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Mechanistic, constraint-based models of microbial isolates or communities are a
staple in the metabolic analysis toolbox, but predictions about microbe-microbe
and microbe-environment interactions are only as good as the accuracy of
transporter annotations. A number of hurdles stand in the way of
comprehensive functional assignments for membrane transporters. These
include general or non-specific substrate assignments, ambiguity in the
localization, directionality and reversibility of a transporter, and the many-to-
many mapping of substrates, transporters and genes. In this perspective, we
summarize progress in both experimental and computational approaches used to
determine the function of transporters and consider paths forward that integrate
both. Investment in accurate, high-throughput functional characterization is
needed to train the next-generation of predictive tools toward genome-scale
metabolic network reconstructions that better predict phenotypes and
interactions. More reliable predictions in this domain will benefit fields ranging
from personalized medicine to metabolic engineering to microbial ecology.
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1 Introduction

Living systems interact with their surroundings. They acquire resources from their
environment; co-operate, steal from, compete against, or kill their neighbors. Molecular
compounds are the primary effectors of such interactions and thus the extent of these
behaviors depend on the specialized transport proteins that move substances across
membrane interfaces, into and out of cellular compartments. Microbes have designed
transporters to access an incredible diversity of chemical species, enabling them to harbor
pathways that generate cytotoxic byproducts (e.g., photorespiratory phosphoglycolate;
Bauwe et al., 2012), to survive in harsh environments (e.g., acid mine drainage; Baker
and Banfield, 2003), to harvest scarce resources (e.g., Lake Vostok, buried beneath 4 km of
ice; Karl et al., 1999), to communicate with one another (e.g., quorum sensing in Vibrio;
Hammer and Bassler, 2003), to attack one another (e.g., antibiotic production in soils;
Chandra and Kumar, 2017), and to maintain a delicate balance of redox couples (Falkowski
et al., 2008). For those interested in mechanistic modeling of such systems, knowing the full
repertoire of microbial transport processes is crucial to predicting their dynamics in
different habitats. This article describes the origins, state-of-the-art, challenges and
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future prospects of transporter functional annotation that we hope
will serve as a “call to arms” for doubling efforts in both
computational and experimental approaches.

Mechanistic, constraint-based modeling in systems biology has
benefitted immensely from standardization of the model
reconstruction process (Thiele and Palsson, 2010; Heirendt et al.,
2019), testing and reporting the quality of models (MEMOTE;
Lieven et al., 2020), consolidation of new algorithms and
software into just a few dominant software platforms
(overwhelmingly COBRA; Ebrahim et al., 2013; Heirendt et al.,

2019), and sharing in just a few dominant formats (overwhelmingly
SBML; Keating et al., 2020). That coordination has paved the way for
an ever-growing and active community of software developers,
engineers, systems biologists and computational biologists
working to relax many of the rigid assumptions of the first
generation of flux balanced models (Varma and Palsson, 1994).
While the software and protocols are fairly thorough, there are
several aspects of model reconstruction that are a bit flimsy,
including what to do about polymers, quinones, and, as we
discuss in detail here, transporters. Some authors may take the

FIGURE 1
The pitfalls of transporter annotations in community metabolic modeling. (A) Types of errors encountered when assigning a single putative
transporter to a single substrate. An annotationmaymiss an assignmentwhere there should be one, may create an assignmentwhere there should not, or
may get the direction(s) of transport wrong (either due to an incorrect orientation of an irreversible process, or due to a reversibility error). (B)Mappings
from transporter genes to substrates are non-unique. A single genemaymap to a single substrate ormultiple substrates, a single genemay be a part
of a complex with multiple genes which map to a single substrate or multiple substrates. (C) Microbial interactions are variously affected by transporter
annotation errors. For example, a species might not grow with missing assignment errors, the community might accumulate or deplete extracellular
metabolites by false assignment errors, or a mutualism might be broken by directionality errors. (D) Analysis of transport mappings in BiGG models (n =
108 models). Histograms showing the proportion of transporter reactions to total reactions (left), the proportion of transporter genes to total genes
(second from left), the proportion of one-to-many gene-to-transporter mappings to total transporter genes (second from right), and the proportion of
one-to-many exometabolite-to-transporter gene mappings to total exometabolites (right). The large peaks correspond, mostly, to models of
Escherichia coli, which are overrepresented in the BiGG database.
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effort to report what those decisions were and why they were made,
but there is certainly space for our community to weigh in on these
persistent concerns.

The accuracy of genome-scale metabolic model (GEM)
predictions are strongly correlated to the quality and
completeness of the metabolic network reconstructions (Bernstein
et al., 2023). The availability of transport mechanisms for import of
nutrients greatly influences choice of gap-filled reactions in both
automatically generated and curated models. This issue is further
complicated by the “moonlighting” nature of some proteins (Jeffrey,
2018) where under different conditions they assume different
functional roles. Many proteins also exhibit weak promiscuous
activities for a variety of metabolites which leads to an
“underground metabolism” that plays a major role in the fitness
of organisms (Noterbaart et al., 2018). Not accurately accounting for
presence of some importedmetabolites will lead to exclusion of these
reactions from the final network reconstruction and could lead to
errors in assessing the robustness of a system to various types of
perturbation. In previous work we have shown that functional
annotation tools generate metabolic annotations that are
incomplete and inconsistent with each other, and that the same
is true for transporter annotations, with typically less than half the
transporter annotation tools having substrate predictions that are
sufficiently detailed to be incorporated in a metabolic model
(Griesemer et al., 2018).

2 Discussion

2.1 Transporter annotations: what could
go wrong?

Pitfalls in matching transporters to their substrates come in a
variety of flavors. We define three elemental error types—missing
assignments, false assignments, and directionality errors (Figure 1A).
Theremay be a fourth, somewhatmore esoteric error type not included
in the figure that applies to the case of a transporter that modifies a
substrate during import (e.g., the phosphotransferase complex). These
are likely rare and we have not encountered one, but an error in the
annotation of the substrate modification or choice of cofactor (e.g.,
symporters) could conceivably occur. The frequency of different error
types is likely variable for different species and for different annotation
tools, but for some approximate context we quantified these errors in
the model organism E. coli K12 MG1655, comparing an extensively
curated GEM (iML1515; Monk et al., 2017) against an automatically
generated GEM for the same genome using CarveMe (v1.5.2; Machado
et al., 2018). Although transporter annotations in iML1515 may be
updated in the future, we consider it a high-quality benchmark for
evaluating error rates in automatically generated GEMs. In the
CarveMe draft model, missing assignments accounted for 8.9%,
false assignments accounted for 16.2%, and directionality errors
accounted for 4.5% of the total transport reactions. Thus, nearly a
third of annotated transporter functions were in error; because this
strain is massively overrepresented in the BiGG database (King et al.,
2016) that CarveMe references, we should treat these error rates as an
underestimate of the error rate expected for non-model organisms
using the same method. Griesemer and others showed that genome
coverage by metabolic annotation tools, and discrepancies in

annotation across different tools are significantly worse for
organisms that are more phylogenetically distant from well-studied
model organisms such as E. coli and B. subtilis, and we expect the same
to be true for transporter annotations (Griesemer et al., 2018).

Each error type applies in GEMs to four types of gene-protein-
reaction (GPR) mappings—one-to-one, one-to-many, many-to-
one, and many-to-many (Figure 1B). Non-unique mappings
between transporter genes, transporter proteins, and substrates
arise from the possibility that individual transporters have more
(one-to-one) or less (one-to-many) specificity in binding or selective
permeability, and that individual substrates may bind or pass
through one (one-to-one) or more (many-to-one) transporters.
An analysis of all manually curated models in the BiGG database
(King et al., 2016) revealed a wide range of unique mapping
frequencies, with 36% ± 29% (range 0%–91%) of exometabolites
mapping uniquely to a single transporter gene (n = 108 models;
Figure 1D). As an added layer of complexity, gene products may be
associated with more than one transporter complex (e.g., the
GLUT1 subunit is present in multiple sugar transporters), which
themselves may have broad substrate specificity (many-to-many) or
serve as a common structural protein for various transporters. As we
explore sources for the different error types and how those errors
propagate through non-unique mappings in more detail
(Figure 1C), it is worth reviewing the current state-of-the-art in
automated functional transporter annotation tools and the
databases they reference to address these pitfalls.

2.2 Transporter annotation tools
and databases

Besides the major sequence repositories, there are currently two
primary online database resources dedicated to transporters, and
several more niche databases which focus on specific taxonomic
groups or transporter types (Table 1). With two decades of
development and curation, the Transporter Classification
Database (TCDB; Saier, 2006; Saier et al., 2009; Saier et al., 2014;
Saier et al., 2016; Saier et al., 2021) remains a central clearinghouse
for transporter structures, bioinformatics tools, and is the official
home of the Transporter Classification (TC) system ontology, a
scheme based on mechanism, energy source, taxonomy and
substrate. Since 2001, the International Union of Biochemistry
and Molecular Biology (IUBMB) has designated the TC system
as the formally recognized ontology for membrane transporters
across all domains of life (Busch and Saier, 2003). Each entry in
TCDB is manually curated and often accompanied by a detailed
summary of the literature, and is maintained by a well-known
authority on transporters. Surprisingly, Kroll and others reported
that more than half of TCDB entries scored poorly (2 or below, on a
scale from 1 to 5) on the UniProt annotation scale, and instead opted
to rely on GO and UniProt entries (only those with a score of 5; Kroll
et al., 2023). TransportDB (now in version 2.0; Elbourne et al., 2017)
is another popular resource for systems biologists which builds on
the TCDB and NCBI datasets, with entries currently available for
2,761 organisms (predominantly bacteria, though there are some
eukaryotes and archaea) through a graphical and convenient web-
portal. Entries in TransportDB are computationally derived with
their accompanying annotation tool called TransAAP.
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A chronology of transporter annotation tools, their various
approaches, and a summary of their performance is available
elsewhere (Alballa et al., 2020; Cunha et al., 2023), and we
simply provide a convenient lookup table with short descriptions
and URLs for reference (Table 2). Recently, the TranSyT tool
(Cunha et al., 2023) has emerged as a front-runner alongside
TransAAP. In the spirit of integration and ease of use, TranSyT
can be implemented as a standalone app to generate a SBML file of
transport reactions, or within popular automated GEM
reconstruction pipelines like Merlin (Capela et al., 2022) and the
ModelSEED reconstruction tools in KBase (Faria et al., 2023).
TranSyT also scores annotations, a feature which may be
leveraged for merging multiple annotation sources (Henry et al.,
2010; Greisemer et al., 2018) or for generating ensemble GEM
reconstructions.

2.3 Modeling microbial community
interactions

Genome scale models have been used in simulating microbial
interactions for nearly two decades (reviewed by Heinken et al.,

2021), and numerous algorithms have tackled the problem from
different angles (reviewed by Biggs et al., 2015; Bauer and Thiele,
2018; Deiner and Gibbons, 2023; Scott et al., 2023). The architecture
of community models, whether they ought to be compartmentalized
or pooled into a “super-organism,” and whether one should attempt
to sample the combinatorial interactions with flux balance analysis
or to isolate the elementary modes of exchanges was pondered early
on (Taffs et al., 2009; Perez-Garcia et al., 2016). Common to most of
the more recent attempts is a compartmentalized approach with
either stationary or dynamic flux balance analysis, wherein each
strain-specific model interacts through an extracellular
“compartment” through the exchange of metabolites. Intuitively
(and formally; Klitgord and Segre, 2010), the compartmentalization
of pathways, or parts of pathways, or of entire metabolic networks
strongly influences predicted flux distributions and interactions. For
example, a non-compartmentalized model might regenerate ATP
fromADP in the absence of a protonmotive force. Thus, an accurate
accounting of which substrates, which products, and which
reactions are where is vital to constraining fluxes and identifying
modes of species-species interactions within a community.

Automated reconstruction of draft GEMs has improved
considerably over the past decade (Machado et al., 2018; Wang

TABLE 1 Databases dedicated to transporters. NA, URL not maintained.

Database Description URL Reference

ABCdb Prokaryotic ATP binding cassettes. Curated and
computational partitions

www-abcdb.biotoul.fr/ Fichant et al. (2006)

ARAMEMNON Plant membrane proteins. Computational aramemnon.botanik.uni-koeln.
de/

Schwacke et al. (2003), Schwacke and Flügge (2018)

TCDB All transporters. Curated www.tcdb.org/ Saier (2006), Saier et al. (2009), Saier et al. (2014), Saier
et al. (2016), Saier et al. (2021)

YTPdb Yeast membrane proteins. Curated NA Brohée et al. (2010)

TransportDB 2.0 All transporters. Computational http://www.
membranetransport.org

Elbourne et al. (2017)

TABLE 2 Annotation tools dedicated to transporters. Note that some portals appear to no longer bemaintained (NA), while others have changed URLs since
publication.

Name Notes URL Reference

TransAAP Integrated with TransportDB www.membranetransport.org/ Elbourne et al. (2023)

TIP Integrated with PathwayTools; parses existing text-based annotations bioinformatics.ai.sri.com/ptools/ Lee et al. (2008), Karp et al. (2020)

TrSSP Standalone, SVM annotation www.zhaolab.org/TrSSP/ Mishra et al. (2014)

TRIAGE Formerly the annotation tool for Merlin NA Dias et al. (2017)

TransATH Standalone, automated pipeline based on Saier’s protocol NA Aplop and Butler (2017)

TranCEP Standalone, combined homology and SVM annotation github.com/bioinformatics-group/
TranCEP

Alballa et al. (2020)

TranSyt Successor to TRIAGE, standalone and integrated with Merlin, KBASE transyt.bio.di.uminho.pt/ Cunha et al. (2023)

TransportTP Standalone, combined homology and SVM annotation NA Li et al. (2009)

PortPred Standalone. Combined DL-based protein embeddings and ML classification github.com/MarcoAnteghini/PortPred Anteghini et al. (2023)

SPOT Standalone. DL using Transformer Networks for classification of transporter-
substrate vector pairs

github.com/AlexanderKroll/SPOT Kroll et al. (2023)
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et al., 2018; Heirendt et al., 2019; Faria et al., 2023), making great
strides in closing the gap with curated models from genome
information alone, but a recent analysis of automated and non-
gapfilled draft GEMs showed dismal performance in predicting
substrate utilization (Gralka et al., 2023). While there is still no
substitute for manual curation by a skilled hand, draft GEM quality
could be markedly improved through more comprehensive
transporter annotations (Zuniga et al., 2021). Expansion from
monoculture simulations to more complex communities likely
amplifies these errors, resulting in poor agreement between
predicted and actual growth rates in a gut community using
three of the latest community FBA algorithms (Pearson
correlations of 0.07, at best; Joseph et al., 2024). Special attention
tomicrobial interactions (Sung et al., 2017) was given in the AGORA
bacteria reconstructions (Magnúsdóttir et al., 2017; Heinken et al.,
2023) and for the human host (the number of extracellular transport
reactions ballooned from 537 in Recon1 to 1,537 in Recon2; Sahoo
et al., 2014), but clearly there is room for more accurate and
comprehensive representation of transport processes to improve
growth and interaction predictions.

2.4 Challenges for transporter annotation
databases and tools

Guiding principles from the larger systems biology community
of shared access, integration and formatting, consistent with the
FAIR principles (Barker et al., 2022), should be adopted when
building relational databases and the tools that draw from them.
This includes providing persistent link identifiers for genes, proteins,
and substrates to common resources (e.g., NCBI, PubChem,
BRENDA, RHEA) wherever possible, providing documented
API’s for user access, adhering to community standard formats
like SBML and JSON, in the case of tools, working with other
developers to integrate with community standard reconstruction
pipelines like COBRA and KBase. As we look to the next-generation
of transporter annotation tools, especially those that build from
emerging methods in machine learning and artificial intelligence,
databases that prioritize these principles will be more readily
accessed and leveraged.

Database and tool developers should also seek to provide, wherever
possible, a minimal set of functional attributes of transporter gene
annotations required for GEM reconstruction. We have identified five
such attributes: membrane localization, membrane orientation (inward
vs. outward facing), binding reversibility, substrate specificity, and
reaction stoichiometry. We will discuss the current approaches and
challenges in assigning these attributes.

2.4.1 Membrane localization
With the exception of a few exceptionally well-studied model

organisms, protein localization across an entire proteome, or even a
substantial portion, is typically unknown a priori. A number of
predictive tools are based on homology to manually curated
databases of proteins of known localization (e.g., PSORT; Yu et al.,
2010) or based on identification of transmembrane domains and their
orientation (e.g., TMPred; Cuthbertson et al., 2005). Today, 77 protein
subcellular localization prediction tools are now listed in bio.tools
(reviewed in Li et al., 2023), with the newest generation (e.g.,

TmAlphaFold; Dobson et al., 2023) taking advantage of recent
advances in structural prediction. Several are tailored to specific
model organisms, while others draw from a broader taxonomic
resolution. In the absence of sanity-checks for each
compartmentalized reaction during the reconstruction process for a
particular species, and given the importance of assigning transporters to
the correct membrane, it may be wise to consider a consensus
localization (e.g., COMPARTMENTS; Binder et al., 2014) from a
collection of the most relevant sorting tools and other sources.

2.4.2 Transporter orientation and reversibility
Secondary-active transporters like ion symporters and

antiporters are typically reversible, but are often practically
irreversible under physiological conditions. However, a famous
counter-example is the oxygen-dependent transport of glutamate
into and out of nerve cells (Szatkowski et al., 1990). Even in this non-
canonical case, forward and reverse kinetics may be radically
different for inward- and outward-facing protein orientations
(Zhang et al., 2007). Primary-active transporters are, to our
knowledge, strictly irreversible. Because of its functional
classification scheme, annotation to the TC ontology should
cover all but the most egregious cases of reversibility.

2.4.3 Substrate specificity
Because assigning substrates to transporters is the crux of the

matter, we conducted an analysis of TransportDB 2.0 (Elbourne
et al., 2017), the most extensive database of transporter annotations
currently available. The dataset comprised 2,661 unique substrate
names associated with 940,581 substrate-transporter pairs,
distributed among 2,745 organisms. Substrates link identifiers
were unavailable, and a single substrate often appeared with
multiple names (e.g., “sodium ion” vs. “Na+”), making an
estimate of the true number of unique substrate-transporter pairs
difficult. For a subset of the unique substrate names (for practical
reasons, those which appeared in more than 8 organisms), we
manually assigned substrates into four categories: known (e.g.,
“Oxalate”), putative (containing a “?”; e.g., “Oxalate?”),
ambiguous (“a carboxylic acid”), and unknown (e.g.,
“metabolite”). From this categorization across all organisms, we
found that 52% ± 9%were known, 9% ± 4%were putative, 31% ± 8%
were ambiguous, and 9% ± 6% were unknown (Figure 2A).
Although the full 5-level TC system ontology terms are returned
with TransAAP, the datasets available through TransportDB
2.0 contain only the first three levels (194 unique terms). From
this coarse resolution, we found that only 5 ontology terms
represented a majority (66% ± 9%) of all transporter annotations
across all organisms, with a single term (3.A.1; ATP binding
cassettes) representing nearly half (45% ± 11%; Figure 2B).

A single transporter may have similar affinity for multiple
compounds, or even entire classes of compounds. This means
that in some cases, a transporter might be annotated to an
ambiguous level of substrate specificity (e.g., “a dicarboxylate”)
not because of a lack of knowledge of the appropriate
dicarboxylate molecule it transports (annotation is a missing one-
to-one mapping), but rather because it has broad specificity for
multiple dicarboxylate molecules (annotation is truly a one-to-many
mapping); perhaps even with comparable kinetic properties. Modest
changes of just one or two residues in transporter binding domains
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can affect substrate specificity and even stoichiometry, as is the case
for the cation/proton antiporters (Masrati et al., 2018), so
degeneracy in substrate specificity might be unfortunately necessary.

2.5 The trouble with diffusion

Although the selective permeability of membrane lipids with
different lipid compositions have been described in great detail
(Hannesschlaeger et al., 2019), diffusion reactions beyond the gasses
and a few waste products are rarely included in GEM reconstructions.
This may partly be due to the arbitrary nature of delineating the broad
spectrum of diffusion rates, from fast (order 10–2 m2 s−1; e.g., oxygen) to
slow (10–10 m2 s−1; e.g., high molecular weight polar compounds)
diffusing molecules. In general, phosphorylated metabolites might be
considered slow, eliminating a sizable portion of the total intracellular
metabolites, but the line becomes blurry when considering small
nonpolar metabolites like fatty acids, alkanes or alcohols. To make
matters worse, the decision to include a diffusive reaction for a
metabolite which is also actively transported would result in an
underestimate of energy costs in standard FBA. In addition to
specificity in transmembrane permeability, diffusive transport across
other intracellular compartments, like the shell proteins of
cyanobacterial carboxysomes which show preference for negatively
charged ions (Mahinthichaichan et al., 2018), should be represented.
Knowledge of the localization of pathways, or parts of pathways within,
can aid in filtering the list of candidate diffusive reactions into and out of
subcellular compartments, but this area is ripe for progress.

2.6 Prospects for computational approaches
to transporter functional annotation

The state-of-the-art in transporter annotation brings together
sequence alignment, systems biology ontologies, and structure analysis
tomake predictions about whether a gene product is a transporter, where
it might be located, its orientation, and what substrates it might bind.
Nevertheless, we find that many transporters lack sufficient coverage in
one or more of the required attributes. A leap forward will address gene-
protein-reaction specificity first.

We propose a concept for a computational pipeline built on existing
tools to progressively narrow the search space of potential transporter-
substrate binding pairs. By limiting the number of candidate substrates
for each predicted transporter structure, one can devise a strategy to
limit compute resources and alleviate some of the scalability problem
for downstream experimental validation. The pipeline (Figure 3),makes
parallel use of bioinformatics, systems biology tools and molecular
dynamics simulations to generate a short-list of substrates with
relatively high predicted ligand binding affinities. The workflow
begins with homology search against the TCDB to annotate genes
to the lowest level of ontology, given some threshold alignment.
Although the TC System is not phylogenetically structured per se,
an analogous approach to “Lowest Common Ancestor” (e.g., MEGAN;
Huson et al., 2007) could be used to assign ontology terms at a threshold
confidence level. In this scheme, a gene with close sequence similarity to
a transporter gene in the TCDB is annotated to level 5 (e.g., 2.A.1.1.1),
whereas another with weaker alignment is annotated to level 3 (e.g.,
2.A.1). Structuring the depth of annotation is a conservative strategy to

FIGURE 2
Summary of transporter annotations retrieved from TransportDB 2.0. (A)Distributions of the proportion of transporters annotated to different levels
of specificity across all organisms. Vertical dashed lines correspond to the mean of each distribution, and an example of each category is provided. (B)
Distributions of the proportion of transporters of the top 3 most abundant [super-] families across all organisms. ABC–ATP binding cassette; MFS–major
facilitator superfamily; PTS–phosphotransfer-driven group translocators.
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generate a list of children substrates that the query structure could
possibly transport (i.e., all substrates beneath 2.A.1). In a parallel step, a
draft GEM is reconstructed, returning the full set of intracellular
metabolites. By taking the intersection of these two lists, we pare
down the candidate substrates to only those which the organism
could conceivably take up or secrete. More stringent approaches
exist at this step, including an analysis of uptake and secretion
potential given the free exchange of all intracellular metabolites
across the system boundary using flux variability analysis
(Gudmundsson and Thiele, 2010), but the concept remains the
same. Finally, from the intersection set, predictions of ligand binding
affinity are used to generate a ranking of candidates. This step takes
advantage of advances in structure prediction (e.g., AlphaFold; Jumper
et al., 2021; RoseTTAFold; Baek et al., 2021), binding site inference,
docking andmolecular dynamics simulations (e.g., Ohnuki et al., 2023).
One approach here is to infer transporter binding sites from homologus
ligands and their cognate binding pockets already in the PDB databank
(PDBspheres; Zemla et al., 2022). Fusion Docking-ML calculation can
then be performed to determine the most favorable ligand poses in the
transporter (Jones et al., 2021). If increased fidelity is desired, various
versions of molecular dynamics simulations can be performed to
qualitatively and/or quantitatively predict favorable dynamical

protein-ligand interactions and associated binding constants
(Sohraby and Nunes-Alves, 2023). This approach benefits from high
throughput, with each simulation taking approximately 0.01 s/ligand
(Zhang et al., 2014), but may suffer from the lack of sensitivity for low
molecular weight ligands (less than 4 carbons) and metals, although
progress is being made (c.f., zinc; Wang, 2023). An exciting
development in this area is quantum docking simulations (Heifetz,
2020), which would, in principle, allow quantitation of binding affinities
for these small molecules. The drawback with this quantum docking is
throughput, with simulations taking on the order of minutes to hours
depending on the size of the binding pocket, each. At this stage,
depending on one’s objectives and the resources available, one might
either submit the best candidates for experimental validation or simply
apply a threshold affinity for annotation.

2.7 Prospects for transporter
functional genomics

With the advent of reliable protein structure prediction tools such
as AlphaFold (Jumper et al., 2021), we will likely see many of our
current sequence-to-function annotation tools replaced by a whole

FIGURE 3
A proposed computational workflow to progressively narrow the search space for experimental validation of transporter functional annotations. Red
lines correspond to paths followed for a single transporter and are repeated for all un-annotated transporters, while black lines correspond to paths taken
(once) for the whole genome. The pipeline begins (1) with alignment of transporter genes to the TCDB, retrieving a list (horizonal bars) of all children
metabolites associated with the lowest common ancestor ontology term. In another path (2), a draft GEM is reconstructed to generate a list of all
intracellular metabolites synthesized or degraded in the metabolic network. The intersection of both lists (cyan bars) is passed to a third path (3) as
candidates for docking simulations using the predicted protein structure. Predicted binding affinities that exceed some threshold are finally passed as
candidates for experimental validation.
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new generation of sequence-to-structure-to-function tools over the
next decade, both for enzyme annotation and for substrate-specific
transporter annotation. However, the availability of large-scale
substrate specificity data to train such tools will likely continue to
be a bottleneck. While computational methods can pare down the
search space of transporter-ligand binding candidates, evidence for
transporter annotations should come from experimental validation,
preferably in vivo (David et al., 2019). Recent advances in laboratory
automation and mass spectrometry are dramatically increasing the
throughput of functional and phenotypic screening (Coutant et al.,
2019), and there is potential for functional genomics guided by
mechanistic models. For instance, dynamic FBA can be used to
identify target genes to generate smaller, metabolic process-specific
deletion libraries for subsequent phenotyping (Brunnsåker et al., 2023).
To our knowledge, these approaches have not yet been applied to
transporters but could be easily adapted using Biolog-like screens
(Bochner et al., 2001) or exometabolomics (Jenkins Sánchez et al.,
2022). One high-throughput approach involves the use of a substrate-
selective riboswitch as biosensors (Genee et al., 2016). When expressed
along with metagenomic DNA fragments, transformants could be
screened for their ability to grow on the substrate, and in so doing, the
authors could assign function to uncharacterized transporters and
identified numerous transporter annotations in error for multiple
substrates. Another exciting recent development is Boundary Flux
Analysis (reviewed in Lewis, 2024), a method to link changes in
metabolite concentrations in growth media to constraints on uptake
or secretion rates in GEMs. This approach appears scalable and holds
great promise for screening deletion libraries.

3 Conclusion

Errors in transporter annotation arise from a variety of sources,
most often resulting in missing or false assignments to substrates.
Because of the non-unique mapping of genes to transporters to
substrates, these errors metastasize, contributing to horrendous
performance in the genotype-phenotype mapping of automated
GEM reconstructions based on genome annotation alone.
Mischaracterization of species-environment interactions is
compounded when inferring microbial interactions in community
models, leading to further expansion of spurious and false
interaction predictions, and therefore poor fidelity to
observations. To complement the progress enjoyed by other
aspects of GEM reconstruction, we need to pursue new
computational and experimental approaches to the transporter
annotation problem. We offer a strawman workflow combining
hierarchical ontology filtering with molecular dynamics simulations,
and look to emerging high-throughput screening methods to
validate predictions. Until the larger systems biology community
and sponsors prioritize this challenge, we can continue to expect
diminishing returns on advances in microbiome modeling.
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