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Chimeric antigen receptor T (CAR T) cell therapy has shown remarkable success
in treating various leukemias and lymphomas. Cellular kinetic (CK) and
pharmacodynamic (PD) behavior of CAR T cell therapy is distinct from other
therapies due to its living nature. CAR T CK is typically characterized by an
exponential expansion driven by target binding, fast initial decline (contraction),
and slow long-term decline (persistence). Due to the dependence of CK on target
binding, CK and PD of CAR T therapies are inherently and bidirectionally linked. In
this work, we develop a semi-mechanistic model of CAR T CK/PD, incorporating
molecular-scale binding, T cell dynamics with multiple phenotypes, and tumor
growth and killing. We calibrate this model to published CK and PD data for a
CD19-targeting CAR T cell therapy. Using sensitivity analysis, we explore
variability in response due to patient- and drug-specific properties. We further
explore the impact of tumor characteristics on CAR T-cell expansion and efficacy
through individual- and population-level parameter scans.
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1 Introduction

Chimeric antigen receptor (CAR) T-cells are T-cells engineered to produce CARs which
recognize and bind to a tumor antigen. In CAR T-cell therapy, a patient’s T-cells are extracted
and isolated, re-engineered to express a specific CAR, expanded ex vivo, and then infused back
into the patient. Six such therapies have been approved for treating a variety of blood cancers
(Chen et al., 2023). These therapies have been shown to produce long-lasting response and
superior response rates to alternative treatments (Melenhorst et al., 2022; Sermer et al., 2020). As
a result of the individualized nature of CAR Tmanufacturing, the contents of the dosed product
will vary from patient to patient. Further, CAR T cellular kinetic behavior is distinct from other
therapies due to its “living” nature; it is typically characterized by an exponential expansion, fast
initial decline (contraction), and slow long-term decline (persistence). Additionally, cellular
kinetics (CK) is not as well-studied as pharmacokinetics for more traditional drugs Chaudhury
et al. (2020). Interactions between CAR T-cells and tumor cells are complex since tumor
expansion has a significant impact on CAR T-cell expansion. Furthermore, much is still
unknown about the workings of CART-cells in the body and there is not a standardmonitoring
process. Modeling can shed light on CAR-T cell CK/PD and inform future studies by
mechanistically linking CAR T-cell doses to tumor cell growth and determining optimal
drug properties to achieve efficacy and safety. Furthermore, patient characteristics can be
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incorporated into the model to provide individualized dose predictions
and guide patient and indication selection.

Modeling and simulation has been used to understand CAR
T-cell dynamics and efficacy (see, for example, reviews by
Chaudhury et al. (2020); Nukala et al. (2021)) and the impact of
preconditioning (Owens and Bozic, 2021). Until recently, the three
distinct phases of CAR T cellular kinetics and the impact of different
CD4+ and CD8+ T cell phenotypes had not been mechanistically
described. Previous modeling work had captured CAR T cellular
kinetics either empirically (Stein et al., 2019), mechanistically but
without multiple phenotypes, (Singh et al., 2020), or mechanistically
with effector/memory phenotypes but without separating CD4+ and
CD8+ T cells (Hardiansyah and Ng, 2019). Recent work by Salem
et al. (2023) has incorporated all of these features, developing a
mechanistic model incorporating binding-driven CAR T-cell
expansion and activity for multiple CD4+ and CD8+ T-cell
phenotypes to match clinical data from multiple trials. Further
analysis of such models will be useful to understand system
behavior, inform engineering of CAR T-cells, and understand
variability in patient populations. In particular, sensitivity
analysis provides understanding of the key mechanisms driving
expansion and efficacy.

Here, we present a semi-mechanistic cellular kinetic-
pharmacodynamic (CK-PD) model for CAR T-cell therapy of
B-cell non-Hodgkin lymphoma (NHL). Our model includes
CD8+ and CD4+ naive, effector, and memory T-cell phenotypes,
binding of CARs to their target antigen CD19, binding-driven
activation and expansion of T-cells, T-cell death and conversion
to memory cells, and binding-driven killing of B cells by CD8+

effector cells. We demonstrate the ability of the model to capture
published human CAR T-cell CK and PD data, and perform
sensitivity analysis to understand key model features and predict
the impact of variability in patient, tumor, and drug characteristics.

2 Methods

2.1 Data

The model was informed by and benchmarked to published
human CAR T-cellular kinetics, B cell percentage, and clinical
response data from a phase I clinical trial with IM19 CAR
T-cells for 13 relapsed or refractory NHL patients (Ying et al.,
2021). The CK data and the B cell aplasia data were both digitized
using WebPlotDigitizer (Rohatgi, 2022). Two days prior to CAR
T-cell infusion, patients were pre-treated with fludarabine and
cyclophosphamide for 3 days to deplete endogenous
lymphocytes. IM19 CAR T-cells were dosed by weight at 3 × 105,
1 × 106, or 3 × 106 cells per kg. The CD4:CD8 ratio of the infused
CAR T-cells was reported for each of the patients.

2.2 Model structure

The model consists of a single compartment representing the
blood. CAR T-cell and B cell populations and their corresponding
receptor burdens are modeled explicitly. CAR T-cells, a fraction of
which are CD8+ and the remainder CD4+, are dosed directly into the

blood. All CAR T-cells are assumed to be naive at the time of dosing.
CARs on both CD8+ and CD4+ CAR T-cells can bind to CD19. CD8+

and CD4+ naive CAR T-cells are activated at a rate proportional to
the fraction of CAR that is bound to CD19. Activated CAR T-cells
then proliferate and become effector cells. CD8+ effector CAR
T-cells can then kill B cells at a rate proportional to the fraction
of CARs on CD8+ effector T cells that are bound to CD19. We
assume that CD4+ effector CAR T-cells do not kill B cells as we focus
only on direct effects (Alizadeh et al., 2023). Effector CAR T-cells
either die or become memory cells. Memory CAR T-cells have a
longer lifespan than effector cells, but do not participate in B cell
killing. Themodel is intended to describe the initial response to CAR
T therapy and therefore does not include any mechanisms for re-
activation of memory cells. A diagram of the model reactions is
shown in Figure 1. A more detailed description of the model
equations is given below, where all states are in units of nmol.

2.3 Cell state equations

Infused CAR T cells are dosed directly into the blood
(TCD8

inf (0) � fCD8T × Dose, where fCD8T is the fraction of
dosed CAR T-cells that are CD8+). These cells can then become
activated at a rate kact or die at a rate kdeath,inf. Activated CAR T cells
divide at a rate kdiv � (2ndiv − 1)/τ to form effector cells at a rate
kdiff � 2ndiv/τ, where ndiv is the average number of divisions per
activated cell and τ is the division time. At a rate of kdeath,eff, a
fraction fmem of effector cells become memory cells and the
remainder die. Memory T cells die at a rate of kdeath,mem. This
leads to the following equation for CD8+ CAR T cells, and similarly
for CD4+ CAR T cells.

dTCD8
inf

dt
� −kCD8

act TCD8
inf − kCD8

death,infT
CD8
inf

dTCD8
act

dt
� kCD8

act TCD8
inf + kCD8

div TCD8
act − kCD8

diffT
CD8
act

dTCD8
eff

dt
� kCD8

diffT
CD8
act − kCD8

death,effT
CD8
eff

dTCD8
mem

dt
� kCD8

death,efff
CD8
memT

CD8
eff − kCD8

death,memT
CD8
mem

Tumor cells are able to divide at a rate ktumdiv and be killed by CD8+

effector CAR T cells at a rate kkill � fboundkmaxkill, wherefbound is the
fraction of CD8+ CAR that is bound to CD19.

dTumor

dt
� ktumdiv Tumor − kkill pTumor pTCD8

eff

Endogenous lymphocytes are produced at a zeroth order rate kprod
and die at a first order rate kdeath,endo, resulting in the
following equation.

dEndo

dt
� kprodEndo − kdeath,endoEndo

2.4 Receptor equations

In addition to the cell-scale dynamics described above,
molecular-scale dynamics are explicitly accounted for in the
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model. Receptor equations for CAR and CD19 are written such that
the total receptor densities (CAR per T cell and CD19 per tumor cell)
remain constant, as determined by a receptor per cell (RPC)
parameter. Receptors are synthesized at a rate ksyn and
internalized at a rate kint. The equation for CD19 is written as
follows, accounting for tumor cell division, synthesis and
internalization of free CD19, binding/unbinding to CAR on
different types of T cells, release from CAR:CD19 complex that is
internalized with CAR, release from CAR:CD19 complex when a
CAR T cell dies, and tumor cell death.

dmAg

dt
� ktumdiv pTumor pRPCCD19/ NAv/1e9( ) + kCD19

syn Tumor − kCD19
int CD19

− kon
V

CARCD8
inf + CARCD4

inf + CARCD8
eff + CARCD4

eff + CARCD8
mem + CARCD4

mem( )CD19

+ koff CARCD8
inf : CD19 + CARCD4

inf : CD19 + CARCD8
eff : CD19(

+ CARCD4
eff : CD19 + CARCD8

mem: CD19 + CARCD4
mem: CD19)

+ kCARint CARCD8
inf : CD19 + CARCD4

inf : CD19 + CARCD8
eff : CD19(

+ CARCD4
eff : CD19 + CARCD8

mem: CD19 + CARCD4
mem: CD19)

+ kCD8
death,infCAR

CD8
inf : CD19 + kCD4

death,infCAR
CD4
inf : CD19

+ kCD8
death,effCAR

CD8
eff : CD19 + kCD4

death,effCAR
CD4
eff : CD19

+ kCD8
death,memCAR

CD8
mem: CD19 + kCD4

death,memCAR
CD4
mem: CD19 − kkillT

CD8
eff CD19

CARs on infused CAR T cells undergo synthesis and internalization,
binding/unbinding with CD19, conversion to an activated state, loss
from cell death, and release from CAR:CD19 complex when a tumor
cell dies. The equations for CD8+ infused CAR and CAR:

CD19 complex are shown below; equations for CD4+ CAR
are similar.

dCARCD8
inf

dt
� kCAR,CD8

syn TCD8
inf − kCARint CARCD8

inf − kon
V

CARCD8
inf CD19

+koffCARCD8
inf : CD19 − kCD8

act CARCD8
inf + kkillT

CD8
eff CAR

CD8
inf : CD19

−kCD8
death,infCAR

CD8
inf

dCARCD8
inf : CD19

dt
� kon

V
CARCD8

inf CD19 − koffCAR
CD8
inf : CD19 − kCARint CARCD8

inf : CD19

−kCD8
act CARCD8

inf : CD19 − kkillT
CD8
eff CAR

CD8
inf : CD19

−kCD8
death,infCAR

CD8
inf : CD19

Since activated CAR T cells in the model are an intermediate state
for the purposes of expansion and do not interact with the tumor, we
do not include binding of activated CARs to CD19 in the model.
CARs on activated CAR T cells follow the cellular kinetics
(i.e., activation of infused CAR, division, and differentiation) so
that CAR per T cell remains constant.

dCARCD8
act

dt
� kCD8

act CARCD8
inf + CARCD8

inf : mAg( ) + kCD8
div CARCD8

act

− kCD8
diffCAR

CD8
act

CARs on effector and memory CAR T cells are synthesized and
internalized, bind/unbind with CD19, undergo effector-to-memory
conversion, are lost through T cell death, and are released fromCAR:
CD19 complex when a tumor cell dies. These equations are given
below for CD8+ effector and memory CAR; equations for CD4+

CARs are similar.

FIGURE 1
Diagram showing interactions represented in the model. CAR-T cells are dosed as part CD8+, part CD4+. Drug product cells are activated by binding
to CD19 onmalignant B cells. Activated cells replicate and become effector cells. CD8+ effector cells kill B cells. Effector CAR T-cells either die or become
memory cells.
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dCARCD8
eff

dt
� kCD8

diffCAR
CD8
act + kCAR,CD8

syn TCD8
eff − kCARint CARCD8

eff − kon
V

CARCD8
eff CD19

+koffCARCD8
eff : CD19 + kkillT

CD8
eff CAR

CD8
eff : CD19 − kCD8

death,effCAR
CD8
eff

dCARCD8
eff : CD19

dt
� kon

V
CARCD8

eff CD19 − koffCAR
CD8
eff : CD19 − kCARint CARCD8

eff : CD19

−kkillTCD8
eff CAR

CD8
eff : CD19

dCARCD8
mem

dt
� kCAR,CD8

syn TCD8
mem − kCARint CARCD8

mem − kon
V

CARCD8
memCD19

+koffCARCD8
mem: CD19 + kkillT

CD8
eff CAR

CD8
mem: CD19

+fCD8
memk

CD8
death,effCAR

CD8
eff − kCD8

death,memCAR
CD8
mem

dCARCD8
mem: CD19
dt

� kon
V

CARCD8
memCD19 − koffCAR

CD8
mem: CD19 − kCARint CARCD8

mem: CD19

−kkillTCD8
eff CAR

CD8
mem: CD19

2.5 Model parameterization

Values for the majority of the model parameters were inferred
from literature as described below. The rest of the parameters were
fit to individual patient data from Ying et al. (2021), described below.

2.3.1 Patient and tumor properties
The total blood volume was estimated to be 5L, based on the

average human adult (Sharma and Sharma, 2018). The
concentration of endogenous lymphocytes was assumed to be 109

per L. Endogenous lymphocytes were estimated to have an average
lifespan of 30 days based on a steady-state assumption and
benchmarking to observed T-cell recovery following autologous
transplant (Hakim et al., 2005). We assume that 90% of
endogenous lymphocytes are depleted by chemotherapy
pretreatment prior to CAR T-cell infusion (Ying et al., 2019).
The carrying capacity for the number of tumor cells was
estimated to be 7 × 1012 based on the maximum tumor volume
reported in Press et al. (Press et al., 1993), assuming an average cell
diameter of 10μm (Das et al., 1991) and dividing the tumor volume
by average cell volume to obtain a maximum number of cells.
CD19 expression was estimated to be 5,000 receptors per B cell
based on published values for patients with different types of
lymphoma (D’Arena et al., 2000; Malik-Chaudhry et al., 2021;
Spiegel et al., 2021). The internalization half-life of CD19 was
estimated to be 4 h; published data indicates the internalization
half-life can be as fast as 30 min in human B-cell lymphoma cell lines
(Du et al., 2008) but as slow as 12+ hours in B-cell chronic
lymphocytic leukemia patient samples (Sieber et al., 2003).

2.3.2 CAR T-cell properties
The CAR internalization half-life was estimated to be 6 h based

on in vitro measurements for other CD19-targeting CAR T-cells Li
et al. (2020). The mean activation time (that is, the time between
binding to antigen and the start of cell proliferation) was estimated
to be 18 h for CD8+ CAR T-cells (Henrickson et al., 2008; Cui and
Kaech, 2010) and 36 h for CD4+ CAR T-cells (Kaech et al., 2002).
Average lifespans for memory CAR T-cells were estimated to be
180 days for CD8+ and 240 days for CD4+ (Borghans et al., 2018).
The CD4:CD8 ratio of the CAR T-cells for each patient were taken
from Ying et al. (2021), and all infused CAR T-cells were assumed to
be viable. We assumed expression levels of 12,700 CARs per T-cell
for both CD8+ and CD4+ cells based on a published average estimate
for a HMW-MAA-specific CAR on CD8+ T cells (Anikeeva et al.,
2021).We assumed that CARs bind to CD19 with an affinity of 1 nM

based on reported affinities for high affinity CAR T variants
(Jayaraman et al., 2020), with a binding on-rate of 0.001/nM/s.

Remaining model parameters, namely, the number of divisions
per T-cell, time per T-cell division, drug product and effector cell
lifespan, memory cell fraction, and initial tumor burden, were fit to
data as described in the following subsection.

2.3.3 Calibration and benchmarking
Considerable variability in CAR T-cell expansion and efficacy is

present in the data. To describe individual variability in CK, the

following parameters were fit to individual CK trajectories: initial

tumor burden, the number of divisions for activated T cells, and the

fraction of effector cells that become memory cells. The time per

T cell division and drug product and effector cell life spans were fit

globally to all patient data. Optimization was performed using a

Python-based trust region optimization method. Additionally, the

percentage of B cells out of total cells in the model was calibrated to

B cell aplasia data by tuning the number of endogenous lymphocytes

in the model within a small, biologically reasonable range such that

the mean and range of model outputs captured the general trend

observed in the data. The rate of tumor cell division was also tuned

to match the observed rebound in B cell aplasia data.

2.4 Model simulation and analysis

The model was implemented and simulations were performed
with Applied BioMath’s proprietary QSP modeling platform.
Analysis and plotting were performed with Python version 3.11.8.

Global sensitivity analysis (GSA) was evaluated using two
methods: Sobol indices estimated via the Fourier Amplitude
Sensitivity Test (FAST), implemented using SALib (Herman and
Usher, 2017; Iwanaga et al., 2022), and partial rank correlation
coefficients (PRCC), implemented using Pingouin (Vallat, 2018).

In the GSA, model parameters for which we had individual data
or fitted values (body weight, fraction of CD8+ CAR T cells, initial
tumor burden, number of CAR T cell divisions, and fraction of
memory cells) were varied across the full range of individual values.
Where possible, published ranges for individual parameters were
used. CD19 expression was varied from 1,500 to 16,825 receptors per
cell based on a published range for mantle cell lymphoma (D’Arena
et al., 2000). Tumor doubling time was varied from 24 h to 30 days,
based on the range reported in Roesch et al. (2014). Binding affinity
was varied from 0.32 to 14.3 nM based on the range of values for
CD19 CARs reported in Jayaraman et al. (2020). Remaining model
parameters were varied 2-fold up and down nominal values. All
parameters were sampled from a log-uniform distribution within
their respective ranges, with a sample size of 5,000. Simulations were
initialized with a 106 cells/kg dose. Model outputs considered in the
sensitivity analysis were the peak concentration of CAR T-cells
(Cmax) and the tumor burden at day 20.

To explore temporal dynamics and explore the impact of tumor
characteristics, we performed one-at-a-time scans of tumor division
time and CD19 expression per cell. The model was simulated for
specific patients as well as for the full patient population using
different values of these parameters, while keeping other model
parameters fixed.
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3 Results

3.1 CK fitting and PD benchmarking

CAR T-cell trajectories vary widely from patient to patient. Our
model was developed and calibrated to capture the typical phases of

CAR T-cell CK as well as the variability between patients through
fitting a combination of patient-specific and global parameter values.
Results of optimization of CAR T-cell concentration to clinical data
are shown in Figure 2. Figure 2A shows the average trajectory and
full range across all 13 patients and Figure 2C shows each fitted
patient simulation and data. The model adequately describes the

FIGURE 2
Model calibration and benchmarking results. (A) Patient population simulations for CAR T-cell CK. Black line indicates average model fit and shaded
region represent the full range of individual trajectories. Points represent data, with colors representing different patients. (B) Patient population
simulations for B cell aplasia. (C) Individual patient CAR T-cell CK data and simulations. Each panel represents an individual patient, the ID of which is
labeled at the top of each panel.
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overall behavior of the data despite the significant variability
between patients as well as within each patient data set. The full
table of final parameter values can be found in the
Supplementary Material.

Endogenous lymphocyte concentration and tumor doubling
time were hand-tuned to a small degree to match measurements
of B cells as a percentage of total lymphocytes, a measure of the
efficacy of the CAR T-cells. Due to challenges with digitization, B cell
aplasia data from only 6 of the 13 patients were distinguishable and
are shown in Figure 2. The average and range of model simulations
for all patient parameterizations capture the general trend of the data
well and spans the variability between patients.

3.2 Sensitivity analysis

To explore the impact of model parameters on Cmax and efficacy,
we performed Global Sensitivity Analysis (GSA). Results for Cmax are
shown in Figure 3A. Sobol indices (first order and total order) and
PRCC values are shown for all model parameters that had a p-value less
than 0.05 and ranked in the top ten parameters for at least one measure
of global sensitivity. The number of CAR T-cell divisions upon
activation contributes to more than 80% of the variability in Cmax,
which is a far greater contribution than any of the other parameters. The
next most influential parameters are tumor growth rate, initial tumor
burden, and mAb-CD19 binding affinity, which drive expansion
through CAR-antigen interactions. CAR T cell life spans and

CD19 expression are also influential. The ordering of parameters is
roughly consistent between first order Sobol index, total order Sobol
index, and PRCC. However, total order Sobol indices are generally at
least two-fold larger than first order Sobol indices, indicating that there
are interactions between parameters.

GSA results for tumor burden at day 20 are shown in Figure 3B.
The most influential parameters are the tumor division time,
number of T cell divisions, binding affinity, initial tumor burden,
and CD19 expression is also influential. Tumor- and binding-related
parameters are comparably influential on efficacy as the number of
T cell divisions. This is in contrast to the results for Cmax, where the
number of T cell divisions was by far the most influential parameter.
This indicates that while expansion and efficacy are often correlated,
patient properties such as tumor growth rate, initial tumor burden,
and CD19 expression are more important for driving efficacy than
they are for driving expansion. This is because CAR-CD19
interactions are required for both expansion and tumor cell killing.

3.3 Effects of tumor properties on CAR T
expansion and efficacy

To investigate potential mechanisms related to patient to patient
variability in response, we evaluated the effects of B cell division time
and CD19 expression on B cells. These two parameters, which were
informed by literature and not varied in Figure 2C were shown to be
influential parameters by the GSA. We first focus on two patient

FIGURE 3
Global sensitivity results (Sobol indices and PRCC) for Cmax and tumor burden at day 20 post-treatment. Only parameters with a p-value less than
0.05 and that rank in the top ten for at least one measure of sensitivity are shown.
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parameterizations (F0104 and F0110) which had distinct CK and
tumor growth profiles. F0104 has a typical CK profile consisting of
expansion, contraction, and persistence, paired with a clear
reduction in tumor growth, while F0110 had continued tumor
growth and less defined expansion and contraction phases.
Figure 4 shows simulations of CAR T-cell concentration and
tumor dynamics for these two patients, scanning over both
parameters. Parameters are varied 10-fold up and down from
nominal values to explore a wide range of system behaviors.

Scanning over B cell division time, shown in Figure 4A, revealed
qualitatively different behavior between the two patients. For patient
F0104, the model predicts that a B cell division time corresponds to a
more gradual contraction, resulting in a greater concentration of
CAR T-cells over time. The division time does not significantly
impact the Cmax. However, for patient F0110, the slope of the
contraction phase is relatively consistent across division times but
the Cmax increases with faster division times. For both patients, the
greater expansion of CAR T-cells is not sufficient to reverse tumor
cell growth. A faster B cell division time results in more tumor
growth regardless of CAR T-cell concentration for the parameter
range scanned. Within the first 10–15 days, there is an acute
reduction in tumor cells in response to initial CAR T-cell
expansion for the fastest tumor cell division time, 1.6 days.
However, this effect is transient and the faster B cell division
time results in faster rebound of the tumor. For the slower tumor
cell division times, CAR T expansion does reduce the tumor size; this
combined with the generally slower tumor growth results in slow
tumor growth in the longer term.

Figure 4B shows the results of varying CD19 expression on
B cells. Higher CD19 expression leads to additional binding to

CAR T-cells and subsequent activation, increasing CAR T-cell
expansion. This looks different for each of the patient
parameterizations; simulated CK for patient F0110 shows
greater sensitivity to CD19 expression compared to that of
patient F0104. For F0104, higher CD19 expression leads to
faster expansion and faster contraction, causing a sharper
peak in the CAR T CK. Higher CD19 expression also leads to
greater long-term persistence of CAR T-cells. Patient
F0110 exhibits greater expansion and persistence with
varying levels of CD19 expression, with no evident
contraction phase.

Examining the individually fit parameters for F0104 and
F0110 sheds light on the unique behaviors of both the CAR
T-cells and tumor cells between patient simulations. Patient
F0104 has a smaller fraction of effector CAR T-cells that
become memory cells, a larger initial tumor burden, and a
slightly higher number of CAR T-cell divisions upon
activation compared to patient F0110. This leads to greater
expansion (and therefore greater efficacy) of the CAR T-cells
for patient F0104, but potentially less persistence. For patient
F0110, the lower expansion and greater memory cell formation
leads to no clear contraction phase in the CK. The corresponding
tumor growth curves show no impact of treatment except a small
reduction in tumor growth rate at the highest receptor expression
level scanned.

To assess the behavior of CAR T-cells and tumor growth on a
population level, the parameter value for either B cell division
time or CD19 expression was updated one at a time for each
patient. These parameters were varied ranges described in
literature: Roesch et al. (2014) report NHL doubling times

FIGURE 4
Results of scanning key model parameters representing patient characteristics for two individual patient parameterization. Parameters were
scanned up to ~10x above and below their nominal parameterization for patient parameterizations F0104 and F0110. Simulations of CAR T-cell
concentration and total B cell fold change from initial are shown for scans of (A) B cell time per division and (B) CD19 receptors per cell.
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from 24 h to 30 days, and D’Arena et al. (2000) report a standard
deviation for CD19 expression of about 1/3 the mean value. The
minimum value for CD19 expression reported was much lower
(10-fold lower than the mean value), which we also include in the
parameter scan. Figure 5 shows the mean and standard deviation
across all patients for CK, tumor cell count, and tumor fold
change. Overall, the same patterns described above in the patient-
specific scans hold true: faster B cell division times yield more
CAR T-cell expansion and greater tumor growth, and higher
CD19 expression leads to more CAR T-cells and improved tumor
cell killing. Within the physiological ranges tested, B cell division
time has an impact on both CK and tumor cell growth by close to

an order of magnitude, on average. Notably, the rate of tumor
regrowth is similar for all tumor doubling times, indicating that
the increased persistence of CAR T-cells does counteract the
increased tumor growth.

The range of reported CD19 expression is quite varied, and the
model predicts that this parameter could have a significant impact
on treatment efficacy. Between the maximum and minimum values
scanned, within the range of reported values, there is about an order
of magnitude difference in the CAR T cell Cmax. Furthermore, for
the lowest CD19 RPC, there is essentially no tumor growth
inhibition. The three higher RPC values do show inhibition, with
a reduction from baseline of up to 10x.

FIGURE 5
Results of scanning key model parameters representing patient characteristics across all patient parameterizations. Parameters were scanned
across ranges consistent with values reported in the literature. Simulations of CAR T-cell concentration, total B cells, and B cell fold change from initial are
shown for scans of (A) B cell time per division and (B) CD19 receptors per cell. Mean and one standard deviation of all patient results are shown.
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3.4 Exploratory analysis: memory cell killing

To show how the model can explore questions about both
individual and population-level dynamics, we performed
simulations to understand the potential impact of memory cell
killing. In the nominal simulations, we assume that memory cells
do not kill tumor cells. For this analysis, we compare the nominal
simulations against those in which memory cell killing has the same
killing capacity as activated cells. Figure 6 shows the results for both
the population level and individual trajectories.

First observing the population-level dynamics in Figure 6A, the
impact on memory cell killing is observed only in the tumor, not in
CAR T CK. Furthermore, the model predicts that any difference is
observed after 50 days. This makes sense due to the delayed
appearance of memory cells and the subsequent growth of the
memory cell population - thus, memory cell killing is predicted
to have a small overall impact on reducing tumor growth during the
terminal phase of CAR T expansion. Since the exact memory cell
populations may vary from patient to patient, the impact of memory
cell killing may also be observed on a patient level, shown in
Figure 6B. It is evident that some patients show little impact of
memory cell killing, sch as F0125 and F0126. On the other hand,
tumor growth in patients F0107, F0111, F0123 nearly plateaus as
compared to the nominal parameterization which has linear growth.

Although there is insufficient data to inform the true activity of
memory CAR-T cells in the model, this hypothetical analysis shows the

ability of themodel to differentiate the impact of treatment on individual
patients as compared to a population-level impact. In these simulations,
a moderate population-level effect was the result of an aggregated variety
of patient effects, from no impact to a signficiant impact. Furthermore,
the model shows in what populations and at what times the impact of
these changes might be observed.

4 Discussion

Our mechanistic modeling approach incorporating molecular-
scale and cell-scale dynamics successfully captured CAR T CK-PD
and revealed key system behaviors. Mechanistic modeling is
necessary to capture the interplay of target engagement, T cell
expansion, and tumor cell killing. CAR T-cell therapy is distinct
from other therapeutics in that CK and PD are inter-dependent.
This dependency is demonstrated in our model by the sensitivity of
Cmax to tumor and binding parameters.

Global sensitivity analysis revealed that both drug-specific and
patient-specific properties can potentially explain variability in
response to CAR T therapy. The most influential drug-specific
properties are the number of divisions per activated CAR T-cell and
the binding of the CAR for CD19. The number of divisions for activated
cells is the most influential factor for peak CAR T-cell expansion, and
was also highly influential for tumor killing. This number of divisions
could potentially be increased through further engineering or refining of

FIGURE 6
Results of exploring the impact of memory cell killing. Simulations in whichmemory cells have the same killing capacity as active cells are compared
to the nominal case in whichmemory cells do not kill tumor cells. Simulations of CAR T-cell concentration, total B cells, and B cell fold change from initial
are shown in (A) where mean and one standard deviation of all patient results are compared. B cell fold change from initial is shown in (B); multicolored
lines represent individual patient trajectories, black curve represents the mean across all patients, and the gray region represents one
standard deviation.
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manufacturing processes for the CAR T product, for example, through
selection for naive cells (Arcangeli et al., 2022). Importantly, while we
classify this as a drug-specific property, this could be variable across
patients since the CAR T-cells are manufactured from the patients’ own
cells. Thus, individual variability in the number of T cell divisions can
also contribute to observed variability in CK and efficacy. Binding
affinity also impacted both CAR T-cell expansion and efficacy, which
could be improved in engineering of the CAR.

While our modeling suggests that CAR T expansion is driven
primarily by number of divisions, global sensitivity analysis shows
that tumor properties such as CD19 expression and growth rate are
comparatively more influential in driving efficacy. Tumor growth rate
was also highly influential on CK. This demonstrates two things: (1)
while expansion often correlates with efficacy, expansion itself is not
necessarily sufficient for tumor shrinkage, and (2) variability in patient
characteristics will lead to significant variability in both exposure and
response. Modeling provides insight into this variability and can be used
to inform patient, target, and indication selection.

In individual- and population-level model simulations, we observed
that although a faster tumor growth rate corresponds to increased CAR
T-cell expansion and distinct CK profiles, this increased expansion is
often not enough to control the faster-growing tumor. This implies that
drug characteristics may need to be modified in order to target more
aggressive tumors. Notably, while there is little to no predicted tumor
shrinkage for this CAR T with faster growing tumors for most patients,
treatment is still effective in slowing tumor growth both short- and long-
term, providing a benefit to patients. Increased target expression drives
both increased expansion and stronger tumor killing. Patients with low
target expressionmay be poor candidates for this type of treatment due to
poor expansion and little anti-tumor activity, leading to lack of response.
This also suggests that target expression should be a key consideration in
both target and indication selection, while balancing toxicity concerns.
Furthermore, the power of individualized parameterizations of themodel
was demonstrated in the memory cell killing exploratory analysis.
Although the population-level simulation showed a small overall
reduction in tumor growth, some patient trajectories showed
signficant reduction while others showed nearly no impact. Although
this was a hypothetical exploration due insufficient data, these
simulations demonstrate that modeling can have a large impact on
understanding individual patient dynamics.

In the future, this model and analysis could help drive decisions
in CAR T-cell design, manufacturing, patient selection, patient-
specific dose selection, and efficacious dose selection for novel CAR
Ts. This model could be further refined by adding other T cell
phenotypes, cytokines, immune cells types, and additional reactions
such as re-activation of memory cells. One key limitation of the
current work is lack of direct measurements of tumor burden over
time to inform efficacy. Rather, we relied of B cell aplasia data and
assumptions about the native immune population to estimate tumor
reduction. Additional efficacy data would help to better constrain
the model and may allow for individualized efficacy modeling.
Additional patient-specific data such as CD19 expression could
enable individualized predictions of efficacy/response through a
digital twin approach. Another limitation of this model is that it
does not account for effects of CD4+ T cells on tumor cell killing.
This model could also be extended to study other targets and
indications, including solid tumors for which there are currently
no approved CAR T-cell therapies.
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