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Deciphering the functional effects of noncoding genetic variants stands as a
fundamental challenge in human genetics. Traditional approaches, such as
Genome-Wide Association Studies (GWAS), Transcriptome-Wide Association
Studies (TWAS), and Quantitative Trait Loci (QTL) studies, are constrained by
obscured the underlying molecular-level mechanisms, making it challenging to
unravel the genetic basis of complex traits. The advent of Next-Generation
Sequencing (NGS) technologies has enabled context-specific genome-wide
measurements, encompassing gene expression, chromatin accessibility,
epigenetic marks, and transcription factor binding sites, to be obtained across
diverse cell types and tissues, paving the way for decoding genetic variation
effects directly from DNA sequences only. The de novo predictions of functional
effects are pivotal for enhancing our comprehension of transcriptional regulation
and its disruptions caused by the plethora of noncoding genetic variants linked to
human diseases and traits. This review provides a systematic overview of the state-
of-the-art models and algorithms for genetic variant effect predictions, including
traditional sequence-based models, Deep Learning models, and the cutting-edge
FoundationModels. It delves into the ongoing challenges and prospective directions,
presenting an in-depth perspective on contemporary developments in this domain.
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Introduction

Genetic variants have emerged as pivotal factors in the etiology of severe human
diseases (Klein et al., 2005). Therefore, quantitative and systems-level understandings of the
relationship between human diseases and genetic variants are critical in precision medicine
and clinical care. Over the past decades, the Genome-wide Association Study (GWAS)
(Hirschhorn and Daly, 2005; Visscher et al., 2012) has revolutionized the field of complex
disease genetics, in which millions of single-nucleotide polymorphisms (SNPs) of
individuals are tested to identify significant genotype-phenotype associations. However,
GWAS grapples with two pronounced limitations that have spurred the quest for advanced
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methodologies (Tam et al., 2019). Firstly, it often limited by low
statistical power, mainly stemming from the constraints imposed by
limited sample sizes and the arduous multi-testing demands.
Secondly, the causal relationships between specific genetic
variants and diseases remain obscured, partly owing to the
ambiguity induced by Linkage Disequilibrium (LD) (Bulik-
Sullivan et al., 2015) and the paucity of insights into the
underlying molecular mechanisms. Traditionally, human disease
genetics research has centered around SNPs located in protein
coding regions, a mere 1.2% of the human genome (Visscher
et al., 2012). Next-generation Sequencing (NGS) (Buermans and
den Dunnen, 2014) technologies like RNA-seq, DNase-seq, and
ChIP-seq (Luo et al., 2020) have empowered researchers to measure
gene expression, chromatin accessibility, and transcription factor

(TF) binding genome-wide. This advance fuels an exploration of the
vast non-coding genome and gives the potential to analyze the effect
of genetic variants on nearby local regions.

Given the DNA sequence’s fundamental role as the instruction
manual for all aspects of life, understanding the function of
regulatory genomic elements that control gene expression is
paramount. Moving beyond population-based statistical analyses
like GWAS and Transcriptome-Wide Association Studies (TWAS)
(Wainberg et al., 2019), direct predictions of genetic variant effects
from DNA sequences are pivotal for elucidating the underlying
biological mechanisms. This review will explore the evolution of
computational models for predicting genetic variant effects genome-
wide. We first review the traditional annotation-based models that
rely on simple sequence motifs to estimate variant impacts, then dive

FIGURE 1
The development of models for genetic variants’ effect predictions based on DNA sequences. (A) Traditional models leverage multi-omics data
resources to annotate and prioritize genetic variants and use static motif PWMs to analyze the gain- and loss-function of TF bindings. (B) Deep Learning
models, employing CNN, RNN, and Transformer architectures, are designed to predict functional genomics profiles across various cell types. They
determine the effects of genetic variants by comparing the predicted genomic profiles for the reference versus alternative alleles. (C) Foundation
Models utilize a self-supervised pre-training strategy based onDNA sequences only, enabling them to be efficiently fine-tuned for a range of downstream
tasks, including the prediction of genetic variant effects across different cellular contexts.
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into the advancements achieved through de novo prediction models
that leverage deep learning techniques (Figure 1). We conclude by
discussing the current challenges in the field of systems genetics and
proposing future research directions that hold promise for further
breakthroughs.

Functional variant annotation and
prioritization

The ENCODE (Luo et al., 2020) and the Roadmap Epigenomics
Consortium (Bernstein et al., 2010) have significantly advanced our
understanding of the human genome by profiling a wide array of
functional noncoding elements through diverse assays. This wealth
of data has enabled the functional annotation of genetic variants
across the human genome (Figure 1A). GWAVA (Ritchie et al.,
2014), by leveraging a comprehensive suite of genomic and
epigenomic annotations, predicts the functional impact of
noncoding variants. Its features encompass open chromatin
regions, TF binding sites, histone modifications, RNA polymerase
interactions, CpG islands, genomic segmentation, evolutionary
conservation, genic context, and sequence context. These
annotations are synthesized to mitigate the challenges posed by
context dependency and the variability of evolutionary conservation
signals within regulatory elements. Furthermore, pattern
recognition algorithms help to identify DNA sequence motifs
overrepresented in regulatory regions of co-expressed genes,
enhancing our understanding of gene regulation (Stormo and
Fields, 1998). The Position Weight Matrix (PWM) (Stormo and
Fields, 1998) represents DNA binding sites of different TFs by
scoring each potential base at a given genomic position, thereby
quantifying the specificity of protein-DNA interactions and
facilitating the prediction of new binding sites. An annotation-
based approach, Funseq2 (Fu et al., 2014), integrates these
methodologies to analyze loss-of-function and gain-of-function
events in TF binding. It calculates motif-breaking scores for
variants within TF binding motifs identified by ChIP-seq peaks,
and motif-gaining scores for variants in promoters or regulatory
elements significantly associated with genes, based on PWM
p-values for the mutated allele. Funseq2 also incorporates
annotation-based features such as conservation, enhancer-gene
links, network centrality, and recurrence across samples.
However, reliance solely on regulatory annotations and static
PWMs has its drawbacks: many variants in non-coding regions
do not overlap with regulatory annotations, and novel motifs cannot
be discovered through static PWMs (Zhou and Troyanskaya, 2015;
Kelley et al., 2016).

Addressing these limitations, kmer-SVM (Lee et al., 2011)
emerged as a pioneering model for predicting regulatory
elements directly from DNA sequences, bypassing the need for
existing annotated motifs. It counts the frequencies of various
k-mers within a piece of DNA sequence, employing a support
vector machine (SVM) trained on these k-mer features to assess
the likelihood of a sequence being a functional genomic regulatory
element or a tissue-specific enhancer. Gapped k-mers, utilized as
features in the gkm-SVM (Ghandi et al., 2014), have further
enhanced model accuracy in enhancer identification and TF
binding site prediction. Moreover, Delta-SVM (Lee et al., 2015)

incorporates the gkm-SVM predictions to assess the disruptive
impacts of genetic variants. Despite these advances, the
complexity and non-linearity of the underlying regulatory
grammar in DNA sequences require further improvements in
model performance (Zhou and Troyanskaya, 2015; Kelley
et al., 2016).

De novo prediction of genetic variants’
effects based on deep learning

Deep learning excels in two key capabilities: 1) extracting and
representing features, with enhanced flexibility and power, from
semi-structured and unstructured data formats, such as texts and
images, and 2) approximating various functions effectively through
deep layering, with neural networks comprising stacks of linear
transformations interspersed with non-linear activations. For the
purpose of predicting the effects of genetic variants (Figure 1B), deep
learning models typically represent reference DNA sequences using
the one-hot encoding (where A = [1,0,0,0], C = [0,1,0,0], G =
[0,0,1,0], T = [0,0,0,1], and N = [0,0,0,0]). The input DNA
fragments are represented accordingly, S ∈ R4×L, where L denotes
the DNA sequence length. Feature extraction from these one-hot
encoded sequences to produce sequence embeddings typically
employs two foundational architectures: the 1D Convolutional
Neural Network (CNN) (O’Shea and Nash, 2015) and the
Recurrent Neural Network (RNN) (Sherstinsky, 2018), such as
Long Short-Term Memory Network (LSTM) (Sherstinsky, 2018).

The CNN architecture focuses on local sequence information,
with the initial layer acting as a position-weight matrix, so that the
convolution operations are analogous to computing PWM scores
across the DNA sequence within each sliding window. Subsequent
deep CNN layers capture the non-linear and complex sequence
signatures, by utilizing the pooling layers to reduce dimensions after
each CNN layer. On the other hand, the LSTM architectures capture
sequential dependencies in the genome, by incorporating an internal
state that reflects the long-term sequential information. Following
these feature representation layers, several fully connected layers are
then utilized to generate the final predictions. CNNs, in particular,
are adept at learning hierarchical layers of complex, nonlinear
patterns without requiring strong prior biological assumptions,
thus enabling the discovery of novel sequence motifs and their
organizational sequence contexts (Zhou and Troyanskaya, 2015;
Kelley et al., 2016; Quang and Xie, 2016).

Pioneering applications of deep neural networks in this field, such
as DeepSEA (Zhou and Troyanskaya, 2015) and Basset (Kelley et al.,
2016), have demonstrated the significant potential of CNNs for
predicting genetic variants’ effects based solely on DNA sequences.
DeepSEA leverages a multi-task CNN model to predict TF ChIP-seq,
DNase-seq, and histone mark ChIP-seq peaks across a variety of cell
types, based on the data from the ENCODE andRoadmapEpigenomics
projects. Basset focuses on chromatin accessibility, while DanQ (Quang
and Xie, 2016) combines CNN and LSTM to enhance peak profile
prediction performance. Trained on the large-scale multi-omics
datasets across different cell types from the reference genome, these
deep learning models are thus capable of predicting the peak profiles of
distinct regulatory factors in a cell-type specific way. For a specific
alternative allele of interest, the model’s predictions based on the altered
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genome sequence are compared to those based on the reference
genome. The differences in predictions are then used as indicators
of the alternative allele’s functional disruptions under specific cellular
contexts, leading to mechanistic hypotheses of its downstream effects in
complex human diseases.

Further advancements have seen models like Basenji (Kelley et al.,
2018), which employs CNN architectures to predict a wider range of
genomic signals, including DNase-seq, histone mark ChIP-seq, and
CAGE signals across cell types. By using dilated convolution layers,
Basenji is able to capture more contextual information around 32 kb
DNA sequence windows, thereby identifying relevant regulatory
sequences over a broader scope. Additionally, efforts to understand
genetic variant effects have expanded from modeling the genomic
and epigenomic levels to predicting target genes’ expressions. For
instance, ExPecto (Zhou et al., 2018) predicts the effects on nearby
gene expression in a two-stage strategy. First, ExPecto forecasts histone
marks, TF, and DNase profiles from DNA sequences, and second, it
aggregates the forecasted signals to make predictions of tissue-specific
expression. This approach allows for the interpretation of genetic
variants’ effects in the dysregulation of nearby genes. Moreover,
BPNet (Avsec et al., 2021a) has pushed the boundaries further by
predicting base-resolution genomic profiles, utilizing a CNN
architecture without pooling layers to achieve the single-base pair
resolution predictions.

Cross-species regulatory information and
long-range variant effects

Expanding the training dataset is a well-regarded strategy to
enhance the accuracy of deep learning models. While new genome-
wide functional genomics profiles grow fast, these new datasets
primarily provide information that has already been captured by the
model from existing datasets in the human genome. The additional
benefits of gatheringmore functional genomics datasets from additional
human genomes may decrease, since the genotypes of different
individuals are largely similar. In this context, the quest for
significantly different training sequences becomes paramount, with a
greater potential to develop and refine more sophisticated and
precise models.

An intriguing solution lies in the exploration of non-human species
as a reservoir of novel training data. The regulatory DNA sequences of
species that are genetically related to humans possess sufficient
similarities, enabling the application of machine learning models
trained across these diverse genomes. Such cross-species training has
the potential to enhance the models’ understanding of regulatory
sequence activities. An example of this approach is the expansion of
the Basenji model to simultaneously process functional genomic signal
tracks from both the mouse and human genomes (Kelley, 2020). This
cross-species training strategy has been shown to yield more accurate
predictions on the test set of sequences which has not been seen by the
model previously, compared to those trained exclusively on data from a
single species. This innovative approach underscores the utility of
integrating diverse genomic data sources to significantly advance the
precision of predictive models in functional genomics.

However, CNNs, the key architecture in previous models, often
struggle with the problem of capturing semantic dependencies over long
genomic distances due to their focus on localized feature extraction,

which is limited by the filter size. Besides, RNNs can learn long-term
dependencies but are hampered by issues like vanishing gradients and
inefficiency in dealing with long genomic sequences. This limitation is
particularly challenging in modeling complex cell-type specific gene
regulation, where distal enhancers can influence gene expression over
large distances (Lieberman-Aiden et al., 2009; Wang et al., 2021),
underscoring the importance in predicting long-range effects of
genetic variants. The Transformer model (Vaswani et al., 2017) has
demonstrated remarkable success beyond its initial applications in
natural language processing and computer vision, increasingly
supplanting traditional CNN and RNN-based models across various
domains. Its exceptional capability to capture long-range dependencies
without relying on recurrent units renders it more scalable and adaptable
for handling large datasets. At the heart of the Transformer architecture
is the multi-head self-attention mechanism, which efficiently models
dependencies between genomic locations, regardless of their distance
(Vaswani et al., 2017). This ability allows deeper layers of the model to
discern increasingly complex relationships, facilitating the prediction of
distal genetic variant effects by capturing interactions between genomic
locations separated by considerable distances.

Enformer (Avsec et al., 2021b), a state-of-the-art model leveraging
both CNNs and the Transformer architecture, excels in predicting
histone marks, TF binding sites, chromatin accessibility, and gene
expression across diverse cell types, including those from the
genomes of human and mouse. Its design significantly extends the
model’s receptive field, enabling the identification of distal regulatory
elements up to 100 kb away. This expansive reach allows Enformer to
integrate information from all pertinent regions, such as enhancers,
thereby enhancing gene expression prediction. Moreover, the model’s
attention weights offer greater interpretability, shedding light on the
underlying mechanisms of chromatin and gene regulation. With its
superior performance of predictions across >5,000 functional genome
profiles, including gene expressions, Enformer showcases an
unparalleled capacity to forecast both local and distal genetic variant
effects. This demonstrates the potential of Transformer-basedmodels in
advancing our understanding and prediction of genetic regulations
underlying complex traits.

General sequence grammar of variants
learned by foundation models

Traditional deep learning models have achieved impressive
results in interpreting functional genomic profiles from DNA
sequences through supervised learning, where the models are
trained to accurately predict experimental genomic tracks based
on the sequence representations. However, this approach
necessitates a vast amount of labeled data, constraining the
models’ performance and utility in situations where labeled data
is scarce. Obtaining high-quality, labeled datasets is often expensive
and time-consuming. Moreover, the available data tends to be biased
towards certain well-studied cell types with many tracks, neglecting
a broad spectrum of cell types yet to be explored. This imbalance
results in overrepresented genomic tracks overshadowing the DNA
sequence representation, diminishing the efficacy of genomic
variant effect prediction in less studied, underrepresented cell types.

In contrast, the development of Foundation Models originally in
the fields such as text and image generation illustrates the potential
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benefits of leveraging context information through a self-supervised
pre-training strategy (Devlin et al., 2018; Brown et al., 2020). These
models, trained on enormous datasets, have demonstrated capabilities
surpassing human performance in certain tasks. The pre-training and
fine-tuning framework of Foundation Models involves initial training
on vast unlabeled datasets, followed by fine-tuning for specific
downstream tasks (Devlin et al., 2018; Brown et al., 2020). Applied
to disease genetics studies, this approach entails pre-training models
on unlabeled genomic sequences, which are subsequently fine-tuned
for specific genomic interpretation tasks (Figure 1C). This
methodology not only mitigates the challenges associated with data
scarcity and bias but also enhances the model’s ability to understand
and predict across a diverse range of cell types and genomic contexts
(Ji et al., 2021).

DNABERT (Ji et al., 2021) is a pioneer encoder-based Foundation
Model in genetics. It processes DNA sequences by breaking them
down into k-mers. For input sequences with lengths up to 512 bp, 15%
of k-mers are randomly replaced by a [MASK] token. The
Transformer encoder then leverages context information to
reconstruct these masked k-mers without additional information.
By accurately reconstructing the masked k-mers, DNABERT
captures the fundamental grammatical structures of DNA
sequences, enabling it to generate meaningful representations for
any given sequence. This model has demonstrated remarkable
efficacy across numerous downstream applications (Ji et al., 2021),
such as promoter identification, TF binding site prediction, and the
detection of functional genetic variants. Building on DNABERT’s
foundation, subsequent iterations like DNABERT2 (Zhou et al., 2023)
and DNABERTS (Zhou et al., 2024) have broadened the scope of

Foundation Models to encompass a wider range of species beyond
just humans.

The Nucleotide Transformer (Dalla-Torre et al., 2023), an
advanced and larger encoder-based Foundation Model, is pre-
trained on DNA sequences with over 2.5 billion parameters and
can handle sequences up to 6 kb in length. This model has shown
remarkable success in a variety of downstream tasks (Dalla-Torre
et al., 2023) after fine-tuning, demonstrating the beneficial impacts
of both increased model size and the ability to process longer
sequences. Beyond the Transformer architecture, HyenaDNA
(Nguyen et al., 2023) innovatively extends the contextual reach to
up to 1 million tokens at the single nucleotide level through the use
of global convolutional filters. This significant enhancement enables
the model to effectively leverage long-range chromatin regulation at
single base pair resolution. Additionally, HyenaDNA introduces
novel downstream adaptation methods, such as a unique soft
prompt technique. This approach allows for exceptional
downstream results without the necessity of updates to the pre-
trained model, thus facilitating the seamless application of the
Foundation Model to various tasks, including the prediction of
genetic variant effects. This revolution in model design and
functionality marks a pivotal advancement in our capacity to
understand and interpret complex genetic information.

Discussions

This review has explored the evolution of models dedicated to
predicting the effects of genetic variants using only DNA sequences

TABLE 1 Summary of computational models.

Tool Model
architecture

Required data Link

GWAVA Annotation-based Experimental annotation https://www.sanger.ac.uk/tool/gwava/

Funseq2 Annotation + PWM Experimental annotation + DNA sequence http://funseq2.gersteinlab.org/

Delta-SVM SVM DNA sequence https://www.beerlab.org/deltasvm/

DeepSEA CNN DNA sequence + experiment peaks https://hb.flatironinstitute.org/deepsea/

Basset CNN DNA sequence + experiment peaks https://github.com/davek44/Basset

DanQ CNN + LSTM DNA sequence + experiment peaks https://github.com/uci-cbcl/DanQ

Basenji CNN DNA sequence + experiment signals https://github.com/calico/basenji

ExPecto CNN + regression DNA sequence + experiment signals https://github.com/FunctionLab/ExPecto

BPNet CNN DNA sequence + experiment signals https://github.com/kundajelab/bpnet/

Basenji2 CNN DNA sequence + experiment signals https://github.com/calico/basenji

Enformer CNN + Transformer DNA sequence + experiment signals across
species

https://github.com/google-deepmind/deepmind-research/tree/
master/enformer

DNABERT Transformer DNA sequence https://github.com/jerryji1993/DNABERT

DNABERT2 Transformer DNA sequence https://github.com/MAGICS-LAB/DNABERT_2

DNABERTS Transformer DNA sequence https://github.com/MAGICS-LAB/DNABERT_S

The Nucleotide
Transformer

Transformer DNA sequence https://github.com/instadeepai/nucleotide-transformer

HyenaDNA Hyena DNA sequence https://github.com/HazyResearch/hyena-dna
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(Table 1). Enabled by the widespread availability of multi-omics
datasets and enhanced computational resources, researchers have
transitioned from basic feature annotation and motif recognition to
the development of sophisticated deep learning models. These
models, trained through both supervised and self-supervised
approaches, have progressively achieved more accurate
predictions of the genetic variant effects across a variety of cell types.

Despite their advancements, deep learning models for predicting
genetic variant effects face two significant challenges: Firstly, model
training predominantly relies on labeled data at the cell type level, which
limits their capability to discern the functional effects at the single-cell
level. With the advent of single-cell sequencing technologies, such as
scRNA-seq, scATAC-seq, and scHi-C, there is an influx of data
providing detailed insights into gene expression, chromatin
accessibility, and regulation at the single-cell level. This type of data,
however, tends to be sparse and noisy. Foundation models, pre-trained
on the fundamental sequence grammar, exhibit a strong potential for
enhancing their performance through fine-tuning with minimal data,
addressing the challenge of integrating single-cell level data. Secondly,
the training of current models is anchored to the reference genome,
neglecting the diversity and frequency of genetic variations across
different genotypes. While these models may excel in predicting
genetic profiles based on the reference genome, they primarily
capture consensus information, which may not accurately represent
the actual effects of genetic variants. The discrepancies between the
reference and alternative alleles do not fully encapsulate the impact of
genetic variants. CRISPR (Korkmaz et al., 2016; Fulco et al., 2019)
technology, which elucidates the casual and real effects of genetic
variants, offers valuable insights beyond the reference genomic
context. The CRISPR-derived data is expected to help to fill the gap
between model predictions and biological reality.
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