G. W., Cui, Y., et al. (2018).
Improving the generation and selection of virtual populations in quantitative systems
pharmacology models. Prog. Biophys. Molec Bio 139, 15–22. doi:10.1016/j.pbiomolbio.
2018.06.002

Schmidt, B. J., Casey, F. P., Paterson, T., and Chan, J. R. (2013). Alternate virtual
populations elucidate the type I interferon signature predictive of the response to rituximab
in rheumatoid arthritis. BMC Bioinforma. 14, 221. doi:10.1186/1471-2105-14-221

Sobol, I. (2001). Global sensitivity indices for nonlinear mathematical models and
their Monte Carlo estimates.Math. Comput. SIMULAT 55 (1-3), 271–280. doi:10.1016/
S0378-4754(00)00270-6

Sorger, P., Allerheiligen, S., Abernethy, D., Altman, R., Brouwer, K., Califano, A., et al.
(2011).Quantitative and systems pharmacology in the post-genomic era: new approaches
to discovering drugs and understanding therapeutic. Maharashtra, India: NIH White
Paper by the QSP Workshop Group.

Tibshirani, B., and Efron, R. (1986). Bootstrap methods for standard errors,
confidence. Stat. Sci. 27 (2), 54–77.

Wajima, T., Isbister, G. K., and Duffull, S. B. (2009). A comprehensive model for the
humoral coagulation network in humans. Clin. Pharmacol. Ther. 86, 290–298. doi:10.
1038/clpt.2009.87

Zhang, T., Androulakis, I. P., Bonate, P., Cheng, L., Helikar, T., Parikh, J., et al. (2022).
Two heads are better than one: current landscape of integrating QSP and machine
learning: an ISoP QSP SIG white paper by the working group on the integration of
quantitative systems pharmacology and machine learning. J. Pharmacokinet.
Pharmacodyn. 49 (1), 5–18. doi:10.1007/s10928-022-09805-zFebruary, 2022)

Frontiers in Systems Biology frontiersin.org11

Paul et al. 10.3389/fsysb.2024.1444912

https://doi.org/10.1002/psp4.12063
https://doi.org/10.1126/scitranslmed.abq4419
https://doi.org/10.1186/s13073-019-0701-3
https://doi.org/10.1186/s13073-019-0701-3
https://doi.org/10.1371/journal.pcbi.1011406
https://doi.org/10.1002/psp4.12463
https://doi.org/10.1136/annrheumdis-2016-210310
https://doi.org/10.1007/pl00011391
https://doi.org/10.1007/978-1-0716-2265-0_8
https://doi.org/10.1073/pnas.1912789117
https://doi.org/10.1073/pnas.1912789117
https://doi.org/10.1111/bcp.14451
https://doi.org/10.1109/tsmc.1979.4310090
https://doi.org/10.1002/psp4.12559
https://doi.org/10.1007/s10898-007-9172-y
https://doi.org/10.1002/psp4.12056
https://doi.org/10.1136/annrheumdis-2017-eular.4534
https://doi.org/10.1186/s13075-020-02163-6
https://doi.org/10.1007/s10928-012-9266-0
https://doi.org/10.1007/s10928-012-9266-0
https://doi.org/10.1007/s10439-007-9410-y
https://doi.org/10.3389/fonc.2022.793908
https://doi.org/10.1007/s10928-021-09786-5
https://doi.org/10.1007/s10928-021-09787-4
https://doi.org/10.1007/s40744-021-00361-5
https://doi.org/10.1016/j.pbiomolbio.2018.06.002
https://doi.org/10.1016/j.pbiomolbio.2018.06.002
https://doi.org/10.1186/1471-2105-14-221
https://doi.org/10.1016/S0378-4754(00)00270-6
https://doi.org/10.1016/S0378-4754(00)00270-6
https://doi.org/10.1038/clpt.2009.87
https://doi.org/10.1038/clpt.2009.87
https://doi.org/10.1007/s10928-022-09805-z
https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2024.1444912

	Building virtual patients using simulation-based inference
	1 Introduction
	2 Methods
	2.1 Clinical data
	2.2 QSP model and simulation
	2.3 Global sensitivity analysis
	2.4 Simulation-based inference
	2.4.1 Usage for individual patient fitting
	2.4.2 Nearest patient fit (SBI NPF)
	2.4.3 Implementation

	2.5 Benchmarks
	2.6 Evaluation metrics

	3 Results
	3.1 Selected hyperparameter values
	3.2 Virtual patient generation
	3.3 Comparison of virtual patients

	4 Discussion
	4.1 Concept: Generation of virtual patients by fitting individual patient data
	4.2 SBI for fitting individual patient data
	4.3 Choice of hyperparameters
	4.4 Performance of virtual patient generation
	4.5 Comparison of virtual patients
	4.6 General conclusion

	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


