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Background: The regulatory mechanisms guiding CD4 T cell differentiation are
complex and are further influenced by intrinsic cell variability along with that of
microenvironmental cues, such as cytokine and nutrient availability.

Objective: This study aims to expand our understanding of CD4 T cell differentiation
by examining the influence of intrinsic noise on cell fate.

Methodology: Amodel based on a complex regulatory network of early signaling
events involved in CD4 T cell activation and differentiation was described in terms
of a set of stochastic differential equation to assess the effect of noise intensity on
differentiation efficiency to the Th1, Th2, Th17, Treg, and TFH effector phenotypes
under defined cytokine and nutrient conditions.

Results: The increase of noise intensity decreases differentiation efficiencies. In a
microenvironment of Th1-inducing cytokines and optimal nutrient conditions,
noise levels of 3%, 5% and 10% render Th1 differentiation efficiencies of 0.87,
0.76 and 0.62, respectively, underscoring the sensitivity of the network to random
variations. Further increments of noise reveal that the network is relatively stable
until noise levels of 20%, where the resulting cell phenotypes becomes
heterogeneous. Notably, Treg differentiation showed the highest robustness
to noise perturbations. A combined Th1-Th2 cytokine environment with
optimal nutrient levels induces a dominant Th1 phenotype; however, removal
of glutamine shifts the balance towards the Th2 phenotype at all noise levels, with
an efficiency similar to that obtained under Th2-only cytokine conditions.
Similarly, combinations of Th1/Treg and Treg/Th17-inducing cytokines along
with the removal of either tryptophan or oxygen shift the dominant Th1 and
Treg phenotypes towards Treg and Th17 respectively. Model results are
consistent with differentiation efficiency patterns obtained under well-
controlled experimental settings reported in the literature.

Conclusion: The stochastic CD4 T cell mathematical model presented here
demonstrates a noise-dependent modulation of T cell differentiation induced by
cytokines and nutrient availability. Modeling results can be explained by the
network topology, which assures that the system will arrive at stable states of
cell functionality despite variable levels of biological intrinsic noise. Moreover, the
model provides insights into the robustness of the T cell differentiation process.
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1 Introduction

1.1 Stochastic mathematical models
in biology

Biological systems are epitomes of complexity and dynamism,
often exhibiting behaviours that are both unpredictable and highly
regulated. Emergent biological properties arise from individual
interactions among the system components (nodes) leading to
system self-organization and function (Anderson, 1972; Glass
and Kauffman, 1973; Haken, 1978; Kauffman, 1992). Modeling
the intricate interplay of genetic, environmental, and internal
fluctuating elements within these systems can be achieved
through stochastic mathematical models capturing the inherent
randomness and nuances of biological processes. Unlike
deterministic models, stochastic models incorporate randomness
directly into equations, and iterative analysis produces a range of
possible outcomes and their associated probabilities (Elowitz et al.,
2002; Swain et al., 2002). The use of stochastic models in biology
allows the analysis of the consequences of intrinsic noise on
robustness of emergent properties, and thus, system stability
despite internal and external fluctuations (Haken, 1978). This
property has been extensively explored in the context of
biological systems, revealing how they might achieve resilience
(Barkai and Leibler, 1997; Kitano, 2007). Moreover, stochastic
models have been instrumental in exploring system stability and
bifurcation points, where small changes in parameters can lead to
drastic shifts in system behavior. This concept is especially relevant
in immunology, since the immune system must adapt to a vast array
of pathogens and microenvironmental conditions while preventing
excessive or insufficient responses. These considerations underscore
the importance of mathematical modeling in predicting disease
progression by understanding immune system dynamics, and
identifying potential therapeutic interventions (Tyson and
Novák, 2013).

The adaptive immune system’s response to pathogens relies on
the differentiation of CD4 T cells into various effector phenotypes,
such as Th1, Th2, Th17, Treg, and TFH, which are crucial for
mounting effective immune responses and maintaining
immunological balance. A model of the early intracellular events
arising upon T-cell receptor (TCR) and CD28 signaling leading to
function has been previously built by incorporating overarching
principles generated by experimental research into a network of
interactions between nodes. The network architecture was originally
described bymeans of dichotomous Boolean logical rules (Martínez-
Méndez et al., 2020) and then it was straightforwardly translated
into continuous fuzzy-logic rules, allowing the description of the
temporal evolution of the network (Martínez-Méndez et al., 2021).
The model yielded outcomes of activation, differentiation,
regulation and metabolic changes which qualitatively reproduce
general patterns revealed by a number of experimental
investigations. Of particular interest is the observation that a cell
microenvironment constituted by an all-type mixture of exogenous
cytokines (IFN-g, IL-12, IL-4, IL-18, IL-33, TGF-β, IL-10, IL-21 and
IL-6) along with particular levels of nutrients (glutamine and
tryptophan) and oxygen, may induce a hierarchy of phenotype’s
expression. When an all-type cytokine mixture, nutrients, and
oxygen are present at optimal concentration, the network

dynamics leads the system to a predominant Th1 polarization.
By systematically decreasing the level of the corresponding
lineage-defining cytokines or nutrients, a hierarchical pattern of
phenotype expressions was revealed that may be represented as a
transition sequence: Th1→Th2→Th17→Treg (Martínez-Méndez
et al., 2022). In this work, we study the effects of fluctuations
(noise) of endogenous and exogenous interactions on T CD4 cell
differentiation in the same set of microenviromental conditions
mentioned before. Fluctuations may arise from random variations of
the exogenous cell microenvironment or inner signalling pathways.
For example, T cell function can be controlled by the metabolic
programmes of the cell that respond dynamically to fluctuations in
the nutrients, oxygen levels and energy sources during migration
between distinct microenvironments, such as between lymphoid
organs and tissues or tumour sites (Pearce et al., 2013).

We generalized the previously employed methodology by
introducing a set of stochastic differential equations (Langevin
equations), allowing the analysis of different levels of noise on
cell fate (Villarreal et al., 2012), so that we explore how intrinsic
noise influences the robustness and adaptability of the immune
response. The regulatory network considered before (Martínez-
Méndez et al., 2022) has been expanded here by incorporating
the dendritic cell phase of TFH differentiation, as shown in
Figure 2. As a whole, the network embraces the signaling
from the TCR and co-stimulatory molecules, cell metabolism
regulators and the tightly regulated interactions among lineage-
defining transcription factors (LTF’s), as displayed in
Figures 1, 2.

2 Material and methods

2.1 CD4 T cell signaling network inference
and modular organization

Figure 1 shows the signalling network of interactions involved in
the activation of CD4 lymphocytes upon binding of TCR-specific
antigen and co-stimulatory molecules. It incorporates interactions
associated to microenvironmental nutrients (glutamine and
tryptophan), hypoxia and anti-inflammatory drugs. The network
includes the inducers of CD4 T cell activation leading to
differentiation of naïve CD4 T cells into several types of effector
cells (inputs): antigenic stimulation, co-stimulation and the activity
of cytokines in the microenvironment. Specific exogenous cytokines
promote the activity of intracellular lineage-defining transcription
factors (LTF’s) directing cell differentiation by, in turn, inducing the
production of lymphocyte-derived cytokines. Thus, Th1 effector
cells are induced by IL-12 and IFN-γ, express the T-bet transcription
factor, and produce IFN-γ. Th2 cells require IL-4 and are stabilized
by IL-2, express GATA3, and produce IL-4, IL-5, and IL-13.
Th17 cells require TGF-β and IL-6, IL-21, or IL-23, express
RORγt, and produce IL-21, IL-17A, and IL-17F. Treg cells
require TGF-β and IL-2, express Foxp3, and produce TGF-β and
IL-10 in some cases. Very often, however, immunological challenges
bring about a variety of cytokines that do not necessarily match
definite patterns inducing particular effector phenotypes. Rather, the
presence of infectious agents, particularly during their persistence in
the host, induces the production of mixtures of cytokines that, in
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principle, may act synergistically or antagonistically during
differentiation to effector phenotypes (reviewed in (Dupage and
Bluestone, 2016)). The network involves 68 nodes organized in eight
modules. Three modules correspond to inputs or entries of the
system: 1) antigen presentation and co-stimulation, 2) phenotype-
inducing microenvironmental cytokines, and 3) nutrient and
oxygen availability; four modules represent intracellular
interactions leading to activation and production of cytokines,
including 4) an activation core containing signals induced
downstream the TCR and CD28, as well as pathways leading to
the synthesis of IL-2 and the expression of CD25, the alpha chain
providing high affinity to the IL-2 receptor complex; 5) a metabolic
regulation module, with the nutrient sensor AMPK acting as the
central regulator of glycolysis and OXPHOS along with mTOR
elements, and 6) a regulatory module including the activity of
CTLA-4 and the anergy factor NDRG1; 7) a module
corresponding to the expression of the lineage-defining
transcription factors T-bet, GATA3, Foxp3, RORγt and Bcl-6
(Figure 2), and 8) a module including the output cytokines
produced by differentiated cells. The modular organization for
the graphical display of the network allows for the rapid
identification of the node’s main role. Detailed diagrams of sub-
networks and bibliography used for network construction can be
found in (Martínez-Méndez et al., 2020; Martínez-Méndez et al.,
2021; Martínez-Méndez et al., 2022).

2.2 Stochastic regulatory networks

The formal methodology discussed below has been summarized
in the flux diagram depicted in Figure 3. The use of complex networks
in Systems Biology allows the construction of a conceptual framework
of endogenous and exogenous interactions defining signalling
pathways involved in cell function (Albert and Thakar, 2014). A
regulatory network is constructed by connected nodes and their inner
relations where every node represents a gene, a transcription factor, a
cytokine, etc. In its most basic approximation, the expression value of
node i is characterized by a discrete variable, qi, which may acquire
either the value, 0 or 1, while the node interactions are described by
Boolean logical propositions. A more accurate investigation may be
performed by considering a continuous logical analysis where the
expression values of the network variables qi display a continuous
variation with truth values ranging within a continuous range
(between 0 and 1) limited only by functionality constraints. This
formalism, termed as fuzzy logic, incorporates multi-valued
propositions that allow to represent, manipulate, and interpret
imprecise or vague information, and has the capability of
implementing a well-defined inference scheme (Zadeh, 1965). In
previous works, we have employed this kind of scheme to analyze
the activation and differentiation processes of CD4+ T cells and their
modulation by micro-environmental conditions (Martínez-Méndez
et al., 2021; Martínez-Méndez et al., 2022). Similarly, it has been used

FIGURE 1
Modular 68-node network of early events in CD4+ T cell activation, differentiation, metabolic activity and response to nutrients. Modules are
described in the upper panel and their respective elements are indicated with the corresponding color in the network. Green lines represent activating
connections. Red lines represent inhibitory connections. Taken from Martínez-Méndez et al. (2022).
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to study signalling pathways of pancreatic beta cells and the
development of type-2 diabetes (Barrera et al., 2020).

In the fuzzy logic scheme, the network interactions are described
by continuous logical propositions wi(q1, q2, . . . , qn) in which
binary Boolean operators are replaced by algebraic relations
(Enciso et al., 2019):

qi and qj → qi · qj ; qi or qj → qi + qj − qi · qj ; not qi → 1 − qi.

(1)
For example, the Boolean relation,

qi or qj( ) and not qk( ) → qi + qj − qi · qj( ) · 1 − qk( ).

The truth value of a fuzzy propositionwi is expressed as a categorical
function, μ[wi], with a sigmoid structure. A possible choice is:

μ wi[ ] � 1
1 + exp −β wi q1, q2, . . . , qn( ) − θi( )[ ]

, (2)

where μ[wi] may variate within the range 0≤ μ[wi]≤ 1. Its explicit
value is determined by the difference wi − θi where θi is an
expression threshold, usually considered as θi � 1/2, and the
parameter β represents a saturation rate which is assumed as β �
10 in this study. The dynamic evolution of the network expression
values, qi, is now determined by a system of ordinary differential
equations (ODEs) (Mendoza and Xenarios, 2006; Villarreal et al.,
2012; Enciso et al., 2019):

dqi
dt

� μ wi q1, . . . , qn( )[ ] − αiqi, (3)

FIGURE 2
Sub-networks representing the effect of exogenous cytokines (orange) and signaling from transcription factors and metabolism elements (green
and grey) on the activity of the lineage-defining transcription factors (LTF’s) (pink) leading to differentiaton of CD4 T cells towards effector phenotypes. (A)
T-bet, (B) GATA3, (C) RORγt, (D) Foxp3, (E) Bcl-6. Exogenous cytokines induce the activity of LTF’s, which tightly regulate each other (T-bet, GATA3,
RORγt, Foxp3 and BCL-6) (pink), and guide cell differentiation towards effector cell subtypes (Th1, Th2, TH17, Treg and TFH, respectively). Cytokines
produced by differentiated cells are indicated (yellow). Nutrients and oxygen levels (violet) can directly modulate the activity of LTF’s or alter themetabolic
equilibrium of lymphocytes, strongly influencing cell differentiation.
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where αi is the decay rate of node i, assumed in this study as a default
value αi � 1. As is well-known, for any set of initial conditions,
{q1(0), . . . , qn(0)}, the ODE system (3) gives rise to dynamical
trajectories {q1(t), . . . , qn(t)} which are uniquely determined by
this set. In the long-time limit the trajectories converge into a
collection of r stable states, or attractors, {qst1 , . . . , qstn }k, with
k � 1, . . . , r. In the present study, the different attractor sets
represent r alternative cell fates.

The fuzzy logic methodology allows to construct a conceptual
framework concerning the mechanistic underlying the activation
and differentiation of T cells. However, this approach considers that
the intensity of the network interactions remain invariable under the
time evolution of the system, thus representing a deterministic
description. However, no biological process works with total
certainty since it is always subject to the action of a number of
unknown events. Thus, here we investigate the influence of
fluctuations in the T cell differentiation process.

The effect of random perturbations on the cell functionality
can be visualized by recurring to the metaphor of the epigenetic

landscape (EL) proposed by C. Waddington to describe the way in
which gene regulation modulates cell development (Waddington,
1957). In this view, cell fate is determined by the successive transit
of states defined by EL basins until it reaches a steady state called
attractor. This phenomenon can be compared with the pathway of
a ball on a landscape where its initial position represents an initial
stem cell state, and it moves through transient intermediate
basins, until it reaches an equilibrium basin determining the
final cell fate. Now, a stochastic EL can be introduced by
considering that under the action of noise, the ball suffers
random collisions along its epigenetic trajectory; depending on
the noise intensity, this process could modify the final cell fate. A
formal realization of the stochastic EL can be constructed by
introducing a ‘white noise’ characterized by time-dependent
random variables, ξi(t), with a Gaussian probability
distribution, with a null average 〈ξi(t)〉 � 0, and a very short
time-correlation 〈ξi(t) ξi(t′)〉 � 2DΦ(t − t′). Here, D is a
diffusion coefficient representing a measure of the noise
intensity, while Φ is a highly-peaked distribution at time t � t′,

FIGURE 3
Flux diagram summarizing themathematical methodology used in this work. An overall assumption is that i) cell processes in developmental biology
comply with logical rules that can be described by a network of node interactions, underlying the epigenetic landscape. ii) These rules are expressed in
terms of Boolean propositions representing nodes interactions, giving rise to iii) discrete-time dynamics whose steady states define cell phenotypes. The
variables, logic rules and dynamic description are then translated into a continuous scheme by iv) introducing fuzzy-logic rules, wi. v) Truth
functions, μ[wi], are defined by means of sigmoid expressions incorporating the fuzzy rules. μ[wi] shows a continuous variation with values ranging
between 0 (unexpressed) and 1 (fully expressed). vi) The system dynamics is described through a set of ordinary differential equations (ODE), with inputs
defined by the fuzzy rules. vii) The influence of noise on the network dynamics is studied by introducing stochastic perturbations into the set of ODE.
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so that the white noise at a time t does not keep memory of its
value at previous times t′ (McQuarrie, 1976). In this
characterization, the average of any random variable is
evaluated by introducing the notion of a statistical ensemble.
This concept contemplates a large set of identically prepared

systems which however display an uncontrollable dispersion of
their possible initial conditions. This construction may be either
of theoretical or experimental character, this latter reflecting the
fact that repetitions of carefully prepared experiments yield
slightly different results in every measurement (Brody, 1992).

FIGURE 4
Intrinsic noise significantly affects the differentiation efficiency of CD4 T cells under optimal levels of Th1-inducing cytokines (IFN-γ, IL-12, IL-18, IL-
33), nutrients (glutamine, tryptophan), and oxygen availability. Upper panel: 3 % noise. Lower panel: 10 % noise. (A) Fraction of differentiated cells
expressed as the level of activity of lineage-defining transcription factors at 30 units of time after T cell activation (TCR stimulation and
CD28 costimulation). The dotted horizontal line represents a threshold of activation level where activation levels below the value 0.02 are
considered as not differentiated. (B–E) Activity levels of key molecules and pathways involved in CD4 T cell activation and differentiation: (B) antigen
presentation and regulatory elements, (C) metabolism, (D) transcription factors, (E) activation markers. (F–J) Activity of T cell lineage-defining
transcription factors and production of specific cytokines over time.
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The effect of noise on the system dynamics can be studied by
means of a set of Langevin stochastic differential equations
(Chandrasekhar, 1973):

dqi
dt

� μ wi q1, . . . , qn( )[ ] − αiqi + ξ i t( ). (4)

The equilibrium state my be derived by considering the steady-state
condition, 〈dqi/dt〉 � 0, leading to

〈qsti 〉 � 1
αi
〈μ wi qst1 , . . . , q

st
n( )[ ]〉. (5)

We observe that, since αi � 1/τi, where τi is the characteristic decay
time, this relation implies the existence of an expression hierarchy of
the steady state value of a given network node (Villarreal et al.,
2012). For example, the case αi ≫ 1 implies that 〈qsti 〉 → 0.

It is worth mentioning that the time evolution of an ensemble
may lead to a state of equilibrium, in which the ensemble average do
not longer change with time (though individual members of the
ensemble keep evolving); this occurs when the ensemble is ergodic,
which means that the ensemble average at a fixed time coincides
with the time average taken over the dynamical evolution of an

individual of it: 〈qi(t)〉 � qi(t)t, where 〈·〉 denotes the ensemble
average, and the overline the time average.

2.3 Numerical methods

A Python interactive program was coded to integrate the
stochastic differential equation system, also implementing an
interactive interface to directly modify the initial conditions using
the packages numpy, scipy, matplotlib and ipywidgets. For the
computation, the differential equations system were solved using
a collection of numerical algorithms for integrating Ito and
Stratonovich stochastic ordinary differential equations (SODEs).
In this study we used the Euler-Maruyama algorithm for Ito
equations. The list of functions, logic rules, stochastic differential
equations and diagram files used on this work can be consulted in
the GitHub repository https://github.com/DrDavidMM/Stochastic
with further instructions for use. For the results, all conditions were
iterated 10,000 times. However, for illustrative purposes most plots
in the figures were composed considering 10 iterations. The Python
source code for the mathematical model presented in this work is
available upon request.

3 Results

3.1 Effect of stochastic perturbations on the
CD4 T cell differentiation process

The effect of random perturbations of either the cell micro-
environment or the intracellular interactions themselves on the
network dynamics was analyzed through a set of coupled
stochastic differential equations describing the rate of change of
the expression level of the network constituents. Different levels of
noise were introduced into the equations and 10,000 iterations were
performed to obtain an average percentage of differentiated cells
under each assayed condition. Differentiation efficiency here refers
to the fraction of cells reaching optimal expression levels of
phenotype-specific transcription factors and their corresponding
cytokines. This parameter is denoted here by ε, and may vary in the
range 0≤ ε≤ 1. The case with ε � 1 corresponds an idealized
situation in absence of noise. Figure 4 shows the dynamics of
CD4 T cell activation and differentiation under Th1 cytokine
conditions and optimal nutrient levels considering 3% and 10%
noise. Results shows that differentiation efficiency is sensitive to
noise. At a baseline noise level of 3%, we observed that ε � 0.85 for
Th1 cell differentiation. Increasing noise levels to 10% reduced the
differentiation efficiency to approximately ε � 0.60 for Th1 cells.
The analysis was then applied to obtain differentiation efficiencies
under Th1, Th2, Th17, Treg and TFH cytokine conditions. Table 1
summarizes the average differentiation efficiencies under 3%, 5%
and 10% noise levels. The noise level reduced the differentiation
efficiency similarly for all phenotypes. Small fractions of phenotypes
different from Th1 were observed approximately at 15% noise.
Plotting the iterations allows to observe the fluctuations in the
activity of nodes such as antigen presentation, metabolism,
transcription factors, activation markers and cytokine production
(Figures 4B–J). It can be observed that the activity of Th1 defining

TABLE 1 Effect of three noise levels on CD4 T cell differentiation. Averages
obtained from 10,000 iterations for each case are shown.

Cytokine condition 3% Noise 5% Noise 10% Noise

Th1 0.87 0.76 0.62

Th2 0.85 0.74 0.60

Th17 0.85 0.76 0.61

Treg 0.86 0.78 0.60

TFH 0.85 0.76 0.62

FIGURE 5
Relationship between the noise level and CD4 T cell
differentiation efficiency, ε, under initial Th1, Th2, Th17, Treg and TFH

cytokine conditions. Each point represents the average of
10,000 iterations. From an initial value ε � 1.0 in absence of noise,
this parameter decreases linearly in the small noise interval, 0 − 10%,
developing a plateau around ε ~ 0.6, for noise levels in the range of
10–20%. For higher noise levels, we observe a subsequent decrement
of the average efficiency for all T-helper cell subtypes, except for Treg
which shows a more stable behaviour, keeping a value ε ~ 0.6.

Frontiers in Systems Biology frontiersin.org07

Martínez-Méndez et al. 10.3389/fsysb.2024.1412931

https://github.com/DrDavidMM/Stochastic
https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2024.1412931


elements such as T-bet and IFN-γ production reaches stable optimal
values for most iterations, whereas a relatively small fraction decays
after a transient expression. Accordingly, key factors such as
metabolism and transcription factors exhibit a corresponding
decay. Notably, the fraction of decaying factors increases with
higher noise intensities.

In Figure 5 we present the changes induced by different noise
levels on the T cell differentiation efficiency under a specific cytokine
microenvironment: Th1, Th2, Th17, Tref or TFH. For relatively
small noise levels, ≤ 10%, we observe that ε decreases linearly with
increasing noise, down to a value ε ~ 0.6. Notably, enhancing noise
levels between 10% and 20%, do not induce a further decrement of ε,
but this parameter shows a plateau at such value. Afterwards,
increasing noise levels with values > 20%, causes a drastic
reduction of the differentiation efficiency for all considered
phenotypes, except for Treg. Thus, a level of noise around 20%
can be interpreted as a threshold beyond which most of the specific
phenotype expression is significantly reduced.

Figure 6 shows the phenotypic profiles generated under
phenotype-specific cytokine environments (Th1, Th2, Th17, Treg
and TFH) under the presence of 20% and 30% of noise. Figure 6A
shows that the corresponding phenotype still predominates at 20%
of noise, with a differentiation efficiency ε ~ 0.6, while populations
pertaining to other phenotypes are expressed with low values
ε ~ 0.1. Instead, at 30% of noise, populations pertaining to
different effector phenotypes become similarly populated, with
ε ~ 0.1 − 0.2 for Th1, Th2, and TFH microenvironments so that
the predominance of the specific phenotype is lost. In contrast, in the
case of the Th17 and Treg environments the Treg phenotype

predominate (with respective efficiencies ε ~ 0.4 and ε ~ 0.6)
even at high noise levels (Figure 6B).

3.2 Effect of stochastic perturbations under
variable nutrient and oxygen conditions

Immunological challenges such as viral infections or
autoimmune diseases induce a variety of cytokines that does
not necessarily match definite patterns inducing particular
effector phenotypes. Rather, the presence of infectious agents,
and particularly during their persistence in the host, induces the
production of mixtures of cytokines that, in principle, may act in a
synergic or antagonistic way in the stimulation of naïve cells
(reviewed in (Dupage and Bluestone, 2016). The multiple
influences converging on phenotype-defining transcription
factors are illustrated in Figure 2. Moreover, availability of
nutrients and oxygen has a direct effect on T cell
differentiation in sites of proliferation such as inflammation
sites and lymph nodes (Tao et al., 2015; Swamy et al., 2016;
Tykocinski et al., 2017). Here we analyze the effect of noise on
CD4 T cell differentiation under mixtures of environmental
cytokines and changing conditions of glutamine, trypthophan
and oxygen availability.

Glutamine, when metabolized into alpha-ketoglutarate (AKG),
enters the mitochondrial citric acid cycle and upregulates mTORC1,
enhancing glycolysis (Swamy et al., 2016). Glutamine is required for
CD4 T cell activation and induction of the Th1 phenotype, and can
promote the expression of the Th1 transcription factor T-bet (Klysz

FIGURE 6
Phenotypic profiles generated under phenotype-specific cytokine environments (Th1, Th2, Th17, Treg and TFH) under (A) 20% and (B) 30% of noise.
In the first case, the corresponding phenotype prevails with differentiation efficiencies ε ~ 0.5 − 0.6, whereas other phenotypes are less expressed
(ε ~ 0.05 − 0.1). In the second case, there is no prevailing phenotype at Th1, Th2, Th17 and TFH cytokine conditions (with ε ~ 0.1 − 0.25). However, a
moderate predominance of Treg (ε ~ 0.4) is obtained in the Th17-cytokine microenvironment, while a marked predominance of Treg (ε ~ 0.6) is
obtained in its phenotype-specific environment in spite of the high noise level.
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et al., 2015; Swamy et al., 2016). The effect of glutamine deprivation
was examined under conditions simulating a mixture of optimal
concentration of Th1/Th2 cytokines, as well as optimal nutrient and
oxygen levels, and with 3% noise intensity. Figure 7 (upper panel)
shows an average Th1 differentiation ε � 1.00 when all nutrients are
available. As shown before, using a deterministic model ((Martínez-
Méndez et al., 2022)), the removal of glutamine from the initial

conditions under a combined Th1/Th2 cytokine environment leads
to a bias towards Th2 differentiation Figure 7 (lower panel). This
shift underscores the critical role of glutamine in supporting
Th1 phenotype development and highlights how nutrient
availability can significantly alter T cell fate even in the presence
of mixed cytokine signals, as reported (Nakaya et al., 2014). Table 2
shows that increased levels of noise reduce the differentiation

FIGURE 7
Effect of glutamine deprivation on CD4 T cell activation and differentiation under optimal levels of Th1 (IFN-γ, IL-12, IL-18, IL-33) and Th2 (IL4, IL-33)
inducing cytokines, as well as tryptophan and oxygen availability, under 3% noise. Upper panel: Optimal glutamine level. Lower panel: Complete
glutamine deprivation. (A) Fraction of differentiated cells expressed as the level of activity of lineage-defining transcription factors at 30 time units from
activation (TCR stimulation and CD28 costimulation). The dotted horizontal line represents a threshold of activation level where activation levels
below the value .02 are considered as not differentiated. (B–E) Activity levels of key molecules and pathways involved in CD4 T cell activation and
differentiation: (B) antigen presentation, (C) metabolism, (D) transcription factors, (E) activation markers. (F–J) Activity of lineage-defining transcription
factors and production of specific cytokines over time.
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efficiency towards the Th1 and Th2 phenotypes under both nutrient
conditions (all nutrients and no glutamine). Thus, when a Th1/
Th2 cytokine mixture was simulated under optimal nutrient levels, a
Th1 differentiation efficiencies of ε � 0.84, 0.71 and 0.59 were
obtained using 3%, 5% and 10% noise, respectively, while null or
negligible levels of Th2 cells were obtained. Instead, under glutamine
deprivation, Th1 differentiation is drastically reduced, and a
Th2 differentiation with ε � 0.86, 0.71 and 0.66 was obtained.
Thus, modeling is in agreement with experimental results
showing that glutamine is able to promote a shift from a Th1 to
Th2 effector response (Nakaya et al., 2014).

Tryptophan is an essential amino acid that plays a crucial role in
the protein synthesis and proliferation of activated T cells. Notably,
studies have shown that tryptophan degradation is used by tumor
cells to evade the immune system by depleting its availability for
surrounding immune cells, thus hindering their correct
differentiation and antitumoral activity (Mellor and Munn, 2004).
Tryptophan can activate the RORγt and T-bet transcription factors,
inducing polarization of CD4 T cells to the Th17 and
Th1 phenotypes (Criado et al., 2009; Yan et al., 2010; Tykocinski
et al., 2017). On the other hand, the tryptophan catabolism can
induce a Treg phenotype (Gargaro et al., 2021). Tryptophan 2,3-
dioxygenase (TDO) and Indoleamine 2,3-dioxygenases (IDO1 and
IDO2) are tryptophan catabolic enzymes that degrade it into
kynurenine. IDO1 is often overexpressed by cancer cells (Mellor
and Munn, 2004). However, small-molecule inhibitors such as
epacadostat can block IDO1 activity and restore anti-tumoral
T cell immunity in mice, in synergy with immune checkpoint
inhibitors or cancer vaccines (Peyraud et al., 2022). Simulations
using the stochastic model (Figure 8 upper panel) show that in the
presence of a mixture of Th1 and Treg cytokines under optimal
levels of nutrients, the Th1 phenotype is induced. Deprivation of
tryptophan induces a shift from Th1 to Treg (Figure 7 lower panel).
Thus, modeling upholds the observation that tryptophan supports
differentiation to Th1 even in the presence of Treg-defining
cytokines. Modeling also shows that tryptophan depletion shifts
the system toward a Treg phenotype. Increased levels of noise reduce
the differentiation efficiency towards the Th1 and Treg phenotypes
in the presence or absence of tryptophan, respectively (Table 2).
Thus, when a Th1/Treg cytokine mixture was simulated under
optimal nutrient levels, Th1 differentiation with ε � 0.89,
0.69 and 0.52 was obtained using 3%, 5% and 10% noise,
respectively; low levels of Treg cells were then observed (ε � 0.01,
0.07 and 0.08). Under tryptophan deprivation, Th1 differentiation is

drastically reduced and Treg differentiation with ε � 0.84, 0.79 and
0.68 was obtained for 3%, 5% and 10% noise, respectively. These
results agree with the observed inhibition of effector immune
response under tryptophan deprivation (Gargaro et al., 2021).

Hypoxia is a common characteristic of proinflammatory
environments (Dang et al., 2011). The hypoxia-responsive factor 1-
alpha (HIF-1α) is a vital mediator that responds to hypoxic conditions
and influences the T cell metabolism and differentiation. Hypoxia
stabilizes HIF-1α and induces its translocation to the nucleus where it
dimerizes and targets the expression of glycolysis, angiogenesis, and
apoptosis genes (Semenza, 2000). Activation of HIF-1α by low oxygen
conditions induces the differentiation of Th17 cells and other effector
T cell subsets by promoting RORγt expression and supporting
glycolysis and proliferation (Dang et al., 2011; Oestreich et al.,
2015; Miska et al., 2019). The PI3K-AKT-mTOR pathway is
crucial for activation of HIF-1α, especially during persistent
antigen stimulation in hypoxic environments (Semenza, 2000).
HIF-1α is downregulated through the ubiquitin-proteasome
pathway under normoxic conditions (Wang, 1995). The metabolic
switch mediated by HIF-1α suggests a role for it in the divergence
between effector and regulatory subsets. HIF-1α can negatively
regulate Treg differentiation by binding to Foxp3, a key
transcription factor that promotes Treg differentiation, directing it
for proteasomal degradation (Wang et al., 1995; Dang et al., 2011).
Thus, HIF-1α plays a crucial role in the inhibition of regulatory T cell
subsets. These positive and negative interactions influencing the
activity of HIF-1α were included in the stochastic model and the
effect of hypoxia was assessed by incorporating 3% noise. Simulations
shows that under a mixed Th17/Treg cytokine condition, optimal
levels of oxygen induce Treg differentiation (Figure 8, upper panel).
However, hypoxia induces a shift towards a Th17 phenotype under
the same cytokine conditions (Figure 9, lower panel). As shown for the
previous cases, increasing levels of noise reduces the percentages of
Treg and Th17 differentiated cells (Table 2). Thus, when a Th17/Treg
cytokine mixture was simulated under optimal nutrient and oxygen
levels, Treg differentiation was observed with ε � 0.92, 0.75 and
0.56 by using 3%, 5% and 10% noise, respectively. Under oxygen
deprivation, Treg differentiation is drastically reduced and
Th17 differentiation with ε � 0.79, 0.72 and 0.65 was obtained.
These results are consistent with experimental reports indicating
that hypoxia inhibits the Treg phenotype in inflammatory
environments, and promotes the predominance of the Th1 and
Th17 phenotypes (Dang et al., 2011; Shi et al., 2011; Button
et al., 2017).

TABLE 2 Effect of three noise levels on CD4 T cell differentiation under different cytokine and nutrient combinations. Averages obtained from
10,000 iterations for each case are shown.

Cytokine condition 3% Noise 5% Noise 10% Noise

Th1 + Th2 + all nutrients 0.84 Th1, 0.00 Th2 0.71 Th1, 0.01 Th2 0.59 Th1, 0.02 Th2

Th1 + Th2 + no glutamine 0.00 Th1, 0.86 Th2 0.0 Th1, 0.71 Th2 0.03 Th1, 0.66 Th2

Th1 + Treg + all nutrients 0.89 Th1, 0.01 Treg 0.69 Th1, 0.07 Treg 0.52 Th1, 0.08 Treg

Th1 + Treg + no tryptophan 0.00 Th1, 0.84 Treg 0.01 Th1, 0.79 Treg 0.02 Th1, 0.68Treg

Th17 + Treg + all nutrients 0.00 Th17, 0.92 Treg 0.02 Th17, 0.75 Treg 0.01 Th17, 0.56 Treg

Th17 + Treg + no oxigen 0.79 Th17, 0.00 Treg 0.72 Th17, 0.01 Treg 0.65 Th17, 0.02 Treg
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4 Discussion

The function of the immune system embraces inherent
variability at the cellular level and microenvironmental
conditions. This is evidenced by the profile of CD4 T cell
populations generated in vitro under controlled polarizing

conditions and analyzed flow cytometry, showing that not all
cells in a defined population are equally responsive to activation
and differentiation stimulus (Espinosa et al., 2020; Siracusa et al.,
2021). From a previously characterized continuous deterministic
model of CD4 T cell function Martínez-Méndez et al. (2022), here
we explored the effect of intrinsic noise on the differentiation

FIGURE 8
Effect of tryptophan deprivation onCD4 T cell activation and differentiation under optimal levels of Th1 (IFN-γ, IL-12, IL-18, IL-33) and Treg (TGFβ, IL-
10) inducing cytokines, glutamine, and oxygen availability, subjected to 3% of noise. Upper panel: Optimal tryptophan level. Lower panel: Complete
tryptophan deprivation. (A) Fraction of differentiated cells expressed as the level of activity of lineage-defining transcription factors at 30 time units from
activation (TCR stimulation and CD28 costimulation). The dotted horizontal line represents a threshold of activation level where activation levels
below the value .02 are considered as not differentiated. (B–E) Activity levels of key molecules and pathways involved in CD4 T cell activation and
differentiation: (B) antigen presentation, (C) metabolism, (D) transcription factors, (E) activation markers. (F–J) Activity of T cell lineage-defining
transcription factors and production of specific cytokines over time. Notice the metabolic shift from glycolysis to OXPHOS induced by
tryptophan depletion.
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efficiency of CD4 T cells into effector phenotypes under defined
cytokine and nutrient conditions by translating the deterministic
model into a stochastic scheme.

Our results demonstrate that the efficiency of CD4 T cell
differentiation is sensitive to intrinsic noise. Increasing noise
intensity from 3% to 10% resulted in significant reductions in
differentiation efficiencies across all examined phenotypes. This

result highlights the susceptibility of the underlying network
governing T cell fate decisions to stochastic fluctuations.
Notably, we observed the emergence of low levels of mixed
cell phenotypes, besides the predominant phenotypes, at a
threshold defined by 20% of noise. So, stochastic modeling
suggests that the system is resilient to fluctuations up to 20%,
where at least a relative fraction of 0.6 of the cells differentiate to

FIGURE 9
Effect of oxygen deprivation on CD4 T cell activation and differentiation under optimal levels of Th17 (IFN-γ, IL-12, IL-18, IL-33) and Treg (TGFβ, IL-
10) inducing cytokines and nutrients, subjected to 3% of noise. Upper panel: Optimal oxygen level. Lower panel: Complete oxygen deprivation. (A)
Fraction of differentiated cells expressed as the level of activity of lineage-defining transcription factors at 30 time units from activation (TCR stimulation
and CD28 costimulation). The dotted horizontal line represents a threshold of activation level where activation levels below the value .02 are
considered as not differentiated. (B–E) Activity levels of key molecules and pathways involved in CD4 T cell activation and differentiation: (B) antigen
presentation, (C)metabolism, (D) transcription factors, (E) activationmarkers. (F–J) Activity of T cell lineage-defining transcription factors and production
of specific cytokines over time. Notice the metabolic shift from OXPHOS to glycolysis induced by hypoxia.

Frontiers in Systems Biology frontiersin.org12

Martínez-Méndez et al. 10.3389/fsysb.2024.1412931

https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2024.1412931


the expected phenotype, whereas loss of specific phenotypes is
observed at higher noise levels (Figure 6), with exception of Treg.
It is possible to suggest that the T-bet, GATA3, RORγt, and
BCL6 dependence on mTORC1 and mTORC2 for activity, in
combination with high levels of noise, has a negative impact on
the efficiency of differentiation toward the corresponding
phenotypes. Foxp3 expression, instead, is independent of
mTOR activation so this may favor a Treg dominance under
high stress (noise) conditions (Figure 5). So, resilience of Tregs
associates to robustness against noise perturbations up to 30%, in
which the differentiation efficiency is ε ≈ 0.6, implying that most
cells differentiate to the expected phenotype.

In vitro experiments performed using highly purified naïve
CD4 T cells activated through the TCR and CD28 in the
presence of specific phenotype-inducing cytokines yield evidence
on the effect of intrinsic noise on T cell differentiation. Well-
controlled settings assured minimal microenvironmental
fluctuations besides the intrinsic biological variability of naïve
cells. Analysis of the whole cell population in a single-cell basis
by flow cytometry allowed to show that differentiation efficiency is
far from the ideal value ε � 1.0 for most of phenotypes, since
commonly it varied as follows: ε � 0.50 − 0.80 for Th1, ε � 0.20 −
0.40 for Th2, ε � 0.60 − 0.80 for Th17 and ε � 0.80 − 1.00 for Treg
(Espinosa et al., 2020). Similar observations were reported in
another study (Siracusa et al., 2021). These results are congruent
with the presence of intrinsic noise underlying the efficiency of
differentiation, so that cells in the population have different
capacities to accomplish the full differentiation process.
Accordingly, in our model we observed that the efficiency of
functional T-cell differentiation lies in a range ε � 0.60 − 0.90, as
shown in Figures 5, 6. Notably, in the aforementioned experiments,
Treg cells showed the best in vitro differentiation efficiency, which
may be related to the highest robustness to noise perturbations of
Treg cells pointed out by the model (Figures 5, 6). Both experimental
and theoretical observations suggest that Treg cells comply a
primordial role in natural selection, that is, a stable regulation of
the immune response.

In microenvironments containing cytokine mixtures
increasing levels of noise reduces differentiation efficiency and
promotes low amounts of alternative phenotypes (Table 2). Thus,
modeling shows that activation of CD4 T cells in the presence of
glutamine in a mixed Th1/Th2 cytokine environment leads to
Th1 differentiation, whereas removal of glutamine skewed the
balance towards Th2. This result agrees with experimental
observations showing that glutamine deprivation blocked the
expression of T-bet under Th1-polarizing conditions but had no
effect on the expression of GATA3 under Th2-polarizing
conditions. This change in T-bet expression in glutamine-
deprived cells was associated with an almost complete absence
of IFN-γ secretion by CD4+ T cells exposed to Th1-polarizing
cytokines. In marked contrast, glutamine deprivation resulted in
IL-4 production by cells cultured under Th2-polarizing
conditions (Klysz et al., 2015).

Similarly, activation in a medium depleted of tryptophan in a
Th1/Treg cytokine environment shifts the differentiation from
Th1 mainly towards a Treg phenotype. On the other hand,
hypoxia promoted Th17 differentiation while inhibiting Treg
in a Th17/Treg cytokine environment. In both cases, noise has a

relevant effect on cell differentiation efficiency. Mixed cytokine
environments render differentiation efficiencies different from
those obtained in phenotype-specific cytokine conditions under
the same levels of noise (compare Table 1; Table 2). This could be
explained by the combined effect of noise and the multiple
positive and negative interactions between nodes (Figure 2).
Thus, modeling agrees with a role of glutamine, tryptophan,
an oxygen in the maintenance of stable Th1 and Treg phenotypes
even under high noise levels (Yan et al., 2010; Shi et al., 2011;
Yang et al., 2021). Thus, in conjunction with nutrients, cytokines
and oxygen, intrinsic noise has an important role in shaping the
immune response.

The accuracy and robustness of computational models are
inherently linked to the assumptions and parameters chosen.
However, all the relationships between nodes included in the
present network are well established facts supported by the
literature and have been added step by step in a modular way
on the basis of what is currently accepted in the field of the
function of the adaptive immune response. The resulting
network includes cascade signaling events, redundant rules,
positive and negative feedback between nodes, as well as
cross-regulation, particularly between nodes representing the
lineage-defining transcription factors. All these interactions
diversify, reinforce and regulate initial activation and
differentiation signals to lead to cell function. Thus, modeling
results can be explained by the network topology, which assures
that the system will arrive at stable states reflecting cell
functionality despite variable levels of biological intrinsic
noise. Results are in agreement with experimental
observations, indicating that the main assumptions
incorporated into the model structure are correct. Further,
the model can continue evolving by introducing relevant
complementary elements and new discoveries, in order to
explore a wider range of hypothetical conditions related to
experimental results and clinic observations.

Our approach contributes to validate the utility of
computational models in predicting immune cell behavior.
Stochastic modeling allows to explore the effect of random
perturbations able to alter the topography of the epigenetic
landscape leading to functional phenotypic traits.
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