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Both machine learning and mechanistic modelling approaches have been used
independently with great success in systems biology. Machine learning excels in
deriving statistical relationships and quantitative prediction from data, while
mechanistic modelling is a powerful approach to capture knowledge and infer
causal mechanisms underpinning biological phenomena. Importantly, the
strengths of one are the weaknesses of the other, which suggests that
substantial gains can be made by combining machine learning with
mechanistic modelling, a field referred to as Scientific Machine Learning
(SciML). In this review we discuss recent advances in combining these two
approaches for systems biology, and point out future avenues for its
application in the biological sciences.
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1 Introduction

Classically, systems biology has primarily focused on the use of dynamic mechanistic
models to elucidate the underpinnings of natural phenomena. Popular model formalisms
applied include ordinary and partial differential equations (ODEs and PDEs, respectively),
Boolean networks, Petri nets, cellular automata, individual-based models, and
combinations of these. Properties of mechanistic models—including the type of
equation or rules, initial conditions, or parameter values—depend on the field, question
of interest, and expertise of the researchers involved and are often determined or
constrained by the limited availability and quality of experimental data. While classic,
low-dimensional models can fit a range of concentration-, time-, and space-dependent
datasets (Michaelis and Menten, 1913; Lotka, 1920; Volterra, 1926; Hodgkin and Huxley,
1952), for larger, high-dimensional biological systems such models can be difficult to
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construct due to the so-called curse of dimensionality (Bellman,
1957): as many variables and hence model parameters are necessary
to describe a high-dimensional system, it is virtually impossible to
generate sufficient experimental measurements to properly estimate
these parameters. Only if many existing parameters are known a
priori (e.g., reaction rates from experimental measurements), they
can be used to construct a quantitative mechanistic model that
overcomes the curse of dimensionality (Karr et al., 2012).
Alternatively, coarser models such as Flux Balance Analysis and
Booleanmodels are typically applied to large metabolic or regulatory
networks, as their assumptions lead to simpler models (Xiao, 2009;
Orth et al., 2010). Mechanistic models have been indispensable tools
to test if our current understanding of biology is necessary and
sufficient to describe experimental data, all while having
interpretable inner workings. Nevertheless, a gap exists whereby
high-throughput time- or space-dependent data is not yet readily
used to construct detailed, large mechanistic models.

More recently, state-of-the art machine learning (ML)
algorithms have been developed and applied to the increasing
wealth of biological data. Since these are data-driven methods
that are built to infer patterns from large, high-dimensional
datasets, they have enabled high accuracy in applications such as
protein structure and function prediction (Jumper et al., 2021;
Kulmanov et al., 2018), single-cell transcriptomics modelling
(Lopez et al., 2018), and more (see Baker et al., 2018; Sapoval
et al., 2022). However, many of these ML methods have limited
biological interpretability, and do not elucidate underlying biological
mechanisms in the way that mechanistic models can.

Given their complementary strengths and weaknesses,
integration between ML and mechanistic models, also called
SciML, is a promising new field, which has already gained
popularity in scientific disciplines such as engineering (Willard
et al., 2022), crop modelling (Maestrini et al., 2022), and physics
(Karniadakis et al., 2021). Indeed, there is a great interest in
combining these two approaches and their application in
diverse fields (Legaard et al., 2023; Tong et al., 2020; von
Rueden et al., 2021). In this review, we discuss the latest
advances in combining ML and mechanistic modelling
approaches—particularly in the form of ODEs or
PDEs—applied to systems biology. Notably, while similar
reviews for fields like biomedical multiscale models exist (Alber
et al., 2019), and reviews such as Gazestani and Lewis (2019)
concentrate solely on deep learning—a subset of ML—our focus is
on innovative approaches in merging biological knowledge with
various ML approaches within the systems biology domain. Here,
we aim to provide a perspective on the use of SciML for the study of
biological systems, and thus we do not explicitly focus on
performing the modelling in practice. For more information on
SciML-related software packages and best practices, please refer to
the Supplementary Material.

We first describe methods leveraging prior biological knowledge
or mechanistic models to augment the interpretability and accuracy
of ML models. Subsequently, we explore how ML techniques can
contribute to the development and simulation of mechanistic
models. Next, we review models that intrinsically merge
mechanistic models with ML, and the synergy this provides.
Finally, we provide a perspective on potential new avenues for
integration of ML and mechanistic models. A brief overview of

all categories of models that we discuss is given in Table 1, where we
highlight what mechanistic model and ML building blocks they are
built of, and for what goal they are integrated.

2 Combining ML with prior knowledge

2.1 Constraining ML model structure

Machine learning is concerned with computational methods
that learn (i.e., are trained) to perform a certain task based on
example data. A wide range of methods are available, each differing
primarily in the assumptions they impose on a problem. This
results in a trade-off between the model’s complexity and its ability
to learn any given problem, known as the bias-variance trade-off
(Geman et al., 1992). As a major subfield of ML, neural networks
(NNs, more recently called deep learning, DL) consist of simple
functions (“units” or “nodes”) that calculate a weighted
combination of their inputs and then apply a non-linear
transformation to produce an output. By combining several
layers of such units, given a dataset of examples of input x and
desired output y, sufficiently large NNs can in principle be trained
to approximate any function (Hornik et al., 1989)

ŷ � NN x, w, b( ) (1)
where w and b represent the internal weights and biases of the NN,
respectively. For readability, subsequent equations will omit explicit
mention of these parameters.

NNs have shown great potential in systems biology (Sapoval
et al., 2022) to, for example, relate multi-omics data to drug
response (Sharifi-Noghabi et al., 2019). Nevertheless, the broad
deployment and practical utility of NNs is still limited by a number
of factors. First, NNs can be hard to generalise to different
biological contexts as they easily overfit the specific training
data available. Second, as highly parameterised universal
approximation methods, NNs suffer from a lack of
interpretability. Therefore, it makes sense to inform NNs with
existing biological knowledge to constrain their complexity, a task
for which NNs are well-suited. Conventionally, such approaches
start from an existing NN architecture (e.g., a multi-layer
perceptron, MLP, or a recurrent NN, RNN) and limit some of
its internal connections based on biological data or prior
knowledge, thus reducing the number of parameters to be
estimated. In some cases, this allows certain elements of the
NN to take on a mechanistic meaning, which “opens up the
black box.” Here we discuss methods where NN performance
and/or interpretability has been aided by inclusion of
established biological insights.

A first way to enforce biological prior knowledge is by creating a
sparsely connected MLP, where each node represents a biological
entity (e.g., a gene, protein complex, or full cell organelle) and nodes
are only connected if they are known to interact based on
experimental or computational biological evidence (Elmarakeby
et al., 2021). Such a sparse MLP has been applied to cell growth
models, where connections were informed by Gene Ontology (GO)
terms (Ma et al., 2018) and to modelling signalling and
transcriptional regulation, where each connection is based on
known interactions between genes, proteins, and their pathway
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membership (Fortelny and Bock, 2020; Hartman et al., 2023).
Overall, these studies find that such biologically-constrained
MLPs outperform existing predictive models, suffer less from
overfitting compared to their fully connected counterparts, and
allow for meaningful biological interpretability. However, there is
no agreed upon best method yet to extract biological insights from
these sparse MLPs.

MLPs are not the only NN architecture that can be used as a
blueprint for biology-informed ML. For example, in a recurrent
neural network (RNN), the matrix governing the calculation of the
hidden state from the previous time point’s hidden state can be
likened to an interaction matrix (graph) between molecules in a
signalling network (Nilsson et al., 2022). Therefore, this matrix can
be constrained to only include known interactions, which prevents
overfitting, and enables genome-scale modelling of intracellular
signalling. Moreover, this matrix can be further constrained by
existing knowledge of dynamical systems, e.g., by restraining the
system’s largest eigenvalue to be smaller than one, as this ensures
that the RNN always converges to a steady state or equilibrium.
Other architectures, such as convolutional neural networks (CNN),
have also been constrained with prior knowledge in fields such as
physics (Zhang Z. et al., 2023). However, in the field of systems
biology we were unable to find examples of such applications yet,
even though CNNs could be used to study, e.g., spatial cell-cell
interactions.

Overall, this highlights the potential for constructing
biologically-constrained NNs by starting with existing NN
architectures that effectively align with the structure of the
biological problem being addressed. Nevertheless, not all prior
biological knowledge naturally lends itself to this, and the most
insightful way to extract meaning from the internal workings of an
NN remains to be elucidated.

2.2 Mechanistic model simulations as input

An alternative way to make use of biological knowledge is to use
the output of mechanistic models (defined more in depth in Section
3) as “input” to an ML model (Gelbach et al., 2022; Myers et al.,
2023). Note that this should be distinguished from “integrated
models,” where part of the system is modelled using ODEs and
another part using ML; here, we focus on cases where multiple ODE
simulations are performed to generate data to train the ML model.

One classic approach is so-called simulation-based inference,
which refers to a suite of techniques for inferring model parameters
when the likelihood function is not tractable (Cranmer et al., 2020).
A likelihood function quantifies the probability of observing a set of
data given a specific set of parameter values in a model. Parameter
values can then be optimised by maximising this likelihood.
Classical approaches for simulation-based inference include, e.g.,
approximate Bayesian computation (ABC), where parameters are
repeatedly drawn from a prior distribution, a simulation is run with
those parameters, and the parameter values are retained as a sample
of the posterior distribution if the simulated data is sufficiently close
to the observed data. This yields a probability distribution for
parameter values given a model structure and a dataset. The
approach is case-based, in the sense that for a new set of
observations, the entire estimation procedure must be run again.

A second approach is to create a model for the likelihood by
estimating the distribution of simulated data with, e.g., kernel
density estimation. Compared to ABC, it has the advantage of
spreading the costs of the initial investment in simulation across
various analyses or parameter estimates: new data points can be
evaluated more efficiently. Here, recent developments that use NNs
now allow density estimation to scale to high-dimensional data. An
example is normalising flows, in which variables described by, e.g., a

TABLE 1 Overview of the SciML approaches covered in this review, the models they merge, and the goal of integration (NN, neural network, MM,
mechanistic model, ML, machine learning, ODE, ordinary differential equation).

Section Name Starting point Combine with Goal

2.1 Constraining ML model
structure

Standard fully connected NN Dataset of (predicted) biological
interactions, only connect nodes in NN if
there is evidence for an interaction

Make nodes and edges take on meaning;
increase interpretability

2.2 Mechanistic model
simulations as input
for ML

Existing MM NN to make predictions based on MM
output

Perform task that MM could not do in
isolation

3.1 Selecting from a library of
candidate terms

Terms from which ODEs could
be constructed

ML to select key terms from the library Identify ODEs that fit dataset using a small
number of candidate terms

3.2 Finding hidden
mechanisms

ODEs with some terms
(i.e., mechanisms) already known

NN to fit unknown terms ODE model with increased performance;
potentially information about what terms
should be added to the ODEs

3.3 No candidate terms are
known

ODEs missing terms that are
needed to explain rate of change

NN that predicts the rate of change of each
element (e.g., gene), based on all other
elements in the system

Accurate, but hard to interpret method to
predict temporal patterns

3.4 NN to enhance model
simulations

Parameterised ODEs NN that predicts the solution of the ODEs Faster solving of the ODE system

4.1 ML to aid in fitting sparse,
noisy data

ODEs that should be fit to noisy
and/or sparse data

NN to interpolate the data while adhering to
the limits that the ODEs provide

Interpolate data (without overfitting) for
finding parameters of ODEs

4.2 Parametrisation of
metabolic systems

High-dimensional system of
ODEs with yet unknown
parameters

NN that predicts a set of parameters, and NN
that can classify if parameters are good or not

Find parameters for large system of ODEs
that make it consistent with experimental
data
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multivariate Gaussian are transformed through a parameterised
invertible transformation. Several such steps can be stacked, and
the parameters of the transformations are trained by maximising the
likelihood of the observed data. A recent example of such an
approach is Bayesflow (Radev et al., 2020), which trains two
neural networks on simulated data: i) a summary network, which
reduces a set of observations to learned summary statistics (for time-
series, typically a long-short-term memory (LSTM) network is used,
which is a variant of the above-mentioned RNN); and ii) an
inference network, which learns the posterior given these
summary statistics. The latter is implemented as a normalising
flow. Bayesflow has been used for systems biology problems in
Arruda et al. (2023) to consider measurements for different cells or
patients, and simulate a heterogeneous cell population using a non-
linear mixed-effects model of (single-cell) translation.

An alternative to simulation-based inference is to use transfer
learning (Przedborski et al., 2021). This leverages features and
representations learned by solving one problem to help solve a
related but different problem. After pretraining a model on a large
dataset, it can be transferred and fine-tuned for a new task with
smaller datasets, accelerating learning and improving performance.
This approach is especially useful when labelled data for the target
task is limited or expensive to obtain. In the specific example of
Przedborski et al. (2021), simulated clinical trial data was obtained
from an already calibrated ODE model for immunotherapy,
describing time evolution of various cell types based on
molecular interactions. Note that this existing model was not
directly aimed at distinguishing between patients responding and
non-responding to treatment. To do so, an additional classification
model was developed. Relevant features for distinguishing response
from non-response were selected from the initial conditions and
kinetic parameters of the ODE model simulations. These features
were then used as inputs to an NN, which was pretrained on the
simulated data to classify virtual patients as responders or non-
responders. Subsequently, transfer learning was used to fine-tune
the model on real clinical data.

Both biologically-constrained MLPs and ODE-input ML have
typically been applied to datasets where the final output is static (i.e.
a state that does not change). For dynamic outputs, it may be better
to start with a mechanistic model and enhance it using ML, as
discussed in the next section.

3 ML to enhance mechanistic models

Ordinary differential equation (ODE) models are a commonly
used framework to model biological dynamical systems. As the
affordability and accessibility of many experimental methods have
increased, and the scale of data generation has grown dramatically,
mechanistic models have become larger (Fröhlich et al., 2018), more
detailed, and less abstract. This leads to a need for both newmethods
for model construction (i.e., identifying the unknown terms in an
equation), and for improved numerical algorithms to address the
high computational requirements of ODE solving. Here, we discuss
four ways in which ML can support the construction and simulation
of mechanistic models: i) if potential terms in the ODE are already
known and a subset should be selected, ii) if some terms are still

unknown, iii) if all candidate terms are unknown, and iv) if ODE
solving should be enhanced.

3.1 Selecting from a library of
candidate terms

The first step of any mechanistic modelling study is to
define the equations of the model based on prior knowledge of
the biological system. These equations describe the rate at
which a variable changes over time and/or space, and how it
depends on other variables in the system and parameters/
reaction rates. The mathematical notation for such a system
generally reads

dx

dt
� f x, p, t( ) (2)

where dx/dt is the rate of change of species or variables x over time,
which is determined by reactions f with parameters (or rate
constants) p. These reactions may be influenced by time t. In
systems biology, the functions f could represent defined
chemical reactions between variables, e.g., conversions between
different states or enzyme-catalyzed Michaelis-Menten reactions,
that depend on parameters p with clear biological definitions, e.g.,
transcription, translation, complex formation, (de)phosphorylation,
dilution, degradation, and diffusion rates. Consequently, many
systems biology models are constructed from the same set of
mathematical terms, or building blocks, with a direct biological
interpretation (Ingalls, 2013; Klipp et al., 2016).

Another factor to consider is the size of the model, i.e. the
number of variables and/or parameters. This is often constrained
by the data availability, namely which system species and rates
have been measured. In the process of model construction, a key
question for the modeller is then whether a model needs to be
complete—in the sense that all known variables x need to be
contained within the model—or whether a smaller, abstract model
is sufficient to explain the available data. This is referred to as
model parsimony and measures such as the Akaike Information
Criterion can be used to compare model structures (Portet, 2020).
In practice, this means that systems biologists often search for
models with a limited number of “hidden,” or unmeasured,
variables to reduce the uncertainty in predictions made for
measured variables.

Both considerations above—equation formulation and model
size—can be biased by the researchers’ preferences and prior
knowledge. To avoid this, ML has recently been applied to
construct models based on data in an unbiased manner. For
example, Erdem and Birtwistle (2023) utilised ML to infer gene
networks from integrated -omics data and used these connections to
expand an existing mechanistic model (Erdem et al., 2022; 2023).
Alternatively, when a library of potential terms in f is already
known, the SINDy (sparse identification of non-linear dynamics)
family of symbolic regression methods has been developed to select
the most relevant terms from this library (Brunton et al., 2016;
Champion et al., 2019; Massonis et al., 2023). The SINDy method
(Brunton et al., 2016) rewrites an ODE, as in Eq. 2, into

f x( ) � Θ X( )Ξ (3)
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where Θ(X) is a time-dependent matrix containing a library
of candidate mathematical terms for the ODE (e.g., cos(x(t)),
x2(t), . . .), and Ξ is a sparse matrix containing parameters detailing
the rates of each associated mathematical term in the equation. To
obtain the matrix Ξ from data, we can minimise a loss function

L � dxd

dt
− Θ X( )Ξ( )

2

(4)

where dxd/dt is the numerically approximated time-derivative
of time-dependent measurements. When the loss function L
approaches zero, the predicted ODEs produce solutions that
match the time-dependent measurements of variables. To
prevent complex models being obtained, this optimisation
problem is solved with sparse regression methods, such that Ξ
is a sparse vector containing as many zeros as possible (Brunton
et al., 2016). Test cases in the literature encompass a variety of
oscillatory systems, including Lorenz attractors, swinging
pendulums (which have recently been related to cell cycle
models (Dragoi et al., 2024)), spatial patterning, and glycoloysis
pathways in yeast. Moreover this SINDy methodology has since
been extended to model non-linear dynamics using implicit
functions (Kaheman et al., 2020) and to create structurally
identifiable models (Massonis et al., 2023). One recent
extension of the SINDy method used autoencoder NNs to
reduce the dimensionality of data x to a smaller set of “intrinsic
coordinates” z, which can be modelled and used to reproduce the
observations seen in the larger system (Champion et al., 2019). In
this instance the neural network calculates

z � NN x( ) (5)
where |z|< |x|, and dz/dt provides knowledge about the larger

system dx/dt. Compared to linear dimension reduction approaches
such as principal component analysis or dynamic mode
decomposition, this nonlinear approach may lead to poor
interpretability of the dynamic variables, but it allows for more
complex models to be simplified and analytically explored.

3.2 Finding hidden mechanisms

In a second, less constrained, modelling approach, universal
ordinary differential equations incorporate NNs into the differential
equations themselves. In this case, the mathematical definition of a
reaction or relationship between model variables may be unknown,
and a neural network is trained to determine the time-dependent
rate of change. An example universal ordinary differential equation
would then take the form

dx

dt
� f x( ) +NN x, t( ) (6)

where f(x) models known relations, whilst NN(x, t) is a time-
dependent NN that represents unknown interactions. The equations
are then fit to data as part of training the NN. Such methods
have been applied to ODEs (such as the oscillatory Lotka-
Volterra system), PDEs for describing spatio-temporal biological
phenomena (Rackauckas et al., 2021), and chemical master
equations describing stochastic kinetics of small genetic networks

including feedback loops (Jiang et al., 2021). Hence, they have
proven to be very convenient when commonly used
mathematical functions do not provide a model with a good fit
to data. Bringing universal ordinary differential equations together
with SINDy provides the opportunity, as in Rackauckas et al. (2021),
to determine an unknown time-dependent reaction rate, followed by
approximating the best mathematical definition of the reaction rate
using SINDy. This would allow models to simultaneously be
constructed directly from data whilst building on pre-existing
knowledge (contained in f(x)).

In a complementary approach, one can use the output of the
NNs (e.g., a plot of NN(x) vs. x) to estimate the precise
mathematical expression (functional form) that describes an
unknown term (Lagergren et al., 2020; Daryakenari et al., 2024).
Lagergren et al. (2020) showed that MLPs could be used to estimate
cell growth and diffusion terms in a PDE model describing scratch
assay experiments where cells repopulate available space on a
surface. From this analysis, explicit mathematical functions could
be approximated to create a phenomenological that then showed
these two terms were not sufficient for a fully accurateMLP fit. Based
on this discrepancy, the authors also added a time-delay term which
yielded a better model fit, even when taking into account the
increased number of parameters. This methodology was
demonstrated on both simulated and in vitro data.

3.3 No candidate terms are known

As a third approach, neural ODEs (nODEs) (Chen et al., 2019)
can be used to estimate the rate of change of the system. Here, no
underlying assumptions about the functional form of the dynamics
are made, and the neural network outputs the rate of change of x,

dx

dt
� NN x, t( ). (7)

nODEs have been applied for transcriptomic forecasting
(i.e., predicting gene expression over time) (Erbe et al., 2023),
but provide limited biological interpretability. To enhance
interpretability and integrate biological insights, Hossain
et al. (2024) incorporated prior knowledge into the neural
network architecture, specifically by adding soft constraints
which steer the nODE connections to putative transcription
factor-gene interactions obtained through transcription factor
binding site enrichment (comparable to Section 2.1). The
methodology was performed to model gene expression
changes in yeast cell cycles, breast cancer progression, and
B cell dynamics from ChIP-seq and RNA-Seq datasets. This
approach increased performance, led to a sparser NN, and could
be used to reconstruct underlying gene regulatory networks.
Potentially, this gene regulatory network could be used as a
starting point for a more insightful mechanistic model, built up
using some of the aforementioned methods. For single-cell
transcriptomics, Chen et al. (2022) and Zhang J. et al. (2023)
used an autoencoder to predict RNA velocities or expressions,
respectively. To gain biological insights into the workings of the
autoencoder, the latent layer could be probed for
biological insights.
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Nevertheless, elucidating the inner workings of nODEs remains
a challenge compared to more traditional ODE/PDE models.
Moreover, their predictive performance can still be improved,
especially for sparse, noisy biological data measurements.

3.4 Neural networks to enhance model
simulations

Once model equations have successfully been obtained, the next
step in model construction is to define parameters and simulate the
system. During parameter optimisation (i.e. data fitting), a
differential equation model is solved many tens of thousands of
times with different sets of parameter values before the output
simulations are compared with experimental data. In the absence
of extensive parallelisation, the computational cost of numerically
solving the model often leads to long run times for parameter
optimisation. Since traditional ODE solvers are computationally
demanding, researchers have considered the use of NNs to output
the solution of an ODE given time t as an input. The NN is then
trained to minimise a loss function that ensures the NN’s output
adheres to the underlying ODE (Grossmann et al., 2023).

This approach can be extended to PDEs, providing the NN with
time and spatial coordinates as has been done by Han et al. (2018),
Nabian and Meidani (2019), and Wang and Wang (2024) for high-
dimensional systems consisting of 50–100 equations. In these
examples, the spatial coordinates of the PDE are modelled using
a stochastic time-dependent processes and used as inputs into an
NN to predict the evolution of system components over
space and time.

Comparisons between this NN-based ODE/PDE solving
method and traditional approaches, such as finite element
methods, reveal two key insights (Han et al., 2018; Nabian and
Meidani, 2019; Grossmann et al., 2023; Stiasny and
Chatzivasileiadis, 2023; Wang and Wang, 2024). First, there is
debate as to whether NNs can predict solutions to differential
equations with similarly high accuracy as their finite-element
counterparts. For example, Grossmann et al. (2023) show that
their methodology provides PDE solutions with higher relative
error compared to finite-element methods. Notably, the relative
errors found in Grossmann et al. (2023) are comparable with those
for high-dimensional systems (Han et al., 2018; Wang and Wang,
2024). Second, the evaluation time of differential equation systems
using NNs does not change with the accuracy of solutions, in
contrast to finite element methods which take longer when
higher accuracy is required (Grossmann et al., 2023). This hints
to the possibility that parallelisation of NN evaluation could
dramatically speed up large-scale model simulations at the cost of
slightly decreased accuracy of numerical approximations. To the
best of our knowledge, researchers have not yet been able to bridge
the gap in relative error between NN solutions and solutions
obtained using finite-element methods.

In summation, the examples above illustrate how ML methods
can be applied to differential equation models to identify what terms
should be used in equations, predict novel terms in equations, and
speed up numerical approximation of complex models.

4 Integrating mechanistic models
and ML

4.1 ML to aid in fitting sparse, noisy data

Many of the methods discussed above require numerous time
point measurements with minimal noise, which is often difficult to
achieve for biological problems. Hence, generating an estimation of
the experimental data at unmeasured time points can greatly assist
in mechanistic model fitting and provide insight into the underlying
biological dynamics:

x̂ � NN t( ). (8)

However, since MLPs commonly contain thousands of
parameters, they are prone to overfitting the training data and
may not generalise well to out-of-sample scenarios (Willard
et al., 2022). Such function-estimating NNs can be made robust
by constraining them using known ODEs, i.e., making these models
physics-informed neural networks (PINNs) (Raissi et al., 2019). A
first approach is to make their derivative be as close as possible to a
priori ODE/PDEs that describe (aspects of) the known underlying
biological system. Such an approach was demonstrated by Yazdani
et al. (2020) on three biological datasets, and was implemented
through the loss function:

L � x̂ − x( )2︸���︷︷���︸
Data loss

+ d

dt
x̂ − f x̂, t( )( )

2

︸�������︷︷�������︸
ODE loss

(9)

The first term ensures a close match between the NN-
interpolated data x̂ and the experimental data x, while the
second term keeps the MLP derivatives in agreement with the a
prioriODEs f. ddt x̂ is found by automatic differentiation through the
NN. Minimising this loss function not only allows the NN to more
robustly fit the noisy training data, but also allows for simultaneous
fitting of parameters in the a priori ODEs f. All in all, this
demonstrates that the unidirectional interactions discussed so far
can be integrated, where mechanistic models inform ML, and
vice-versa.

On simulated datasets, Yazdani et al. (2020) demonstrate that
this approach successfully estimates practically identifiable
parameters (i.e., those that can be uniquely determined from
experimental data) for oscillatory or adaptive models with
5–20 unknown parameters and 5–10 system variables. It would
be interesting to determine how successful the methodology is with
sparser experimental datasets than those used in this study.
Note that this approach only works if the complete ODE
equations are known a priori; if parts are unknown, methods as
described in Section 3.2 could be used, as shown by Lagergren
et al. (2020).

In this nascent field, researchers integrating NNs with biological
knowledge use some ambiguous nomenclature for models, where
similar methods have been given different names, and different
methods have been given similar names. Table 2 provides an
overview (not aiming to be complete) striving to disambiguate
terminology.
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4.2 Parametrisation of metabolic systems

The use of system features alongside simulated or real data has also
been applied to NNs evaluating parameters of metabolic systems, such
as catalytic rates or maximal rate velocities and Michaelis constants.
Choudhury et al. (2022, 2023) present REKINDLE and
RENNAISANCE, that apply generative adversarial neural networks
(GANs) to find sets of metabolic enzyme parameters that recapitulate
metabolic profiles of E. coli in steady state conditions. Such
mathematical models incorporate tens of state variables and
hundreds of model parameters. In REKINDLE (Choudhury et al.,
2022), a generator NN is trained to produce model parameter sets
with such accuracy that a discriminator NN cannot predict whether
they are real or fake when compared with “ground-truth” parameter
sets. In RENNAISANCE (Choudhury et al., 2023), several GANs are
optimised by a genetic algorithm to produce parameter sets that lead to
a model consistent with experimentally determined metabolic
responses (e.g., speed at which metabolic pathways reach steady
state, system stability, etc.), an approach that foregoes the need for
comparison with “ground-truth” parameter sets. In the initial
generation of the genetic algorithm, many GANs are created and
compared for their ability to produce relevant parameter sets that
yield accurate steady state levels of metabolic concentrations. Following
generations are then populated with GANs that are perturbed versions
of the previous generations best-performing network. Over time, a
population of highly performing GANs are then obtained and allows
users to analyse variability of model parameters and dynamics for
metabolic pathways. The output of both REKINDLE and
RENAISSANCE can be used to simulate metabolic systems under
different experimental conditions (at steady state or within dynamic

bioreactors), compare predicted metabolic parameters with
experimentally determined counterparts (and use experimentally
measured parameter values to further constrain optimisation
solutions), and to predict how metabolic reactions change between
physiological states.

Finally, Sukys et al. (2022) have created Nessie, an NN that takes
a time-point and model parameters as input and predicts probability
distributions of single cell mRNA or protein copy numbers. By then
comparing the distributions of system variables with
experimentally-determined copy number distributions, the
method allows for the back-calculation and estimation of single
cell parameter distributions. The authors applied this idea to genetic
feedback loops, toggle switches, and kinase pathways. The NN
approach made analysis of relationships between parameters and
system properties—e.g., the parameters responsible for bimodality
in a simple autoregulatory feedback loop—approximately ten
thousand times faster.

In summary, recent developments propose a seamless
integration of NNs with mechanistic models, and we envision
that further progress in this research direction will enable models
with increased applicability, interpretability, and performance.

5 Prospective applications: from gene
regulatory networks to
whole organisms

In the previous sections we reviewed existing work, where
mechanistic modelling constrains or informs ML methods, where
ML helps construct mechanistic models, and methodologies where

TABLE 2 Nomenclature for integration of neural networks with biological knowledge.

Info Characteristics

Study Name for
approach

Underlying
ML structure

ODE/PDE
in loss
function

ML-structure
constrained by
biological
knowledge

MLP as
term in
ODE/
PDE

ODE as input to ML
(no simultaneous
fitting)

Lagergren et al.
(2020)

Biologically informed
neural network (BINN)

MLP (fully connected)
with PDE

Yes No Yes No

Elmarakeby
et al. (2021)

Biologically informed
neural network (BINN)

MLP (sparse) No Yes No No

Hartman et al.
(2023)

Biologically informed
neural network (BINN)

MLP (sparse) No Yes No No

Yazdani et al.
(2020)

Systems biology informed
neural network (SBINN)

MLP (fully connected)
with ODE

Yes No No No

Przedborski
et al. (2021)

Systems biology informed
neural network (SBINN)

MLP (fully connected) No No No Yes

Ma et al. (2018) Visible neural
network (VNN)

MLP (sparse) No Yes No No

Fortelny and
Bock. (2020)

Knowledge primed neural
network (KPNN)

MLP (sparse) No Yes No No

Nilsson et al.
(2022)

Large-scale knowledge-
EMBedded Artificial
Signaling-networks
(LEMBAS)

RNN (sparse) No Yes No No
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these two start to become intertwined. Clearly, exploiting the
synergy between ML and mechanistic models can lead to more
accurate, better interpretable models in systems biology, which will
enhance our capacity to modify the behaviour and performance of
biological systems in an informed way. Although the balance
between ML and mechanistic modelling within integrated
approaches may be a matter of taste, expertise of the scientist,
and the availability of data and prior knowledge or models,
mechanistic models in the end are most easily interpreted. In this
last part we therefore turn our focus to how we envision the
integration of (multiple) ML techniques could lead to the
improvement and expansion of mechanistic models. Additionally,
we suggest how ML methods can model residual components to
improve predictive power.

5.1 Potential for hybrid approaches to
understand tissue developmental patterning

As an illustrative example, in developmental biology the aim
is to decipher how cells with identical genetic make up decide
which genes to express when and where, in order to produce a
patterned specialised tissue consisting of a variety of distinct cell
types. In recent years, single-cell transcriptomics combined with

ML dimensionality reduction approaches such as tSNE and
UMAP (van der Maaten and Hinton, 2008; McInnes et al.,
2020) are increasingly used to identify gene expression clusters
corresponding to the distinct cell fates occurring in the tissue
under study. Subsequently, a pseudotime-based ordering of these
cell states enables the reconstruction of temporal trajectories
describing cell fate development and transitions (Trapnell, 2015;
Saelens et al., 2019) (Figure 1A). Thus far, these methods have
mostly been used to identify novel cell types, including the gene
expression profiles uniquely identifying these. Frequently, novel
cell states are identified that are intermediates of previously
known cell types (Jo et al., 2021; Gan et al., 2022), increasing
our knowledge of the gene expression changes that cells
experience on their path to differentiation. Additionally,
subdivisions of previously known cell fates into distinct
categories or rare novel cell types are frequently detected
(Grün et al., 2015; Tang et al., 2017; Krenkel et al., 2019; Fu
et al., 2020). This fine-grained level of understanding has only
been possible through the combination of single-cell sequencing
with ML methods.

Other ML approaches have been applied to infer gene
regulatory networks from single-cell transcriptomics data,
identify potential regulatory links between genes, and find the
specific cell types in which these regulatory interactions take

FIGURE 1
Proposed hybrid mechanistic-ML models for developmental tissue patterning. Based on single-cell transcriptomic data (A), ML methods can infer a
regulatory network (B), that can be used as a building block of a mechanistic spatial model incorporating known and hypothesised details of cell-cell
signalling and morphogen gradients (C). By comparing the cell differentiation trajectories produced by the model (D) to the actual expression data and
cell fate clusters (E and A), an iterative approach can identify missing genes, short-range cell signalling, and/ormorphogen gradients to optimise the
hybrid model (F).
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place (Aibar et al., 2017; Pratapa et al., 2020; Kamimoto et al.,
2023) (Figure 1B). Still, it is highly non-trivial to determine
whether the recovered regulatory interactions offer a full
explanation for the observed cell fate dynamics. In fact, this
may be unlikely given that single-cell sequencing is technically
limited in the number of transcripts sampled for each cell, with
absence of transcripts—particularly lowly-expressed
transcription factors—not necessarily meaning absence of
expression (Ke et al., 2023). Thus it appears an interesting
research direction to combine these methods with spatially
explicit mechanistic models of cell fate dynamics that can not
only incorporate gene regulatory dynamics but also direct short
range cell-cell signalling, longer range morphogen gradient based
signalling, transcription factor complex formation, and protein
stability regulation, (Figure 1C). While recently ML methods
have also emerged aimed at inferring cell-cell interactions from
single-cell sequencing data, this has thus far been limited to
leveraging known ligand-receptor pairs (Jin et al., 2021; Wilk
et al., 2023).

To construct such a mechanistic model for cell fate
patterning, the regulatory network inferred by ML can serve
as input into the mechanistic network model (Figures 1B,C).
Likely, the ML-inferred network is large and different networks
may be recovered depending on the specific inference algorithm
used, potentially necessitating taking an ensemble approach
(Marbach et al., 2012; De Clercq et al., 2021). Network
complexity could be reduced by scoring regulatory
interactions based on how frequently they are recovered by
different algorithms, the integration of transcription factor
binding measurements, and known transcription factor-
promoter interactions. Additionally, network pruning
approaches derived from NN pruning methods could be used
to reduce complexity of these regulatory networks (Yeom
et al., 2021).

Through simulating a mechanistic model of the multicellular
tissue (cell field) that incorporates the inferred gene regulatory
network, cell-cell signalling, and the role of morphogens
(Figure 1C), in silico gene expression dynamics across the tissue
can be generated (Figure 1D). Similar to the actual in vivo
measurements, such in silico dynamics can be clustered into cell
fates and organised according to their temporal dynamics, enabling
a direct comparison with the in vivo data (Figure 1E). Mismatches
between these simulated and actual cell fates and their dynamics can
then be used to further improve and complete the mechanistic
model (Figure 1F). This model optimisation should likely involve
ML-based optimisation of parameters not present in the
experimental data. Examples of these are protein stability, types
of cell-cell signalling and their downstream effects, and/or cellular
division dynamics. Finally, the integration of the mechanistic and
the ML models might include the incorporation of additional
relevant genes and interactions based on correlations with
alreadymodelled genes or with the phenotype aimed to be described.

Eventually, this could result in an interpretable mechanistic-ML
model that reproduces ML-derived cell types, dynamics of cell fates,
and inferred cell-cell signalling. We envision that iterating between
model learning and adaptive weighting and pruning/sparsifying of
inferred networks will help create models which balance explanatory
power and model complexity.

5.2 Whole organism studies as a potential
scenario for a hybrid mechanistic-ML model

In organisms, both local and systemic responses occur. These
responses involve a wide range of spatial and temporal scales, as
well as complex interactions between different organs. Here, we use
plants as an example of such a multi-scale process, in which the growth
and development of organs occurs throughout their lifetime and is
regulated by environmental conditions like nutrient stress, drought,
high temperatures, shading, or diseases. Ultimately, the organism’s
performance depends on the coordination of all its parts, necessitating
or the development of organism-level models that account for the
dynamic processes occurring in each organ. Mechanistic models are
typically limited in the number of temporal and spatial scales that can be
covered within a single modelling framework, as well as in the number
of relevant variables that can be considered. As an example of a
modelling framework to study whole organism models, Functional
Structural Plant (FSP) models integrate processes at the individual leaf
and root level, overall shoot and root level, and entire plant level. In
theory, FSP models can include molecular details on how each organ is
regulated, e.g., root growth, even if not resolved to the level of individual
cells. Still, they tend to be biased towards heavily studied adaptive
responses with a clear morphological phenotype, such as preferential
foraging towards high nutrient patches, stomatal closure and root
elongation under drought, shoot elongation and more upright
posture of leaves under high temperature and shading, and
reduction in growth to redirect energy to defence under disease
pressure (Ruffel et al., 2011; Huot et al., 2014; Pierik and Testerink,
2014; Quint et al., 2016; Buti et al., 2020). In contrast, transcriptomic
data reveal that next to these processes with a clear observable output, a
large range of metabolic and physiological responses are set in motion
by stresses as well. These include changes in nitrate and carbon
metabolism, membrane composition, osmotic regulation, and overall
rewiring of protein translation. There are missing regulatory layers that
are also important to explain an organism’s responses. The lack of
detailed description of the regulation and temporal dynamics of many
of these processes suggest these could bemore suited forML rather than
mechanistic modelling, yet still require integration within a
single model.

As an example, let us assume our overall organism model
contains several functional submodules governing specific
morphological and physiological responses in individual organs.
For a plant this will represent, e.g., root growth, hypocotyl (stem)
growth, or stomatal aperture in leaves (Figure 2A). For stomatal
aperture and hypocotyl elongation, key molecular players and
interactions have been identified experimentally, enabling the
construction of mechanistic models and explaining how they
regulate plant development (Figure 2B, top part of each panel).
However, many more relevant players and interactions are likely to
be discovered. A promising approach to fill knowledge gaps would
be to simulate these submodules using the existing mechanistic
models, and compare simulated gene expression with
transcriptomics measurements to determine how much of the
observed dynamics of known key regulatory genes is already
explained by the model, and how much “residual” is not
explained yet. ML could then be used to infer which genes
missing from the mechanistic model could explain these residuals
(Figure 2B bottom part, c), potentially under the condition that their
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regulatory connections to the genes in the mechanistic model can be
determined or inferred. The accuracy of the fit between the
mechanistic module response and observations can then be
improved by iteratively incorporating these novel genes into the
mechanistic model, while ensuring highmodel quality measures that
balance accuracy and model complexity (such as the Bayesian or
Akaike information criteria, BIC and AIC). Finally, any dynamics
that are still not explained by the mechanistic model—including
additional genes—can be integrated through an NN term,
generating a partly hybrid mechanistic ML module (Figure 2C).

A second possible application of integrated mechanistic-ML
modelling would be in the many responses that are not yet
properly understood or identified, but do impact the organism’s
performance. Firstly, ML approaches could be developed to predict
a particular phenotype, e.g., plant weight, given a number of
morphological, transcriptional, and physiological responses. Feature
importance assigned by the ML model would support the

parametrisation of the organism-level mechanistic model. Secondly,
ML approaches could be used to model the behaviour of still poorly
understood response modules for which nomechanistic models can be
formulated, (e.g., root growth in Figure 2B). Finally, the functional
modules need to be connected (because of reciprocal dependencies or
shared regulatory genes), as do different parts or organs of an
organism, based on reciprocal exchange of molecular information.
For plants, some root-shoot and shoot-root signals have been identified
to date, yet many more likely remain to be discovered. ML-based
approaches can help predict such missing connections between the
different functional modules as well as distinct plant parts.

It should be noted that even though this particular section
discusses plants, the foreseen approaches are equally applicable to
different fields of research and other organisms, for example, in
modelling a virtual human with mechanistic modules for certain
well-studied organ systems, supplemented with MLmodules for less
well-studied parts and supported by ML-based predictors.

FIGURE 2
Multiscale whole organism model that models various phenotypes. (A). Envisioned iterative strategy integrating mechanistic models (MMs) and
neural networks (NNs) (B), that in turn can be used to yieldmore accurate predictions (C). The hybridmodels developed for individual parts of an organism
can then be connected to account for inter-organ communication through exchange of molecular regulators and/or nutrients.
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6 Conclusion

As discussed, mechanistic models are knowledge-driven approaches
that offer insights into underlying biologicalmechanisms, but are hard to
scale up to high dimensions in terms of compute time, parametrisation,
and interpretability. On the other hand, ML is data-driven, allowing it to
make accurate predictions using large amounts of high-dimensional
data, yet it often allows for limited insight into the dynamic mechanisms
underlying biological functions. Thus, the strengths of one method are
the weaknesses of the other, implying that their integration would be a
promising means to achieve both mechanistic understanding and
accurate predictions in systems biology.

In our review, we have discussed methods which have either
successfully integrated biological knowledge or mechanistic
modelling into ML; used ML to help build, fit, or speed up
mechanistic models; or fully integrated both approaches. Especially
developments in this last category are promising; they allow each step of
the procedure to be informed by its influence on the final result and help
us overcome typical research challenges such as sparse and/or noisy
data, unknown contributing factors, or lack of biological interpretabilty.
We end with a vision on how iteratively applying several ML
approaches to inform mechanistic modelling may aid in developing
quantitatively detailed yet mechanistically tractable models for fields
such as developmental patterning or whole organism physiology. This
integrative approach promises to yield hybrid models with accurate yet
biologically interpretable outputs. Such models can then be used to
guide in an informed way the selection of desired behaviours of the
biological system under study.

The ability to extract meaningful biological insight from SciML
approaches is likely to remain a major focus for future research.
Only by “opening up the black box” can we illuminate the
complexities of biological processes, which are essential towards
deepening our scientific understanding of mechanisms that govern
the life we find all around us. Iteratively combining ML with
mechanistic modelling is one of several powerful means to
achieve this goal.
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