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Quantitative Systems Pharmacology (QSP) has become a powerful tool in the
drug development landscape. To facilitate its continued implementation and to
further enhance its applicability, a symbiotic approach in which QSP is combined
with artificial intelligence (AI) and machine learning (ML) seems key. This
manuscript presents four case examples where the application of a symbiotic
approach could unlock new insights from multidimensional data, including real-
world data, potentially leading to breakthroughs in drug development. Besides
the remarkable benefits (gAIns) that the symbiosis can offer, it does also carry
potential challenges (pAIns) such as how to assess and quantify uncertainty, bias
and error. Hence, to ensure a successful implementation, arising pAIns need to be
acknowledged and carefully addressed. Successful implementation of the
symbiotic QSP and ML/AI approach has the potential to serve as a catalyst,
paving the way for a paradigm shift in drug development.
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Introduction

Mathematical modelling of biological processes has traditionally been performed by
integrating observations from in-house experiments and/or published literature;
understanding the physiological/pathological/pharmacological mechanisms of action;
and, under simplifying assumptions, translating such processes into equations that can
represent the observed dynamics. Due to their mechanistic underpinnings, these models do
not necessitate extensive datasets for development: they leverage scientific knowledge of the
underlying processes, as opposed to being data-driven. Moreover, they can be used to fill in
a gap when data is lacking or scarce, as they provide a means to test hypotheses in a less
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costly manner. Once built, model exploration can predict how
biological systems will behave under distinct conditions,
characterising mechanisms not observed experimentally. The
pharmaceutical industry has been using mathematical modelling
to support many phases of drug development, and nowadays,
Quantitative Systems Pharmacology (QSP) modelling has become
a popular approach in multiple facets: helping to make go/no-go
decisions for drug development investment, finding optimal doses
and dosing schedules for monotherapies and/or combination
therapies, providing valuable input in regulatory decisions, and
so forth (Azer et al., 2021; Jane et al., 2021; Verma et al., 2023).

QSP model development requires a lot of time and effort
commitment as it involves extensive literature curation and a
deep understanding of the underlying biology/pharmacology,
normally spanning multiple scales, which also challenges data
integration during its validation. However, novel approaches
based on machine learning (ML) and artificial intelligence (AI)
are expected to facilitate such a process. ML/AI-based models,
normally used for rich/large datasets, apply relevant algorithms
to learn/identify patterns in the data. By exhaustively exploring
such comprehensive datasets, even in the absence of a priori
mechanistic knowledge—a requisite for QSP approaches—ML/AI
may narrow down plausible mechanistic options which can then be
further validated by a QSP model. This process holds significant
potential for uncovering the mechanisms behind unreported
phenomena, such as emerging side effects associated with
novel therapies.

Therefore, current efforts are focused on creating a mutualistic
symbiosis between the QSP and ML/AI fields [see (Procopio et al.,
2023) for some examples], aiming to achieve improved overall
results, more informative than either approach alone. Since QSP
and ML/AI have different data requirements and data-integration
capacities, their symbiotic relationship can consist in: (i) consecutive
application, where one approach tackles a specific stage, and the
(partial) results are used by the other methodology, or (ii)
simultaneous application, where both approaches work together
on the same data. In the consecutive case, a ML/AI approach
followed by QSP could yield mechanism discovery when

mechanistic knowledge is lacking, whilst using a QSP model first
could help to improve performance accuracy of ML/AI algorithms,
by generating training data. When applying QSP and ML/AI
simultaneously, researchers can leverage the strengths of each
method to integrate diverse data sources. This is particularly
beneficial because a single approach might not be able to handle
all the data types (e.g., imaging data, quantitative and/or qualitative
data), but the combined approach can utilise the full potential of this
rich data landscape.

This paper shows current cases being explored at AstraZeneca
that highlight the prospective benefits (gAIns) of combined QSP-
ML/AI approaches, followed by a discussion around some of the
concerns (pAIns) that this symbiosis may bring (Figure 1). At the
current early stage of this collaboration, the balance between gAIns
and pAIns seems to be tilted towards the former. However,
acknowledging and addressing the pAIns will ensure that the
ML/AI and QSP symbiosis becomes truly a beneficial one.

gAIns of combined QSP-ML/AI
approaches

This section describes 4 case examples which highlight how the
QSP and ML/AI symbiotic approach presents an advantage versus
using just one single methodology. The scenarios described have
been selected to span a wide spectrum in the drug research
landscape, ranging from implications at the cellular level to
clinical stages (Figure 2). Therefore, the symbiotic approach may
have significance both for patients and for pharmaceutical
industries, as it may help designing better disease treatments, and
ultimately, improve patients’ quality of life.

Cellular level: multi-omics data integration

Omics data capture multiple facets of cell signalling, including
gene transcription (transcriptomics), translation (proteomics), and
metabolism (metabolomics). Technological advancements have led

FIGURE 1
Major gAIns and pAIns arising from the QSP and ML/AI symbiotic implementation (contextualised with examples discussed).
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to a remarkable accumulation of these data, which has spurred the
development of ML methods for processing each data layer (Li and
Li, 2018; Liebal et al., 2020; Neely et al., 2023). Despite the advances
in ML and QSP methods, it is challenging to leverage omics data in
QSP modelling (Zhang et al., 2022; Uatay et al., 2023). These
challenges include both technological (e.g., scarcity of
information on kinetic aspects of cell signalling) and
methodological (e.g., how to interpret multi-layered data)
limitations.

Combined ML and QSP approaches often involve dimensionality
reduction (e.g., principal component analysis) and identification of
enriched genes (or proteins, metabolites), which are overlayed on pre-
built signalling networks or used to construct a model of the relevant
pathways (Zhang et al., 2022). Some of the limitations of this approach
are due to the static nature of the data (only a snapshot of cellular
signalling is captured) and/or limited (if not absent) utilisation of
complementary information, which integrated analysis of several
layers of omics data can provide. Since QSP describes dynamics
across multiple layers of cell signalling simultaneously
(transcription, translation, and metabolism are interlinked
processes), advances in ML methods capable of extracting real
time-course information about these processes [as opposed to
latent-time approaches (Bergen et al., 2021)] may provide a new
impetus for the development of the QSP field. While latent-time
approaches can infer kinetics of gene expression on a (relative)
timescale determined by a given (single cell RNA-seq) dataset,
such data is not directly compatible with pharmacokinetics data—a
critical input for QSP. Therefore, inference of cell-signalling dynamics
on an absolute timescale may facilitate integration of molecular scale
processes into a QSP model.

In the last years, numerous methods, including ML-based ones,
have been developed to integrate multiple omics layers to generate

mechanistic hypotheses about the overall state of cell signalling
(Garrido-Rodriguez et al., 2022). However, the development of such
ML methods for multi-omics integration is challenging due to
limited data availability and incomplete knowledge about
“ground truth.” Nonetheless, incorporation of prior knowledge
can facilitate reconstruction of the (perturbed) signalling network
and can potentially enhance the predictive power (Dugourd et al.,
2021). As QSP integrates prior knowledge with contextual data (e.g.,
disease, efficacy, and safety) in a quantitative and mechanistic
manner, which can then be used to generate synthetic but
realistic training data for ML models, there is a synergistic
potential between QSP and ML-based methods for multi-omics
analysis. Such synergy may become especially useful in ML models
such as deep neural networks (e.g., via a framework provided by
physics/biology-informed neural networks), where incorporating
prior knowledge is particularly challenging.

Recently, anML approach was developed to model the dynamics
of gene regulatory networks during haematopoiesis by leveraging
technological advancements in single-cell RNA-seq (scRNA-seq)
(Qiu et al., 2022). Such a work showcased how technological (ability
to resolve temporal aspects of transcription) and methodological
(ML/modelling) advancements facilitated overcoming one of the
limitations of scRNA-seq—i.e., lack of temporal information.
Combining this methodology with a QSP model to characterise
the effect of drug- or disease-induced perturbation could be an
excellent example of ML/AI-powered gAIn for QSP because the ML
approach is unbiased, comprehensive, and amenable to mechanistic
modelling via traditional QSP tools such as ODEs.

Advances in single-cell omics technologies also include
inferences of spatially resolved information (Alexandrov et al.,
2023). Development of ML/AI methods to process
spatiotemporal aspects of cell signalling, as well as different

FIGURE 2
Schematic representation of how the symbiotic QSP andML/AI approach can help the pharmacological healthcare continuum (drug discovery, drug
development, disease diagnosis, and clinical management). PKPD, pharmacokinetics and pharmacodynamics.
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omics layers, has the potential to enhance QSP predictions by
removing key limitations (e.g., snapshot of a regulatory network
and/or a single signalling layer) of omics-powered modelling and/or
by improving accuracy via an additional layer of validation of the
predictions. One such method might involve combining AI-
powered cell segmentation on tissue slices with mass
spectrometry imaging, which may ease single-cell level omics
analysis, and facilitate its utilisation in QSP models.

Tissue level: quantification of imaging data
for QSP modelling

Biological samples are extremely valuable in R&D departments,
as they provide a means to better understand disease and assess
therapy efficacy or safety. However, those samples tend to be scarce,
might involve invasive treatments for patients and incur high costs.
Therefore, to gain the most insights, it is needed to optimise both
what information to be extracted from those samples and the timing
of their collection.

Complex image segmentation tasks for the analysis of pathology
images rely on advanced deep learning algorithms, where deep
convolutional neural networks (CNNs) excel at learning and
extracting intricate cellular patterns. The usefulness of processing
pathology images by CNNs lies in its ability to consistently,
efficiently, and precisely distinguish among different cell types under
a variety of imaging conditions, such as staining density and
illumination variability (Hosny et al., 2018). Additionally, the
segmented images are perfectly suited for the derivation of
quantitative measurements essential for downstream QSP models.
Such quantification could be done manually, but AI has been
proven successful in outperforming hand-crafted techniques.
Furthermore, such a pipeline can generate much larger volumes of
data than manual approaches, which allows AI to optimise QSP model
parameters to best match the imaging data, as well as permit QSP
models to be validated on very large imaging datasets.

A clear application of such a tool is in the development of a stem
cell therapy for heart failure, where human ventricular progenitor
cells are injected into infarcted myocardial tissue with the aim of
regenerating the damagedmuscle (Timmer and van Rooij, 2002; Foo
et al., 2018; Poch et al., 2022). A key step in the development of this
therapy is the reliable quantification of ventricular progenitor cell
engraftment, i.e., how many cells are retained in the injured
myocardium and connect with the host tissue. Moreover, given
the limitation in the quantity of longitudinal data points that can be
collected, a QSP model of host-graft tissue evolution is needed to
predict efficacy and safety of the therapy.

Thus, to support therapy development, an imaging-driven
systems model of host-graft tissue evolution can be developed.
First, slices of cardiac tissue from preclinical studies are stained
and digitised. The images then need to be labelled at the cellular
level by an expert to allow cell segmentation and identification. Such
labels should be used to train aMLmodel to detect host and graft cells
based on their shape and stain colour. Since individual cell labelling is
very time consuming, methods to fine-tune existing models [e.g., able
to identify more cell types or capable of using the labels of the whole
image for training (Mokhtari et al., 2023)] hold great promise. The use
of such a ML model on newly generated pathology images provides a

means to reliably obtain data on tissue cellular composition and its
spatial characterisation (e.g., tissue size, shape, relative position). Such
data is then used for subsequent QSP modelling of tissue evolution.

The described AI-based pipeline for data extraction from cardiac
pathology images shows the relevance of obtaining quantifiable
measurements, which can then be integrated in QSP approaches,
to understand complex cardiac behaviours. More generally, this case
example highlights the key role that an integrated approach may
play in the development of predictive models for cell therapy
strategies, as it may provide additional insights which can inform
optimal times for future sample collection.

Clinical level: modelling heterogeneous
data types

Continuous progresses in ML/AI tools are easing the use of real-
world data, which holds promising potential to unveil relevant information
for treatment discovery and development. Despite such technical
advances, the use of clinical data is not straightforward. Clinical data is
highly heterogeneous as it encompasses, among other data types, patient’s
clinical records (e.g., demographics, family health history, previous
diagnoses, medications, patient-reported outcome measures) and
biomarker/imaging data (e.g., genetic sequences, lab chemistry results,
X-rays, CT scans). The difficulty in integrating such data is well
exemplified when trying to connect qualitative clinical endpoints (e.g.,
symptoms, functional status, or disease severity) to quantitative
measurements (e.g., blood cell count time-series). Current efforts are
focused on trying to draw a link between such data, aiming to obtain
some (mechanistic) understanding of clinical response to treatment.

For complex biological therapies such as those involving T-cell
engagers, predicting potential side effects, like cytokine release
syndrome (CRS), remains a challenge. While QSP models can
effectively predict continuous quantitative biomarkers (e.g.,
cytokines), their limited understanding of CRS mechanisms often
hinders their ability to directly predict such a critical outcome
(presence/absence of CRS and its severity grade). This is where a
symbiotic QSP and ML/AI approach may provide a reasonable
bridging strategy; by harnessing the power of real-world data, ML/
AI approaches can fill the knowledge gap in CRS prediction by
revealing the relationship between patient features and CRS
incidence. A QSP model, although unable to predict CRS by
itself, can provide quantitative data, such as predicted biomarker
levels based on estimated T-cell engager trimer exposure (e.g.,
longitudinal IL-6 profiles) (Chen et al., 2019; Hosseini et al.,
2020; Weddell, 2023). Quantitative predictions from the QSP
model can then be fed into a ML/AI-driven risk prediction
model built from real-world patient clinical characteristics and
CRS observations, to establish a predictive model for CRS risk.
This integrated approach holds significant promise for improving
patient safety and optimising treatment regimens (Irons et al., 2023).

Bench-to-bed translation: from drug
development to precision medicine

To progress towards better disease understanding and
treatment, untangling disease intricacies is a requisite, for
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which QSP modelling may become helpful, as it allows to
simulate different hypothetical scenarios. The increased
understanding can help in identifying novel therapeutic
mechanisms/targets. Once identified, the targets can then be
leveraged by ML/AI algorithms to design effective diagnostics,
optimise clinical trials, and personalise treatment regimens.
Therefore, a symbiotic QSP and ML/AI approach may offer a
powerful engine for personalised healthcare, spanning from drug
development to precision medicine implementation. To
exemplify this, an outline on how such a combined approach
could comprehensively help in the research and treatment of
Alzheimer’s disease (AD) is presented (see Figure 2 for a
graphical representation).

Drug discovery and development
QSP and AI approaches have both been used for AD drug

development. For example, an AD progression mechanistic
model to capture the complex interplay between amyloid
aggregation, pharmacokinetics, and biomarker dynamics
has been developed (Geerts et al., 2023). The QSP model
supported clinical trial design, helping to define optimal
schedules based on understanding biomarker response
variability. On the ML/AI side, AI-powered algorithms
have been used to analyse patient data to both identify
the most promising drug targets and predict how patients
will respond to different treatments (Myszczynska et al.,
2020), which may facilitate decisions on subject enrolment
criteria to improve the probability of success in clinical
studies. Therefore, the QSP and AI/ML symbiotic
approach can help to understand and compare the efficacy/
safety of drug candidates addressing different targets
by analysing the dynamics of relevant biomarkers
and incorporating the inherent heterogeneity observed in
AD patients.

Disease diagnosis
AI-powered algorithms can analyse brain imaging data to

detect AD earlier and more accurately than traditional
methods can, reaching 99% accuracy levels (Odusami et al.,
2021). They can also be used to understand face recognition
deficits (Singh and Ramanathan, 2023). Face recognition
datasets can be used to train AI models, whose recognition
accuracy decreases as they are perturbed to emulate brain
tissue dysfunction. Such results indicate that, despite neural
networks not being an exact representation of biological
neuronal activity, an AI framework could potentially mimic
the loss of cognitive function in AD patients. However,
such AI-based models did not include time as an explicit
predictor, which makes them unable to capture disease
progression. To fill in this gap, QSP models can be used
(Bloomingdale et al., 2022), as they allow to estimate the
temporal evolution of AD biomarkers (e.g., Aβ42, sAPP,
tau) (Clausznitzer et al., 2018; Geerts et al., 2018; Rollo
et al., 2023) and clinical endpoints (e.g., integrated
Alzheimer’s Disease Rating Scale, iADRS) (Gueorguieva
et al., 2023). Therefore, the combined QSP-ML/AI modelling
approach may open new opportunities to diagnose and study
cognitive function in AD patients.

Clinical management
AI-powered devices can offer support and companionship to

patients (e.g., chatbots), as well as help caregivers track their
patients and identify potential problems (e.g., monitoring
systems). Physicians are often required to make treatment
decisions based on limited objective information (e.g., biopsy or
imaging) about individual patient’s disease status. A
computational digital twin platform integrating a mechanistic
model of disease with a responder classifier to predict temporal
changes in the organ of interest (Venkatapurapu et al., 2022) could
help treatment guidance, by providing valuable information (e.g.,
temporal) about disease progression, drug efficacy and potential
adverse effects.

pAIns of combined QSP-ML/AI
approaches

As showcased above, there are several opportunities to combine
QSP and ML/AI to address meaningful questions in quantitative
drug development. However, to guarantee a successful and long-
lasting symbiosis, it is important to highlight some of the associated
risks and, where possible, how to mitigate them.

Right Problem, Right Tool

Choosing the right combined ML/AI and QSP approach
requires careful consideration of the specific problem being
addressed. Moreover, combined methods are not always a
guaranteed improvement over using either ML/AI or QSP alone,
or even simpler techniques. Studies have shown instances where
predictions by ML alone were no better than basic linear regression
(Christodoulou et al., 2019), and where simple ODE models provide
reasonable insight and predictive ability compared to QSP models
(Stein and Looby, 2018).

Defining Workflows

While both ML/AI and QSP share some tools and terminology,
successfully combining them requires more than just common
ground. Specialised workflows that choose the best software and
programming languages for this integration need to be developed.
Furthermore, the underlying assumptions of each component/
algorithm should be communicated and understood by all. Poor
communication can make it difficult to spot technical problems and
hidden biases that can emerge when combining these workflows
(McComb et al., 2022). To ensure that results are reproducible, the
developed workflows should be transparent and explainable
(Shelmerdine et al., 2021).

Error propagation

Error propagation concerns the transfer of uncertainty and
artifacts between QSP and ML/AI. QSP models can be developed
with the knowledge of complex biological processes to “fill in the
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blanks” from limited data, and they can generate valuable data that
can be fed into ML algorithms (Bogatu et al., 2023). However, QSP
models themselves contain uncertainties, especially in parameter
estimates. Uncertainty assessment in QSP models is an area of
active research (Ribba et al., 2017), and it is yet unclear how QSP-
based uncertainty can be measured and ultimately mitigated when
QSP model outputs are subsequently incorporated into ML
approaches.

Future research may include (i) quantification of the uncertainty
“chain reaction” by developing methods to track and understand
how uncertainty propagates from QSP parameters to the final ML
outputs and (ii) mitigation of the propagation impact by designing
strategies to reduce or manage the uncertainty within the QSP-ML
pipeline, potentially by improving parameter estimation or
incorporating uncertainty information into the ML training itself
(Fan et al., 2023). An additional instance where error propagation
may occur is when ML-derived measurements from 2D images are
used in 3D QSP models.

Data leakage

Data leakage during ML/AI modelling occurs when training
datasets contain additional information about the system under
study, often leading to an inflated performance on training data and,
consequently, to an overestimation of the model’s performance
accuracy when applied to other data. Such an ML/AI model may
generate incidental and artefactual correlations irrelevant to the
underlying mechanisms (Yeo and Selvarajoo, 2022). The source of
these circumstantial associations can be technical (Kaufman et al.,
2011), due to data pre-processing (Bouke and Abdullah, 2023), or
inherent noise. Therefore, before integrating any results into QSP
models, careful identification, quantification, and communication of
potential sources of error is essential, especially when they cannot be
completely mitigated.

Data bias

Data bias arises when certain subsets are systematically more
likely to be selected than others in a sample (Shelmerdine et al.,
2021). For example, historically, pre-clinical/clinical data are
predominantly from males (Sandberg et al., 2015). QSP
predictions stemming from such data will inevitably
reproduce such bias, resulting in potential adverse effects
and/or loss of efficacy in the underrepresented subpopulation
(Zusterzeel et al., 2014; Ganapathi et al., 2022). To avoid such
bias, data should be curated to be as diverse and representative as
possible. Where this is not possible, models should only be
evaluated in scenarios that adequately reflect how they were
constructed, and a well-documented description of the datasets
used should be provided.

Appropriate model validation

Technical issues arising from data selection for ML/AI and QSP
modelling include the need for effective validation, which is already

a central component in both ML/AI and QSP. As such, when
applying a symbiotic approach, appropriate validation datasets
need to meet both fields’ requirements, which will likely be
challenging. For instance, to minimise data leakage in ML/AI,
datasets should attempt to counteract the potentially incidental
correlations present in the training dataset (Vokinger et al.,
2021), whilst any dataset used for QSP model construction
should provide complementary perturbations of the system to
allow discrimination among models describing distinct
mechanisms (Ribba et al., 2017).

Data collection and curation

Lack of standardised practices for data collection and
handling makes meaningful dataset comparisons from
different sites/labs difficult. For example, thrombin generation
assays used to assess haematological disorders lacked a
standardised protocol for sample handling, leading to
methodological inconsistencies between testing sites, which
complicated (if not invalidated) quantitative comparisons (De
Laat Kremers et al., 2020).

Similarly, clinical datasets often suffer from a lack of
completeness and consistency (e.g., missing data, inconsistent
structure/formatting), which makes their use in QSP models
challenging. Data integration from multiple sources and/or
data-sharing between different institutions requires extensive
and labour-intensive curation before the data can be
confidently used: trained and experienced data annotators are
needed to meticulously label large complex datasets for ML
algorithms, a challenging task that demands precision and
expertise in the field (Ohmann et al., 2011).

When handling longitudinal data, a key question to address is
how to handle new information. As more accurate measurements
or with higher detection levels are acquired, should the models be
retrained using a fixed time window of past data? Or should the
window be dynamic? Such a choice would have an impact on how
much weight is given to potentially inaccurate older data,
ultimately affecting the accuracy of the QSP-ML/AI model
outputs. Furthermore, due to the long timescale of drug
development, data that is regulation-compliant at the time of
dataset creation or algorithm training may need to be curated
again to fulfil the requirements of a changing regulatory
landscape that restricts information access (Lugg-Widger
et al., 2018). Therefore, such systematic model and dataset
updates necessitate efficient processing pipelines and
storage solutions.

Discussion

While the potential drawbacks (pAIns) associated with the
symbiotic QSP and ML/AI approach should not be disregarded,
the preliminary successes outlined in the gAIns section suggest its
feasibility and potential. To fully realise its capacity for drug
development, QSP modellers and data scientists in the
pharmaceutical industry and in academia should work together
with drug regulatory agencies. Such interaction should further
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highlight gAIns and make a concerted effort to identify and
overcome pAIns arising when applying the symbiotic approach,
with the ultimate goal of developing useful drugs efficiently and
treating patients effectively.

Both the FDA (U.S. Food and Drug Administration) and the
European Medicines Agency (European Medicines Agency,
2023) are already implementing risk-based approaches to
regulate AI use in drug development. The proposed
framework considers the intended purpose of the AI tool and
the potential risk it poses to patients. Under such regulatory
guidance, AI systems used to identify potential drug targets or to
predict the efficacy/safety of a drug candidate may be subject to
less stringent regulations than those directly involved in clinical
trial decision-making and drug approval. While the FDA’s
regulations for AI in drug development are evolving, the core
principles outlined in their guidance echo the points raised in
this paper. These principles emphasise the importance of (i)
utilising high-quality data for training AI systems; (ii)
employing transparent and explainable AI algorithms; (iii)
monitoring AI system performance in real-world settings; and
(iv) guaranteeing the protection of patient data used in
the process.

In summary, the presented examples showcase the vast
potential of combined QSP and ML/AI approaches in tackling
relevant problems in drug discovery and drug development. We
have also emphasised the importance of proactively identifying
and mitigating potential risks (pAIns) associated with this
integration. The clear benefits (gAIns) achieved through this
symbiosis highlight the need to update the adage “no pain, no
gain” to a more nuanced perspective: “some pAIn, greater gAIn.”
This shift reflects the understanding that while challenges exist,
the rewards of this combined approach far outweigh them, paving
the way for significant advancements in drug discovery, efficient drug
development, and improved patient outcomes.
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