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Post-Acute Sequelae of SARS-CoV-2 infection (PASC or “Long COVID”), includes
numerous chronic conditions associated with widespread morbidity and rising
healthcare costs. PASC has highly variable clinical presentations, and likely
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includes multiple molecular subtypes, but it remains poorly understood from a
molecular andmechanistic standpoint. This hampers the development of rationally
targeted therapeutic strategies. The NIH-sponsored “Researching COVID to
Enhance Recovery” (RECOVER) initiative includes several retrospective/
prospective observational cohort studies enrolling adult, pregnant adult and
pediatric patients respectively. RECOVER formed an “OMICS” multidisciplinary
task force, including clinicians, pathologists, laboratory scientists and data
scientists, charged with developing recommendations to apply cutting-edge
system biology technologies to achieve the goals of RECOVER. The task force
met biweekly over 14 months, to evaluate published evidence, examine the
possible contribution of each “omics” technique to the study of PASC and
develop study design recommendations. The OMICS task force recommended
an integrated, longitudinal, simultaneous systems biology study of participant
biospecimens on the entire RECOVER cohorts through centralized laboratories,
as opposed to multiple smaller studies using one or few analytical techniques. The
resulting multi-dimensional molecular dataset should be correlated with the deep
clinical phenotyping performed through RECOVER, as well as with information on
demographics, comorbidities, social determinants of health, the exposome and
lifestyle factors that may contribute to the clinical presentations of PASC. This
approach will minimize lab-to-lab technical variability, maximize sample size for
class discovery, and enable the incorporation of as many relevant variables as
possible into statistical models. Many of our recommendations have already been
considered by the NIH through the peer-review process, resulting in the creation of
a systems biology panel that is currently designing the studies we proposed. This
system biology strategy, coupled with modern data science approaches, will
dramatically improve our prospects for accurate disease subtype identification,
biomarker discovery and therapeutic target identification for precision treatment.
The resulting dataset should be made available to the scientific community for
secondary analyses. Analogous system biology approaches should be built into the
study designs of large observational studies whenever possible.
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1 Introduction

The term Post-Acute Sequelae of SARS-CoV-2 infection
(PASC), also known as “Long COVID”, refers to numerous
conditions associated with widespread morbidity and rising
healthcare costs. PASC has highly variable clinical presentations,
and likely includes multiple molecular subtypes (Thompson et al.,
2023; Sherif et al., 2023). The NIH-sponsored “Researching COVID
to Enhance Recovery” (RECOVER) initiative includes retrospective/
prospective cohort studies including an adult cohort (Horwitz et al.,
2023), a cohort of pregnant adults (Metz et al., 2023; Reel et al., 2021)
and a pediatric cohort (Gross et al., 2024; Reel et al., 2021). These
studies aim to enroll a total of 12,580 adult non-pregnant patients,
2,300 adult pregnant patients and 19,300 pediatric patients to
rapidly improve our understanding of and ability to predict,
treat, and prevent Post-Acute Sequelae of SARS-CoV-2 infection
(PASC, or “Long COVID”) through deep clinical phenotyping and
laboratory studies. THE RECOVER “OMICS” Task Force was
charged with developing recommendations based on published
evidence and the experiences of its members, to incorporate
multi-omics into the analysis of RECOVER results.

2 Methods

2.1 Objectives

The “OMICS” task force of the RECOVER study, a multi-
disciplinary committee including clinicians, pathologists, laboratory
scientists and data scientists, was charged with developing
recommendations to apply cutting-edge system biology technologies
to achieve the goals of RECOVER. The task force met biweekly over
14 months, to evaluate published evidence, examine the possible
contribution of each “omics” technique to the study of PASC, as well
as the potential limitations of each technique, and develop a consensus
recommendation. The work was divided into two stages. During the first
stage, sub-committees with specific expertise on an “omics” technique
examined evidence supporting the use of that technique to study PASC,
the type of data it could generate and the mechanistic questions it could
answer, based on published evidence and the experiences of its members,
to incorporate multi-omics into the analysis of RECOVER results. Each
sub-committee presented to the entire task force. During the second
stage, the task force combined the findings of each sub-committee into a
comprehensive study design recommendation.
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3 Results and discussion

The OMICS task force recommended that integrated,
longitudinal, simultaneous multi-omics studies of participant
biospecimens be performed on the entire RECOVER cohort
through centralized laboratories, as opposed to multiple smaller
studies using one or few analytical techniques.

The RECOVER adult protocol (Horwitz et al., 2023) includes
multiple biospecimen collections: nasopharyngeal or nasal swab,
2 8.5 mL aliquots of blood in serum separation tubes, 4 × 8 ml
aliquots of blood in cell preparation tubes, 2 × 2.7 mL aliquots of
blood in sodium citrate tubes for plasma proteomics, 1 × 10 ml
aliquot of blood in EDTA tube, 1 2.5 mL aliquot of blood in
PAXgene RNA tube, 1 × 10 ml urine (no additives), 1 × 2mL
aliquot of saliva in Oragene OGR 600 and 1 25 mL aliquot of stool.
Of these, stool is sent by participants while the other samples are
processed locally as per protocol specifications and shipped in
batches to the central tissue bank. Participants who consent to
biospecimen donation for future research are asked to provide blood
and nasopharyngeal/nasal swab biospecimens at enrollment, 90 and
180 days after the index date (date of first infection or negative
COVID test), and then annually (Horwitz et al., 2023). Saliva is
collected upon enrollment for genetic analysis. Urine and stool are
collected biannually. Additionally, a battery of clinical laboratory
tests is performed in CLIA-certified laboratories at enrollment,
90 and 189 days after the index date, and thereafter, abnormal
tests are repeated annually. Specific symptoms or abnormal study
results trigger “Tier 2” or “Tier 3” assessments (see (Horwitz et al.,
2023) for details). A SARS-CoV-2 PCR test is performed at
enrollment for all “uninfected” participants, who are also tested
for SARS-CoV-2 nucleocapsid antibodies spike protein antibodies
for unvaccinated participants.

In addition to study visits, imaging and laboratory tests,
participants complete multiple surveys, using validated survey
instruments whenever possible, at 90-day intervals throughout
the study. At enrollment, data are collected on demographics,
social determinants of health (SDOH), disability, characteristics
of the initial SARS-CoV-2 infection (if applicable), pregnancy (if
applicable), vaccination status, comorbidities, medications, and
PASC symptoms. Subsequently, at 90-day intervals, data are
collected on interim infections, time-varying social determinants,
vaccinations, comorbidities, medications and symptoms (Horwitz
et al., 2023). The PASC symptom survey was developed for
RECOVER and includes an overall quality of life instrument
(PROMIS-10) and screening for core symptoms (43 for biological
males and 46 for biological females) drawn from existing literature
plus input from patient representatives and investigators. Questions
about depression, anxiety, post-traumatic stress disorder (PTSD),
and grief are also included. Report of a symptom may trigger
additional questions about that symptom. Details of survey
instruments are in the original reference (Horwitz et al., 2023).

The pregnancy study (Metz et al., 2023) follows a similar design
to the non-pregnant adult study, enrolling participants with
suspected, probable or confirmed SARS-CoV-2 infection during
pregnancy, or documented lack of exposure to SARS-CoV-2 during
pregnancy. Study procedures and biospecimen collections are
analogous to those in the non-pregnant adult study (Metz et al.,
2023), with modifications for breastfeeding or postpartum

participants, and additional health and developmental
assessments for babies exposed in utero to SARS-CoV-2.

The RECOVER pediatric study (Gross et al., 2024) has a similar
design, with limitations due to the age range of participants. All
pediatric participants complete a single Tier 1 visit including
PROMIS global health measures and symptom screening. This
visit includes a donation of saliva and capillary blood. Depending
on infection status, clinical history, symptoms and probability of
PASC, pediatric participants are promoted to Tier 2 or Tier 3, which
include additional biospecimen donations during the acute and
post-acute phase of PASC, as well as additional clinical
assessments and surveys. The types, aliquot numbers, and
cadence of biospecimen collections are described in detail in
(Gross et al., 2024).

In summary, each RECOVER study will generate vast
longitudinal datasets including clinical, demographic, medication,
SDOH and lifestyle data for each participant, as well as sufficient
types and numbers of biospecimen aliquots to permit a
comprehensive, longitudinal multi-omics investigation. Potential
environmental exposures can furthermore be estimated from
census tract or ZIP code data.

The multi-dimensional molecular dataset generated by the
multi-omics investigation should be correlated with the deep
clinical phenotyping performed through RECOVER, as well as
with information on demographics, comorbidities, social
determinants of health, the exposome and lifestyle factors
collected through RECOVER surveys, that may contribute to the
clinical presentations of PASC. Data generation and analytical
strategies should leverage integrative bioinformatics and
machine learning.

A major advantage, and a potential challenge, of multi-omics
approaches is that datasets derived from different analytical
techniques and measured using different scales must be
integrated. Approaches including multi-omics integration paired
with ML have been gaining popularity in clinical and biomedical
research (see (Reel et al., 2021; Niranjan et al., 2023)), though this
field is rapidly evolving. An important advantage inherent in multi-
dimensional measurements is that the extent to which different
measurements agree with each other or not is potentially
informative. For instance, transcriptomic data may or may not be
reflected in the relative abundance of protein products, or
quantitative differences in non-coding RNA expression may or
may not translate into relative abundance of potential target
mRNAs, the proteins they encode or the metabolites that these
proteins may process. System biology approaches based on multi-
omics have been used successfully in the study of cardiovascular
disease (Joshi et al., 2021).

With respect to PASC, strategies similar to what we propose
have been used on a smaller scale. ML has been used in the context of
a multi-step analytical strategy to combine proteomic and
metabolomic data to generate a multi-omics biomarker predictive
of the risk of PASC (Wang et al., 2023) and give insights on the
metabolic pathways altered during PASC. Dimensionality reduction
was achieved through unsupervised cluster analysis followed by
autoencoder (AE), using a three-layer neural network. Supervised
ML was then used to identify the minimal number of molecules
predictive of adverse clinical outcomes. This study, though very
promising, was limited by small sample size (117, of whom 105 were
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used as a training cohort for model development and 10% as a
validation cohort), the severity of acute COVIDs in the patients
enrolled and the absence of a vaccinated group. Despite these
limitations, these results indicate that similar analytical strategies
can be used successfully on a much larger sample with broader
phenotyping, to discover predictive biomarkers, therapeutic targets
and risk factors and to generate mechanistic hypotheses.

Within the RECOVER study, an unsupervised ML approach has
been used to identify clinical subtypes of PASC, after symptoms
differentiating infected from uninfected patients were identified
using LASSO (least absolute shrinkage and selection operator)
(Thaweethai et al., 2023).

Highly multiplexed “omics” approaches measure common
clinical analytes and many more parameters (Table 1) at a
fraction of the cost of traditional clinical tests, oftentimes using
similar quantities of specimens (Table 2). In a multi-omics
approach, analytes within each category (e.g., proteins, lipids,
nucleic acids, metabolites, and microbes) are all measured
simultaneously, generating high-content data that is more than
the sum of its parts. This approach allows the discovery of new
molecular signatures to enhance our understanding of complex
disease pathophysiology. These signatures may occur within a
single analyte category, but more likely cover more complex
patterns that span multiple molecular layers, e.g., genomics,

TABLE 1 Complementary data types captured by multi-omics assays.

Data type Assays

SNP
NGS

Epigenome Bulk
RNASeq

scRNASeq Proteome CyTOF Metabolome Microbiome

Genetic risk factors +

Epigenetic
modifications

+ +

mRNA/splice variants +

ncRNA +

Viral RNA +

Immune phenotyping + + + + +

Antibodies +

Cytokines, chemokines +

Peptide hormones +

Coagulation factors +

Viral proteins +

Post-translational
modifications

+ +

Human Metabolites +

Bacterial metabolites +

Toxins/drugs +

Vitamins/hormones +

Bacterial diversity +

TABLE 2 Approximate sample requirements for multi-omics assays.

Approximate
amount of
material

Assays

SNP
NGS,
GWAS

Methylome Bulk
RNASeq

scRNASeq Proteome CyTOF Metabolome Microbiome

300–400 ng
DNA (50 µL
blood)

50–100 ng DNA PBMC in
1 mL blood
(250 ng
RNA)

100,000 PBMC
(20–30 µL
blood)

400–500 µL
EDTA plasma

106 cells
(200–300 µL
blood)

50–100 µL plasma <500 mg stool
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epigenomics, transcriptomics, proteomics, lipidomics,
metabolomics, and microbiomics (Figure 1). Deep multi-omics
profiling will allow us to explore a broad spectrum of
pathophysiological mechanisms (Table 3), define gene-
environment interactions involved in the pathogenesis of PASC,
identify molecular subtypes and candidate biomarkers and propose
mechanism-based therapeutic strategies. The relative contributions
of each “omics” we evaluated and considerations on data generation
and analysis are described below.

3.1 Evidence supporting multi-omics
technologies used in COVID-19 and
PASC studies

3.1.1 Genomics
Genomics is an invaluable asset to understand disease risk,

mechanism and etiology, and to serve as a backbone to allow for
better modeling of multi-omics profiles in patient populations.
Several genome-wide association studies (GWAS) have identified
reproducible associations between specific loci and risk and
outcomes of acute COVID-19 (Ferreira et al., 2022) with the

most reproducible being with LZTFL1 and contiguous regions on
3q21.31 and ABO on 9q34.2. A recent GWAS study, currently in
pre-print, detected an association between a locus near the
FOXP4 gene and risk of developing PASC (Lammi et al., 2023).
That study analyzed data from 24 studies conducted in 16 countries,
totaling 6,450 PASC cases and 1,093,995 controls. However, most of
the patients were of European ancestry, and this study should be
replicated in a more diverse cohort. In GWAS studies, sample size
and composition of study population (e.g., case/control ratio,
ancestry, genetic admixture, etc.) are critical. FOXP4 is a broadly
expressed transcription factor. Lammi et al. (Lammi et al., 2023)
analyzed single-cell RNASeq data to confirm the expression of
FOXP4 in surfactant-producing Type II alveolar cells and
granulocytes. This correlation supports a possible mechanistic
link, and demonstrates the importance of integrative multi-omics
approaches. A recent computational study analyzed the evolution of
predicted CD8 T-cell epitopes in SARS-CoV-2 variants and its
correlation with clinical outcomes of acute COVID-19 in patients
with different HLA genotypes, illustrating the importance of
integrated analysis of viral and patient genomic data with clinical
data (Kim et al., 2024). A similar approach could be used with PASC,
and/or PASC clinical subtype, as an outcome. Beyond GWAS or

FIGURE 1
A comprehensive multi-omics approach to the mechanism(s) of PASC. From left to right: PASC is a consequence of infection with SARS-CoV-2.
Different viral variants or sub-variants (represented in different colors) may have different probability of causing PASC or be associated with different
presentations (e.g., due to different ability to cause persistent infection, to trigger pathogenic antibody responses, or to damage vascular endothelium).
Vaccines and anti-viral agents can decrease the risk of PASC by interfering with viral persistence and replication. Multiple exposures, including diet,
medications, tobacco, alcohol, environmental pollutants and co-morbidities, socioeconomic and psychosocial exposures, as well as sex hormones, can
potentially affect the risk and clinical presentations of PASC. The combined effect of these factors results into evolving clinical phenotypes ranging from
acute COVID-19 resolution to PASC through a number of mechanisms that can be best understood by simultaneously interrogating the multi-omics
landscape of patients, including individual genomics, epigenomics, bulk and single-cell transcriptomics, plasma and cellular proteomics, metabolomics,
and microbiome/virome. These different dimensions functionally interact with one another to determine pathogenetic mechanisms (e.g., persistent viral
infection, modulated by individual genetics, triggers immune, inflammatory and metabolic changes that are in turn modulated by the intestinal and
respiratory microbiomes and potentially by reactivation of other viruses). Insights generated by an integrated multi-omics investigation of patients with
well-characterized clinical phenotypes are likely to identify actionable biomarkers (whichmay discriminate between PASCmolecular subtypes), as well as
therapeutic targets and prevention strategies. Orthogonal multi-omics tests repeated over time are the most informative approach to capture the
pathogenesis of the different clinical presentations of PASC and their evolution over time.
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other genetic analyses, genotyping data can be used in conjunction
with other multi-omics profiles to increase the likelihood of
discovery. Identification of molecular quantitative trait loci (QTL)
can be used to identify possible pathogenetic pathways (Debnath
et al., 2020). Different technologies can be used to obtain genotyping
information in PASC cases: high-density SNP-chips or low-pass
sequencing are established platforms. Emerging technologies, such
as nanopore long-read sequencing (Cuppen et al., 2022; Pervez et al.,
2022), may also reduce the cost of whole-genome and whole-
transcriptome sequencing.

3.1.2 Epigenomics
Epigenomics measure molecular events that regulate chromatin

accessibility and expression, which can reflect long-term
physiological states. Using methods such as chromatin
immunoprecipitation sequencing (ChIP-seq), CUT&RUN, or
assay for transposase-accessible chromatin using sequencing
(ATAC-seq) (Yan et al., 2020; Sun et al., 2019), which can also
be used in single-cell applications (Kashima et al., 2020), many
epigenetic processes have been identified and associated with
complex traits. One of the best characterized is DNA methylation
(5 methyl-cytosine), which is altered in numerous human diseases.
There is compelling evidence that changes in DNA methylation
profiles are detectable in viral infections such as HIV (Bednarik et al.,
1990; Zhang et al., 2016) and MERS (Menachery et al., 2018). In an
epigenome-wide association study (EWAS) (Bhat and Jones, 2022),
DNA methylation differences associated with a phenotype can be
assessed at hundreds of thousands of cytosine-phosphate-guanine
(CpG) sites across the epigenome. Several EWAS of COVID-19 in
the literature found distinct patterns of DNAmethylation associated
with disease severity early in the disease course (Castro de Moura
et al., 2021; Corley et al., 2021; Balnis et al., 2021; Zhou et al., 2021).

EWAS in the ongoing Norwegian Corona Cohort Study also
assessed whether there were differentially methylated CpGs
between those with PASC (N = 41) compared to a remission
group (N = 63), but did not find significant differences.
However, the study was not longitudinal, and the authors point
out that their sample size for PASC was small (Lee et al., 2022). The
same study identified 3 differentially methylated sites associated
with acute COVID-19 severity, including hypomethylation of
IFI44L, an interferon response gene also associated with COVID-
19 severity (Castro de Moura et al., 2021).

3.1.3 Transcriptomics
a) Bulk Transcriptomics: RNA transcripts act as intermediary

components between genetic information and protein
synthesis, and carry specific functions themselves.
Transcripts are a regulation hub that responds to both
environmental and genetic control, thus playing a major
role in the molecular characterization of diseases. Non-
coding RNAs fine-tune the expression levels of coding
RNAs and their protein products, providing an additional
level of regulation. Given its role as an ‘integration hub’
between genetic variation and environmental exposures, the
transcriptome dataset is a key layer in multi-omics approaches.
Bulk RNA sequencing (RNASeq) can measure the relative
abundance of individual transcripts, and determine differences
in mRNA splicing isoforms and RNA editing. Whole blood
transcriptome analysis can accurately measure the expression
levels of >16,000-20,000 RNA species, both protein-coding
and non-coding, thus providing one of the most high-quality
and high-content multi-omics datasets. Bulk transcriptomics
integrates the effects of multiple key variables that can
dynamically affect gene expression in blood cells (e.g.,

TABLE 3 Multi-omics assays generate information relevant to testing multiple mechanistic hypotheses for PASC.

Pathogenetic
hypothesis

Assays

SNP lp-
NGS,
GWAS

Epigenome Bulk
RNASeq

scRNASeq Proteome CyTOF Metabolome Microbiome

Genetic predisposition +

Viral persistence + +

Intra-patient viral
evolution

+

Non-SARS-CoV2 viral
reactivation (EBV, others)

+ +

Autoimmunity + + + + + +

Chronic inflammation + + + + + + +

Endothelial damage + +

Coagulation abnormalities +

Dysbiosis + +

Chronic stress + + + + +

Endocrine dysfunction + +

Toxic exposures + + +
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metabolic state, epigenetic variation, exposure to medications,
stress etc.). Transcriptional signatures in the blood or cells of
COVID-19 patients can help identify causal factors for acute
or chronic complications as well as potential therapeutic
targets (Jha et al., 2020; Asano et al., 2022). Recently, a long
non-coding RNA-based ML model has been used to identify
an RNA (LEF1-AS1) predictive of acute COVID-19 mortality
in a ML-driven study of 1,286 patients in 15 institutions
(Devaux et al., 2024). Additionally, a candidate signature of
acute COVID-19 including 3 long non-coding RNA,
2 cytokines and 2 proteins in peripheral blood mononuclear
cells (PMBCs) has been identified using a ML approach
(Heydari et al., 2024). This study had a fairly small sample
size (28 COVID-19 patients and 17 controls), but it illustrates
the promise of multi-analyte biomarkers including RNAs in
COVID-19. Current bioinformatics deconvolution
approaches enable effective estimation of cell-type fraction
and cell type specific gene expression in the peripheral
immune system from bulk transcriptome data, offering a
powerful tool for immune-phenotyping (Chen et al., 2018)
that is complementary to plasma and cellular proteomics. Bulk
samples employed for RNAseq can also be used for in-depth
immune repertoire analyses (Galson et al., 2020). These data
also allow prediction of physiological states, such as
PANoptosis (Yang et al., 2024; Dai et al., 2023) or innate
immunity activation (Karki and Kanneganti, 2022), and
upstream regulators of these states (e.g., transcription
factors, protein kinases, hormones), thus enabling the
identification of potential therapeutic targets. Critically,
transcriptomic data can also allow for the identification of
circulating SARS-CoV-2 viral load from whole blood
(including viral variant calling and, given sufficient
sequence coverage, detection of intra-patient viral
evolution), thus constituting an important tool to assess
persistent viremia from sources such as vascular beds.
Further virome/microbiome analyses of these data can
capture other viruses/bacteria that may contribute to PASC
pathophysiology (e.g., EBV). Several such transcriptome
analyses have been completed for acute COVID-19 and
PASC (Thompson et al., 2023; Hadjadj et al., 2020; Lucas
et al., 2020; Sposito et al., 2021; Sullivan et al., 2021; Ziegler
et al., 2021; Galbraith et al., 2022), but without integration with
other omics. This supports the need for further transcriptome
analyses in the RECOVER cohort in the context of a multi-
omics approach.

b) Single-cell transcriptomics: Bulk transcriptomics measures
RNA expression as an average of all cell types present in a
sample. This can potentially mask the contribution of rare cell
types or cellular states to the transcriptome. Single cell RNA
sequencing (scRNAseq) can add further detail to immune
phenotyping by measuring the transcriptomes of up to
20,000 individual cells simultaneously. This can provide
highly detailed information, albeit at higher cost than bulk
transcriptomics. scRNAseq protocols relevant to PASC can
include Cellular Indexing of Transcriptomes and Epitopes by
Sequencing (CITE-seq) and single cell VDJ sequencing
(scVDJ) analyses, which can provide advanced immune
phenotyping and T cell receptor/B cell receptor (TCR/BCR)

repertoire data, respectively, on the same cell (Cadot et al.,
2020; Kim et al., 2020; Lian et al., 2020; Saigusa and Ley, 2020;
Frangieh et al., 2021; Mercatelli et al., 2021; Rodahl et al., 2021;
Shi et al., 2021; Fan et al., 2022; Xu et al., 2022; He et al., 2022).

3.1.4 Proteomics
a) Soluble proteins: Protein-based biomarkers are commonly

used for the diagnosis and management of myriad medical
conditions and are likely to be useful for the prediction,
diagnosis, prognosis and clinical management of PASC.
Cytokines, chemokines, antibodies, coagulation factors,
growth factors, complement cascade components, peptide
hormones, and viral proteins can all be measured by high-
content proteomic methods in plasma. Multiple technologies
are now available to identify hundreds to thousands of
individual proteins from very small volumes of serum,
plasma, tissues, or cells, including peripheral blood
mononuclear cells (PBMCs). These include mass
spectrometry, SOMAscan® assays, Olink® proteomics, and
PhIP-seq (phage immunoprecipitation sequencing), to name
a few. Furthermore, some of these technologies (e.g., mass
spectrometry conjugated with the newest search algorithms
such as MSFragger (Kong et al., 2017)) enable the
identification of protein isoforms and post-translational
modifications, including novel ones. For example, while still
under development, the latest SOMAscan® platform
measures >7,000 proteins from a mere 125 μL of plasma or
serum (Gold et al., 2012). Of critical importance for the study
of autoimmunity in PASC, the PhIP-seq technology enables
the identification of virtually all auto-antibodies produced by
an individual (Mohan et al., 2018). A recent PhIP-seq study in
a relatively small cohort identified a common autoreactive
pattern in PASC patients and patients who had recovered from
acute COVID-19 (Bodansky et al., 2023), raising important
questions about the possible role of autoantibodies in PASC.
Plasma proteomic biosignatures can inform on multiple
pathophysiological processes at once, including but not
restricted to various forms of inflammation (e.g., systemic,
organ-specific, vascular), organ injury, vascular disorders,
neurodegeneration, dysregulation of coagulation and
fibrinolysis, and remote organ crosstalk via the blood. A
wealth of proteomics data are already available for acute
COVID-19 (Sullivan et al., 2021; Galbraith et al., 2022;
Galbraith et al., 2021; D’Alessandro et al., 2020), as well as
myriad auto-inflammatory conditions. In the context of an
integrated multi-omics strategy, proteomics data could
maximize the opportunities to discover mechanisms
underlying PASC pathophysiology as well as molecular
subtypes, clinically actionable biomarkers and
treatment targets.

b) Cellular proteomics-based immunophenotyping:
Immunophenotyping, which allows for the precise detection
of membrane and intracellular proteins using antibodies, has
identified signatures that are predictive of subsequent PASC
(Peluso et al., 2021). Cellular proteomics-based
immunophenotyping technologies can simultaneously
quantify, at the single-cell level, expression levels of
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40–50 surface and intracellular proteins of immune cells.
These include high-parameter flow cytometry (e.g., BD
X50), spectral flow cytometry (e.g., Cytek Aurora), and
CyTOF (cytometry by time-of-flight, a.k.a. mass cytometry).
CyTOF, the most common of these approaches, is a powerful
high-dimensional immunophenotyping method that can, in a
single specimen, quantify all major subsets of cells using its
~40 available channels. Alternatively, it can be used to deeply
characterize one immune subset of interest (e.g., to interrogate
phenotypes, homing properties, effector functions, and self-
renewal capacities of T cells) (Neidleman et al., 2021a; Ma
et al., 2021; Neidleman et al., 2021b; Neidleman et al., 2020).
Phospho-CyTOF also enable analyses of signaling states of
individual cells (Bendall et al., 2011). It can also be used to
characterize the glycan features of immune cells at the single-
cell level, informing on immune functions which are very
much modulated by cell-surface glycosylation (Ma et al.,
2022). As PASC is multifactorial and heterogeneous,
approaches such as CyTOF which allow for broad and
specific studies of immune subsets, will be key. Studies can,
for example, examine how the global immune landscape is
altered during PASC, as well as whether specific subsets
implicated in COVID-19 disease progression or PASC (e.g.,
T cells, myeloid cells, neutrophils) exhibit subset-specific
changes that can inform on mechanism of action. Studies
that have begun to use CyTOF to explore immunological
differences between fully recovered vs individuals with
PASC have revealed a dysregulated adaptive immune
response in the latter, e.g., global differences in T-cell
subsets, sex-specific differences in cytolytic T-cells,
increased frequency of T-cells migrating to inflamed tissues
but also exhausted T-cells, as well as increased frequency of
exhausted T-cells (Yin et al., 2023; Yin et al., 2024). Further
studies using larger cohorts are warranted. From a practical
standpoint, for the amount of data generated CyTOF is cost-
effective and requires relatively few cells relative to if samples
were to be analyzed using multiple low-parameter panels
implemented in conventional flow cytometry.

3.1.5 Metabolomics
Metabolites are the end products of multiple pathways and often

indicate the major phenotype(s) of metabolic and genetic disorders.
From diabetes to inborn errors of metabolism, metabolites can often
define the key pathways underlying complex diseases and serve as
potential biomarkers. Metabolites may also mediate the downstream
effects of genomic, epigenomic and transcriptomic processes, and in
turn influence these processes to modify PASC phenotypes. As a
measure of the status of hundreds of metabolic pathways, the overall
metabolome and the lipidome represent biologically and
mechanistically informative data streams. The endogenous
metabolome captures a broad range of inflammatory processes,
energy production, microbial metabolites, organ-specific
biomarkers, lipids, carbohydrates, steroids, and amino acids,
among other relevant information on physiologic processes.
Furthermore, exogenous metabolites capture environmental
exposures, including but not restricted to food and supplement
intake, toxins (e.g., per-and polyfluoroalkylic substances, also known
as PFAS, tobacco byproducts, illicit drugs), and medications (e.g.,

statins, ibuprofen, selective serotonin reuptake inhibitors), all of
which may be important in the development or modification of
PASC phenotypes, and cannot be easily predicted by other omics but
can potentially impact the results of other omics tests. Importantly,
these exogenous metabolites are not measurable by any other
mechanisms. Microbial metabolites, also measured by
metabolomics assays, may serve as important connectors to
microbiome data. The interconnections between the metabolome
and other multi-omics profiling illustrates an important aspect of
multi-omics strategies: while metabolomics can provide crucial
information as a single platform, it acts synergistically with other
omics data in elucidating important functional relationships to
PASC. Several small studies have demonstrated strong
dysregulation of endogenous metabolites associated with
particular PASC phenotypes (Valdés et al., 2022). For example,
tryptophan metabolism was found to be dysregulated by several
groups using metabolomic analyses in blood and urine studies
(Bustamante et al., 2022; Dewulf et al., 2022), but the
pathogenesis of this phenomenon is unclear. We believe that a
comprehensive, longitudinal metabolomics investigation of PASC in
the context of a multi-omics strategy in a sufficiently large cohort of
patients with deep clinical phenotypes will help define and prioritize
functional pathways.

3.1.6 Microbiome
The microbiome has multiple physiological roles in human

health, including: i) extracting indigestible ingredients from food
and synthesizing nutritional factors; ii) affecting host metabolism;
iii) developing systemic and intestinal immunity; vi) providing
signals for epithelial renewal and maintaining gut integrity; and
iv) secreting anti-microbial products. Alterations of the microbiome
may often be an initial disturbance with far-reaching ramifications
on disease progression. The gut microbiomes of hospitalized
COVID-19 patients were enriched with opportunistic pathogens
such as Clostridium hathewayi, Bacteroides nordii, and Actinomyces
viscosus (Zuo et al., 2020). In acute COVID-19, the gut microbiome
is associated with immune responses and disease severity (Zhang
et al., 2021; Maeda et al., 2022; Zuo et al., 2021) and also interacts
with the lung microbiome (Zhu et al., 2022). Changes in the gut
microbiome could influence respiratory tract infections through the
common mucosal immune system. Conversely, respiratory tract
dysbiosis and functional disorders due to COVID-19 also affect the
digestive tract (Zhu et al., 2022). Studies have demonstrated SARS-
CoV-2 interactions with host microbiome/virome communities,
clotting/coagulation issues, dysfunctional brainstem/vagus nerve
signaling, and immune cells (reviewed in (Proal and
VanElzakker, 2021)). There is observational evidence of gut
microbiome compositional alterations in patients with long-term
complications of COVID-19 (Liu et al., 2022). However, the current
studies have sample sizes varying from 8 to 130 patients and few
studies followed patients beyond 6 months post-infection (reviewed
in (Zhang et al., 2023)). A recent study (Xiong et al., 2023) using
multi-omics of microbiome-host interactions identified phenotypic,
intestinal microbial, and metabolic biomarkers for short-and long-
term myalgic encephalomyelitis/chronic fatigue syndrome. Large
amounts of microbiome data can be easily generated at low-cost in
the RECOVER adult and pediatric cohorts. These data, when
integrated with other multi-omics data, will allow for a better
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understanding of the virus-microbiome-host interactions and
identifying microbial and metabolic biomarkers for PASC.
Further studies are also needed to investigate whether microbiota
modulation can prevent or facilitate the recovery from PASC.

3.2 Considerations on data generation
and analysis

3.2.1 Data generation and randomization
Multi-omics data integration can generate valuable knowledge

to understand disease pathogenesis. However, multi-omics data can
often be burdened by large confounding signals that can prevent
accurate modeling and successful discovery. It is therefore essential
to appropriately design data collection and generation processes to
ensure that such confounders are minimized, and that multi-omics
data are amenable to address a large array of important biological
questions aiming to characterize, understand and treat PASC. For
example, it is usually better to reduce batch effects with a good study
design that accurately accounts for them rather than attempting to
correct for batch effects after the fact. One successful approach to
minimize batch effects involves adequate randomization schemes
that minimize risk of contamination of true signals by unwanted
variation. Such an approach is powerful when biological questions
are defined before data are collected, but often maximizes a distance
metric between a measure of interest and the drivers of this
unwanted variation at the cost of other potentially meaningful
traits. In hypothesis-generating situations, other approaches, such
as the inclusion of data generation controls (e.g., reference samples),
profiled repeatedly within and across different multi-omics assays,
have proven to be an important tool to control for unwanted
variation, including confounding from technical variation.
However, data generation controls can be complex to define,
must contain enough material to be assayed repeatedly, need to
capture the full range of biological variation in the multi-omics
assessed, and depending on the number needed, can substantially
increase data generation cost. These considerations are essential to
design a successful multi-omics discovery effort, and it is therefore
essential to include data generation experts as well as data scientists
who know the biases of each multi-omics profiling technology in
teams tasked with designing data generation strategies.

3.2.2 A multi-omics systems-biology approach to
data analysis

Each of the omics assays generates vast datasets that require
powerful analytical strategies (Gui et al., 2023; Martinez-Bartolome
et al., 2018; Lee et al., 2019; Michelhaugh and Januzzi, 2023).
Integrating data from multiple omics over time and with clinical,
demographic and exposome data is the next level of analytical
complexity. A multi-omics approach allows for the integration of
multiple layers of information into systems biology models that
capture the dynamic interplay between biological processes,
allowing not only the study of the functional relationships
between the molecular components of PASC, but the elucidation
of their causal relationships (Beckmann et al., 2020; Kuijjer et al.,
2019; Wang M. et al., 2021; Sonawane et al., 2022; Sonawane et al.,
2019; Argelaguet et al., 2020). This approach is critical to
understanding the pathogenesis of the clinical manifestations of

PASC (Table 3). Integrating multi-omics data with the deep clinical
and demographic phenotyping available via RECOVER will capture
the most complete picture of disease pathophysiology, leading to
more accurate identification and characterization of PASC subtypes
as compared to individual omics studies of individual patient
cohorts (Figure 1).

Multi-omics data are also important in substantiating and
validating findings across individual omics platforms (e.g., a
genetic polymorphism leading to transcriptomic, proteomic and
metabolomics effects). Critical to this is the longitudinal capture of
multi-omics data as the clinical presentations of PASC emerge and
progress. Given the high-content nature of omics datasets, they
support the development of machine learning (ML) class discovery
approaches for identification of clinically relevant biosignatures. The
rich datasets that will be produced as part of this effort will enable
predictive and diagnostic algorithms to identify candidate
biomarkers linked to disease outcomes. The thorough integration
of these data into meaningful, queryable, and informative models is
critical to understand the biological mechanisms, disease subtypes,
progression and prognosis of PASC, to investigate the impact of
modifiable risk factors and identify potential precision therapeutic
approaches to PASC. Inherent in this, is the measure of these data at
multiple time points throughout the disease process.

An example of the power of multi-omics approaches is the study
of multisystem inflammatory syndrome in children (MIS-C), a
serious complication of pediatric COVID-19. Longitudinal
plasma bulk transcriptomics, combined with whole blood
transcriptomics and plasma DNA epigenomics was recently used
to develop multi-organ damage signatures indicative of MIS-C (Loy
et al., 2022). This study complements previous genomic, proteomic
and immunophenotyping investigations of MIS-C (Sacco et al.,
2022; Gruber et al., 2020; Porritt et al., 2021; Carter et al., 2020)
to delineate a clearer picture of its pathogenesis. We posit that a
single comprehensive, integrated, longitudinal multi-omics
approach would have reached similar conclusions as multiple
consecutive studies focusing on 1-2 omics each. Such a
comprehensive study, performed through centralized labs, would
reduce lab-to-lab variability and pre-analytical variability, leveraging
a large sample size with rich, highly standardized clinical
phenotypes. Furthermore, it is difficult to predict ahead of time
which omics would be the most consistent and/or most clinically
informative, and which omics data are consistent with each other
(e.g., a clinically informative RNA may predict the abundance of an
enzyme that produces a metabolite, but if the protein abundance or
the metabolite levels are not consistent with RNA abundance,
perhaps because of short half-life of the protein or instability of
the metabolite, that protein or its metabolite product would not be
potential biomarkers or therapeutic targets).Another example of the
importance of capturing multi-omics data across demographics and
time points is the importance of sex and steroid hormones in the
PASC population. Innate and adaptive, humoral and cell-mediated
immune responses are impacted by hormones, and their
dysregulation contributes to immune-mediated diseases including
autoimmunity, a hallmark of PASC (Rojas et al., 2022; Moulton,
2018; Bereshchenko et al., 2018). Ovarian steroids recruit mast cells
and T-regs to the uterus during pregnancy (Schumacher et al., 2014).
Estradiol causes inflammasome activation in mast cells (Guo et al.,
2021). Estradiol deficiency due to menopause and/or hypogonadism

Frontiers in Systems Biology frontiersin.org09

Sun et al. 10.3389/fsysb.2024.1422384

https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2024.1422384


contributes to overactivity of the renin-angiotensin-aldosterone
system (RAAS), while estrogen can contribute to mast cell
activation syndrome (MCAS), which may contribute to the
pathogenesis of PASC (O’Donnell et al., 2014; Szukiewicz et al.,
2022; Arun et al., 2022). The SARS-CoV2 spike protein binds to and
modulates both ACE2 and ERα receptors, and as sex hormones
regulate the expression of ACE2 (Solis et al., 2022; Wang H. et al.,
2021), the asymmetry in PASC development and clinical
presentations between sexes - as well as across menstruation
status and menstrual cycle time points - indicates that hormone
measurements, which can be performed by metabolomics for non-
peptide hormones and by proteomics for peptide hormones, are
critical components of a multi-omics strategy.

3.2.3 Task force recommendations
We recommended the following strategy: germline whole

genome sequencing (WGS) be performed on every RECOVER
participant consented for genetic analysis to be used for GWAS
studies. Epigenomics, bulk PBMC transcriptomics, plasma
proteomics, plasma targeted metabolomics and stool proteomics
should be performed on biospecimens from at least 2 time points per
participant (baseline, 90 days and 180 days, or at a minimum
baseline and 180 days) on biospecimens from as many
participants as possible. Samples taken at later time points during
the planned 4-year follow-up period may be analyzed as well in the
future, particularly to investigate cases that persist long-term.
However, the initial focus should be on the first 180 days post-
enrollment, as the number of participants dropping out of the study
or being lost to follow-up is likely to increase at later time points.
This time window is likely to be long enough to compare COVID-19
cases that do result in PASC to cases that do not, which is one of the
primary endpoints of the RECOVER studies, as well as PASC cases
that resolve clinically within 180 days from cases that persist beyond
that time, while maximizing sample size. Single-cell transcriptomics
and/or single-cell immunophenotyping may be performed on
subsets of participants from each arm of each cohort, to limit
costs. Bioinformatics deconvolution of cellular populations based
on bulk transcriptomics should be performed on all available PBMC
biospecimens.

It must be pointed out that the adult and pregnant adult
RECOVER cohorts include different arms: “acute infected”
participants, who enroll within 30 days of a SARS-CoV-
2 infection, “post-acute infected”, who enroll after 30 days post-
infection, “acute uninfected” enrolled within 30 days of a negative
COVID-19 test and “post-acute uninfected”, enrolled after 30 days
post-negative test (Horwitz et al., 2023; Reel et al., 2021). This
implies that baseline samples taken at enrollment are likely to reflect
different pathobiological stages of disease in acute infected versus
post-acute infected participants. It is also possible that a fraction of
the “uninfected” participants will have experienced subclinical
infections with SARS-CoV-2. Multi-omics analyses have the
potential to identify these cases, particularly through proteomics-
based identification of SARS-CoV-2 antibodies not detected by
conventional tests. As there are significant differences in study
design for the adult and pediatric cohorts (Horwitz et al., 2023;
Reel et al., 2021), longitudinal biospecimens will only be available for
Tier 2 pediatric participants, while baseline biospecimens will be
available for all participants. Also, the amounts of blood/plasma

available for the pediatric cohort will depend on the age of
participants. With these considerations in mind, maximizing
sample size should be the underlying principle. The main
objective of this proposed multi-omics analysis is to generate a
rich, multidimensional molecular profiling database to match the
clinical, pathophysiological and socioeconomics data elements
generated by the RECOVER studies. This data should be made
available to the scientific community for secondary analyses.

4 Conclusion

Based on its analysis of the available evidence, the OMICS Task
Force advocated an integrated “big data and systems biology”
approach, using multi-omics to analyze biospecimens from the
largest possible sample sizes in the RECOVER adult and
pediatric cohorts, as opposed to single analyte assays or
individual omics in multiple separate studies. This approach will
maximize our ability to understand pathogenetic mechanisms in
clinically defined patient subgroups, discover PASC molecular
subtypes and guide precision therapeutic strategies. Centralized,
streamlined omics analyses will limit potential inconsistencies
associated with laboratory-to-laboratory and batch variations. In
addition, multi-omics assays can capture most clinically assayed
biomarkers at cheaper costs. Data generation on this scale can only
be accomplished through highly multiplexed approaches, which will
maximize opportunities to discover mechanisms underlying PASC
pathophysiology.

PASC joins the number of poorly understood, chronic diseases
that have been the bane of patients, healthcare providers and clinical
researchers. While different clinical presentations of PASC have
been described, traditional molecular approaches have thus far failed
to produce a deep mechanistic understanding of the etiology,
pathogenesis and molecular subtypes of PASC. Many of our
recommendations have already been considered by the NIH
through the peer-review process, resulting in the creation of a
systems biology panel that is currently designing the studies we
proposed. Currently, this panel is hammering down the details of the
analytical strategies. The NIH RECOVER initiative offers an ideal
opportunity to understand PASC in diverse populations, and can
serve as a paradigm for the study of other complex, poorly-
understood chronic diseases.
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