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Bone remodeling is an essential, delicately balanced physiological process of
coordinated activity of bone cells that remove and deposit new bone tissue in the
adult skeleton. Due to the complex nature of this process, many mathematical
models of bone remodeling have been developed. Each of these models has
unique features, but they have underlying patterns. In this review, the authors
highlight the important aspects frequently found in mathematical models for
bone remodeling and discuss how and why these aspects are included when
considering the physiology of the bone basic multicellular unit, which is the term
used for the collection of cells responsible for bone remodeling. The review also
emphasizes the view of bone remodeling from a systems biology perspective.
Understanding the systemicmechanisms involved in remodelingwill help provide
information on bone pathology associated with aging, endocrine disorders,
cancers, and inflammatory conditions and enhance systems pharmacology.
Furthermore, some features of the bone remodeling cycle and interactions
with other organ systems that have not yet been modeled mathematically are
discussed as promising future directions in the field.
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1 Introduction

Bone is a dynamic living tissue that plays a crucial role in providing mechanical support
to the body and maintaining systemic homeostasis. Bone remodeling is the delicately
balanced process of coordinated activity of bone cells that remove and deposit new bone
tissue to renew the adult skeleton (Allen and Burr, 2014; Bellido et al., 2014). Multiple
biochemical, physical, and mechanical factors within the bone microenvironment and
throughout the body regulate bone cell activity. When these factors operate within a
homeostatic range, bone removal and formation activities of bone cells are balanced, and
the bone remodeling cycle ends without a net change in bone volume or mass during tissue
turnover. Perturbations outside this range can cause an imbalance between bone removal
and formation leading to pathological bone loss (Allen and Burr, 2014). The pathologies of
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bone loss due to conditions such as renal failure, cancer, diabetes,
and age-related bone loss differ (as well as their responses to
treatment). The drive to understand bone pathologies and to
design effective therapeutics leads researchers to study the local
and systemic mechanisms that regulate bone remodeling.
Developing mathematical models that could be adapted to the
unique aspects of these scenarios would provide a powerful tool.

Mechanisms of bone remodeling are complex to capture in
traditional in vivo and in vitro experiments due to the dynamic
nature of the cell populations involved and the complexity of their
local and systemic interactions. For preclinical in vivo studies, the
measurements that can be performed at the tissue or mechanistic
level are limited by the number of timepoints typically relegated to
cross-sectional study designs. With in vitro studies, it is challenging to
create an environment that allows the cells to respond to systemic
changes that influence the in vivo bone microenvironment.
Mathematical modeling captures the dynamics of cell populations
and simulates complex interactions over time, integrating effects
from multiple scales locally and systemically. It is widely used for
understanding bone remodeling biology and hormone dynamics. By
enhancing existing models from a systems biology perspective, we can
bridge the gap between molecular signaling and clinically measurable
properties that correspond to tissue and patient phenotypes. This
perspective considers the human body as an integrated whole with
multiple interacting systems, requiring the integration of diverse data
sets to understand, design, and control therapeutic responses.

Many mathematical models have been developed to enhance the
understanding of the bone remodeling process. Here, we review 88 such
models, with annotations included in Supplementary Tables S1–S3.
These models primarily fall into two categories for types of effects that
they consider: biomechanical and biochemical. Biomechanical models
aim to describe how the morphology, structural integrity, and
mechanical loading of the bone matrix affect the evolution of bone
(van Oers et al., 2008; Lerebours et al., 2016; Kameo et al., 2020; Calvo-
Gallego et al., 2023). Some biomechanical models incorporate individual
bone cell dynamics in a simplified manner. In contrast, biochemical
models focus on a detailed representation of the biochemical processes
governing bone cell populations. Biochemical models incorporate
interactions between key molecular signals and bone cells but often
neglect critical mechanical signals. Mechano-chemo-biological models
are a newer third category of bone remodeling models to address the
need for sufficient biomechanical and biochemical detail (Lerebours
et al., 2016; Martin et al., 2019; Ashrafi et al., 2020; Ait Oumghar et al.,
2020; Pant et al., 2021).

Here, we provide a comprehensive review of biochemical
mathematical models of bone remodeling. We include a few
mechano-chemo-biological models in this review to highlight how
they consider changes to the biochemical bone remodeling network.
Unique among other related reviews (Gerhard et al., 2009; Geris et al.,
2009; Pivonka and Komarova, 2010; Webster and Müller, 2011; Riggs
and Cremers, 2019; Coelho et al., 2020), our review analyzes the
mathematical forms used to represent the physiological processes of
bone remodeling, highlights important local and systemic biological
features found in mathematical models, and synthesizes these into
comprehensive tables that should be useful to others interested in
building or adapting such models (Tables 1–7). Spatiotemporal
biochemical models (van Oers et al., 2008; Ryser et al., 2009; Ayati
et al., 2010; Ryser et al., 2010; Buenzli et al., 2011; Buenzli et al., 2012a;

Graham and Ayati, 2012; Ryser et al., 2012; Araujo et al., 2014; Buenzli
et al., 2014; Buenzli, 2015; Lerebours et al., 2016; Ryser andMurgas, 2017;
Arias et al., 2018; Peyroteo et al., 2019; Kameo et al., 2020; Taylor-King
et al., 2020; Baldonedo et al., 2021; Calvo-Gallego et al., 2023; Idrees and
Sohail, 2023) are categorized in Table 1. Temporal biochemical models
are organized based on which of two prevailing mathematical
formulations are used to describe bone cell population dynamics and
their biochemical signaling dynamics in the BMU. The temporal models
that adopt the power law approach defined in Section 4.1 (Komarova
et al., 2003; Komarova, 2005; Garzón-Alvarado, 2012; Liò et al., 2012;
Graham et al., 2013; Jerez and Chen, 2015; Chen-Charpentier and
Diakite, 2016; Coelho et al., 2016; Jerez et al., 2018; Camacho and Jerez,
2019; Idrees et al., 2019; Javed et al., 2019; Idrees and Sohail, 2020;
Miranda et al., 2020; Camacho and Jerez, 2021; Islam et al., 2021; Cook
et al., 2022) are categorized in Table 2, described in Section 5.2, and
detailed in Supplementary Table S1. The temporalmodels that adopt the
mass action kinetics approach defined in Section 4.2 (Lemaire et al.,
2004;Marathe et al., 2008; Pivonka et al., 2008; Peterson and Riggs, 2010;
Pivonka et al., 2010; Marathe et al., 2011; Schmidt et al., 2011; Wang
et al., 2011; Buenzli et al., 2012b; Peterson and Riggs, 2012; Ross et al.,
2012; Wang and Qin, 2012; Pivonka et al., 2013; Post et al., 2013;
Scheiner et al., 2013; Ji et al., 2014; Scheiner et al., 2014; Berkhout et al.,
2015; Eudy et al., 2015; Berkhout et al., 2016; Lee and Okos, 2016; Farhat
et al., 2017; Ross et al., 2017; Hasegawa andDuffull, 2018; Pastrama et al.,
2018; Ji et al., 2019; Lemaire andCox, 2019;Martin et al., 2019;Martínez-
Reina and Pivonka, 2019; Trichilo et al., 2019; Zhang and Mager, 2019;
Ashrafi et al., 2020; Bahia et al., 2020; Ji et al., 2020; Lavaill et al., 2020;
Martin et al., 2020; Larcher and Scheiner, 2021) are categorized in
Table 3, described in Section 5.3, and detailed in Supplementary Table
S2. The temporalmodels that do not explicitly use the power law ormass
action kinetics approaches (Kroll, 2000; Rattanakul et al., 2003; Martin
and Buckland-Wright, 2004; Moroz et al., 2006; Moroz andWimpenny,
2007; Akchurin et al., 2008; Ji et al., 2012; Proctor and Gartland, 2016;
Chaiya and Rattanakul, 2017; Javed et al., 2018; Zhao and Zhang, 2019;
Javed et al., 2020; Nutini et al., 2021; Jorg et al., 2022) are categorized in
Table 4 and detailed in Supplementary Table S3. A recent review of
existing mechanical models of bone remodeling is provided by Della
Corte et al. (2020), and Pant et al. (2021) reviews mechanical and
mechano-chemo-biological and points to opportunities for integrating
mechanics, biology, and biochemistry at the cellular and molecular
scales. The review of Ait Oumghar et al. (2020) complements our review
of biochemical models but distinctly emphasizes the experimental
evidence for biochemical models of bone diseases, such as
osteoporosis, Paget’s disease, and bone metastases. Ledoux et al.
(2022) organizes their discussion of existing models by the biological
features, but their focus is on summarizing a wealth of relevant clinical
data for parameterizing suchmodels.We intend for the present review to
motivate systems biology researchers to look at bone beyond the local
microenvironment to better understand the complexities of bone within
the body as an integratedwholewhile still using past accomplishments in
localized mathematical modeling and experimental data.

In Section 2 we introduce the background of the biology for the
bone local environment. Section 3 expands the background to include
systemic biological and pharmacological influences on bone remodeling.
Key techniques for mathematical modeling are categorized and
introduced in Section 4 and are applied to cells of the bone
remodeling cycle. Section 5 reviews existing biochemical models for
bone remodeling. In Section 5.4 we emphasize how current models
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consider bone remodeling aspects from a systems biology perspective
and point to several gaps in biological concepts that have yet to be
considered thoroughly, thus highlighting opportunities for future
systems biology models. Summaries of the mathematical models
discussed in our review can be found in Supplementary Tables
S1–S3, where the models are organized by modeling technique and
include information about the cellular and biochemical molecules used,
motivations and insights, and connections to other models.

2 Background on bone remodeling
from a local perspective

Modern understanding of bone remodeling focuses locally on a basic
multicellular unit (BMU) (Frost, 1966b; Frost, 1973; Jee, 2001; Allen and
Burr, 2014). A BMU is considered a functional spatial packet where bone
turnover occurs during remodeling (Frost, 1964a; Frost, 1966a). The
prevalent view of the BMU typically consists of three cell types:

osteoclasts, osteoblasts, and osteocytes. Osteoclast cells in the BMU are
responsible for bone resorption, which involves the dissolution of the
hydroxyapatite mineral layer and enzymatic degradation of the bone
protein matrix (Bellido et al., 2014; Kenkre and Bassett, 2018). In
opposition, osteoblast cells in the BMU form the bone protein matrix
by depositing unmineralized tissue called osteoid, which undergoes a
highly regulated mineralization process (Eriksen, 2010; Sims and Martin,
2020; Everts et al., 2022). Osteoblasts embedded in the osteoid tissue
during this process differentiate into osteocyte cells. These osteocytes
trigger and possibly terminate remodeling by releasing signalingmolecules
at various cycle phases (Bellido et al., 2014; Guder et al., 2020; Creecy
et al., 2021).

2.1 Bone remodeling cycle

In its simplest form, a remodeling cycle consists of four phases:
activation, resorption, formation, and resting. Bone remodeling is

TABLE 1 Overview of cells and signaling molecules commonly included in spatiotemporal biochemical models of bone remodeling.

References pOCL OCL pOBL OBL OCY RANK RANKL OPG A&P TGFβ PTH Other

ABMs

van Oers et al. (2008)* x x x

Buenzli et al. (2012a) x

Arias et al. (2018) x x x x x

Taylor-King et al. (2020) x x x

ABMs & PDEs

Araujo et al. (2014) x x x x x x

PDEs

Ryser et al. (2009) x x x x x

Ayati et al. (2010) x x x

Ryser et al. (2010) x x x x x

Buenzli et al. (2011) x x x x x x x x

Graham and Ayati (2012) x x x

Ryser et al. (2012) x x x x x x x

Buenzli et al. (2014) x x x x x x x x

Buenzli (2015) x x

Lerebours et al. (2016)* x x x x x x x x x

Ryser and Murgas (2017) x x x x

Peyroteo et al. (2019) x x x

Kameo et al. (2020)* x x x x x SCL

Baldonedo et al. (2021) x x x x x SCL

Calvo-Gallego et al. (2023)* x x x x x x x x x x

Idrees and Sohail (2023) x x x x

The * symbol indicates models that include biomechanical features. The modeling approaches and additional details are available in Supplementary Tables S1–S3. Abbreviations: ABMs, agent-

based models; PDEs, partial differential equations; pOCL, preosteoclasts; OCL, osteoclasts; pOBL, preosteoblasts; OBL, osteoblasts; OCY, osteocytes; RANK, receptor activator of nuclear factor

kappa-B; RANKL, receptor activator of nuclear factor kappa-B ligand; OPG, osteoprotegerin; A&P, general autocrine and paracrine signaling; TGF-β, transforming growth factor beta; PTH,

parathyroid hormone; SCL, sclerostin.
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activated by localized mechanical damage and osteocyte apoptosis,
which may be initiated by systemic biochemical changes, aging, or
mechanical loading (Allen and Burr, 2014; Kenkre and Bassett, 2018;
Pant et al., 2021). These factors trigger osteocytes to secrete signals
that stimulate the proliferation of mononuclear cells, which fuse into
preosteoclasts and then become active osteoclasts (Eriksen, 2010;
Sims and Martin, 2020; Everts et al., 2022). As osteoclasts resorb
bone, signaling factors (e.g., transforming growth factor beta (TGF-
β), insulin-like growth factor (IGF)-1, IGF-2, bone morphogenic
protein (BMP)2, andWnt-10b (Sims andMartin, 2020)) are released
from the bone matrix or secreted by osteoclasts themselves. These
signals, in turn, initiate osteoblast proliferation, migration, and
activation. Osteoblasts produce the extracellular protein matrix
that becomes bone tissue. Embedded osteocytes secrete signals to
slow bone formation and indicate when the resorption cavity is
filled, leading to a resting phase.

A more complex and recent representation of the bone
remodeling cycle adds a reversal phase between the resorption
and formation phases (Jee, 2001; Allen and Burr, 2014; Bellido
et al., 2014) (Figure 1). Before osteoblasts rebuild bone, it is
suggested that the resorbed bone cavity is cleared of debris by
reversal cells, which are currently not considered part of the
BMU (Delaisse et al., 2020). The origin of these cells is unclear,
but they express markers of osteoblastic lineage (Delaisse et al., 2020;
Epsley et al., 2021). Bone lining cells are another cell not canonically
considered part of the BMU. However, osteoblasts can also become
bone lining cells at the end of the bone formation phase, forming a

protective layer on the bone surface that prevents osteoclasts from
interacting with bone where remodeling should not occur (Bellido
et al., 2014; Florencio-Silva et al., 2015; Della Corte et al., 2020).

2.2 Cells of the BMU

Osteoclasts are the only cells known to break down bone. They
originate from hematopoietic stem cells that differentiate into
monocyte progenitors (Bellido et al., 2014) (Figure 2). In bone
remodeling, the monocyte progenitor cells are often called
uncommitted osteoclasts because they can also differentiate into
other cell types. Upon stimulation by various signaling factors,
monocyte progenitor cells become mononuclear preosteoclasts
(also known as precursor osteoclasts) that later proliferate and
fuse into osteoclasts (Martin and Rodan, 2009; Eriksen, 2010;
Bellido et al., 2014; Kim et al., 2020; Sims and Martin, 2020;
Epsley et al., 2021; Everts et al., 2022). Thus, osteoclasts are
multinucleated cells that remove bone (Jee, 2001).

Osteoblasts produce osteoid, the collagenous organic matrix that
makes up bone (Allen and Burr, 2014; Bellido et al., 2014; Sharma
et al., 2020). Osteoblasts are derived from mesenchymal stem cells
from bone marrow that differentiate into osteochondro progenitor
cells (Figure 2). These are often classified as uncommitted
osteoblasts. Osteochondro progenitor cells later differentiate into
committed preosteoblast cells (also known as precursor osteoblasts).
During bone remodeling, signaling factors activate the proliferation

TABLE 2 Overview of cells and signaling molecules commonly included in ODEs-based temporal biochemical models of bone remodeling that follow the
power law approach.

References pOCL OCL pOBL OBL OCY RANKL TGFβ SCL Wnt PTH

Komarova et al. (2003) x x

Komarova (2005) x x x

Garzón-Alvarado (2012) x x x x

Liò et al. (2012)† x x x

Graham et al. (2013) x x x x x

Jerez and Chen (2015) x x

Chen-Charpentier and Diakite (2016) x x

Coelho et al. (2016) x x x x x

Jerez et al. (2018)† x x

Camacho and Jerez (2019) x x

Idrees et al. (2019) x x x x

Javed et al. (2019) x x x

Idrees and Sohail (2020) x x

Miranda et al. (2020) x x

Camacho and Jerez (2021) x x x x

Islam et al. (2021) x x x x x x

Cook et al. (2022) x x x x x x

All models include general autocrine and paracrine (A&P) signaling. The † symbol indicates models that include stochasticity. Additional details are available in Supplementary Table S1.

Abbreviations: ODEs, ordinary differential equations; pOCL, preosteoclasts; OCL, osteoclasts; pOBL, preosteoblasts; OBL, osteoblasts; OCY, osteocytes; RANKL, receptor activator of nuclear

factor kappa-B ligand; TGF-β, transforming growth factor beta; SCL, sclerostin; Wnt, wingless-related integration site; PTH, parathyroid hormone.
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TABLE 3 Overview of cells and signaling molecules commonly included in ODEs-based temporal biochemical models of bone remodeling that follow the
mass action kinetics approach.

References pOCL OCL pOBL OBL OCY SCL Wnt

Lemaire et al. (2004) x x x

Marathe et al. (2008) x x x

Pivonka et al. (2008) x x x

Peterson and Riggs (2010) x x x

Pivonka et al. (2010) x x x

Marathe et al. (2011) x x x

Schmidt et al. (2011) x x

Wang et al. (2011) x x x

Buenzli et al. (2012b) x x x x

Peterson and Riggs (2012) x x x

Ross et al. (2012) x x x

Wang and Qin (2012) x x x

Pivonka et al. (2013)* x x x x

Post et al. (2013) x x

Scheiner et al. (2013)* x x x

Ji et al. (2014) x x x

Scheiner et al. (2014)* x x x

Berkhout et al. (2015) x x

Eudy et al. (2015) x x x x x

Berkhout et al. (2016) x x

Lee and Okos (2016) x x x

Farhat et al. (2017) x x x x

Ross et al. (2017) x x x

Hasegawa and Duffull (2018) x x x

Pastrama et al. (2018)* x x x

Ji et al. (2019) x x x

Lemaire and Cox (2019) x x x x x

Martin et al. (2019)* x x x x x x

Martínez-Reina and Pivonka (2019)* x x x

Trichilo et al. (2019) x x x

Zhang and Mager (2019) x x x

Ashrafi et al. (2020)* x x x

Bahia et al. (2020)* x x x

Ji et al. (2020) x x x

Lavaill et al. (2020)* x x x

(Continued on following page)
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and migration of preosteoblasts to the resorption site, where they
differentiate into osteoblast cells. When osteoblasts become trapped
in the osteoid collagen matrix, they differentiate into osteocytes. The
osteoblasts that remain after bone formation become inactive bone
lining cells or undergo apoptosis (Jee, 2001; Bellido et al., 2014).

Although questions remain about what regulates osteoblast
differentiation into osteocytes, the change is marked by the
formation of dendrites (Creecy et al., 2021) that form a network
to communicate with other osteocytes and bone cells (Bellido et al.,
2014). Osteocytes have a 25-year lifespan and are the longest-living
and most abundant bone cells (Jee, 2001; Bonewald, 2011; Bellido
et al., 2014; Florencio-Silva et al., 2015).

The roles of osteocytes in the bone remodeling process are
relatively recent discoveries, as these cells were initially
considered inert (Bonewald and Johnson, 2008; Bonewald,
2011; Florencio-Silva et al., 2015). Osteocytes stimulate
remodeling in response to mechanical and hormonal stimuli
and other stressors (Bonewald, 2011; Bellido et al., 2014) by

secreting key regulatory molecules for cellular differentiation and
activity in the BMU (Ait Oumghar et al., 2020; Creecy et al., 2021)
and regulate calcium homeostasis by triggering mineral release
from the bone matrix (Bonewald, 2011; Jähn et al., 2017).
Osteocyte apoptosis following estrogen deficiency increases
remodeling (Tomkinson et al., 1997; Tomkinson et al., 1998;
Emerton et al., 2010; Khosla et al., 2012; Bellido et al., 2014).
Osteocyte lifespan and apoptosis are also linked to in vivo
mechanical forces and accumulated microdamage in aging
(Bellido et al., 2014).

As with most biological concepts, the bone remodeling process is
more complex than a four-step process consisting of only three cell
types. The reversal phase is an example of such complexity. Precursor
bone cells are another example. Although not included in the simplified
BMU, precursor bone cells are important cells in the bone remodeling
cycle (Boyle et al., 2003; Rutkovskiy et al., 2016). The numerous
signaling factors that regulate bone remodeling add another layer of
complexity (Figure 2), discussed further in Sections 2.3, 3.

TABLE 3 (Continued) Overview of cells and signalingmolecules commonly included in ODEs-based temporal biochemicalmodels of bone remodeling that
follow the mass action kinetics approach.

References pOCL OCL pOBL OBL OCY SCL Wnt

Martin et al. (2020)* x x x x x x

Larcher and Scheiner (2021)* x x x

All models include RANK, RANKL, OPG, TGF-β, and PTH. The * symbol indicates models that include biomechanical features. Additional details are available in Supplementary Table S2.

Abbreviations: ODEs, ordinary differential equations; pOCL, preosteoclasts; OCL, osteoclasts; pOBL, preosteoblasts; OBL, osteoblasts; OCY, osteocytes; RANK, receptor activator of nuclear

factor kappa-B; RANKL, receptor activator of nuclear factor kappa-B ligand; OPG, osteoprotegerin; TGF-β, transforming growth factor beta; PTH, parathyroid hormone; SCL, sclerostin; Wnt,

wingless-related integration site.

TABLE 4 Overview of cells and signaling molecules commonly included in ODEs-based temporal biochemical models of bone remodeling that do not
follow the power law or mass action kinetics approaches.

References pOCL pOBL OCY A&P RANK RANKL OPG TGFβ SCL Wnt PTH

Kroll (2000) x x x

Rattanakul et al. (2003) x x x

Martin and Buckland-Wright (2004) x x x

Moroz et al. (2006)* x x

Moroz and Wimpenny (2007)* x x

Akchurin et al. (2008) x

Ji et al. (2012)

Proctor and Gartland (2016)* x x x x x x x x x x

Chaiya and Rattanakul (2017) x

Javed et al. (2018) x x x x x

Zhao and Zhang (2019) x

Javed et al. (2020) x x

Nutini et al. (2021)* x x x x

Jorg et al. (2022) x x x

All models include OCL and OBL except Martin and Buckland-Wright (2004) and Akchurin et al. (2008), which only include OCL, and Nutini et al. (2021), which only includes OBL. The

* symbol indicates models that include biomechanical features. Additional details are available in Supplementary Table S3. Abbreviations: ODEs, ordinary differential equations; OCL,

osteoclasts; OBL, osteoblasts; pOCL, preosteoclasts; pOBL, preosteoblasts; OCY, osteocytes; A&P, general autocrine and paracrine signaling; RANK, receptor activator of nuclear factor kappa-B;

RANKL, receptor activator of nuclear factor kappa-B ligand; OPG, osteoprotegerin; TGF-β, transforming growth factor beta; SCL, sclerostin; Wnt, wingless-related integration site; PTH,

parathyroid hormone.
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2.3 Signaling pathways of the BMU

A key signaling mechanism driving the coordination of
osteocytes, osteoclasts, and osteoblasts is the RANK-RANKL-
OPG pathway (Figure 2). Preosteoclasts and active osteoclasts

express receptor activator of nuclear factor kappa-B (RANK)
(Eriksen, 2010). RANK binds to its ligand RANKL, a soluble and
membrane-bound protein expressed by osteoblastic-lineage cells,
such as mesenchymal stem cells, preosteoblasts, osteoblasts, and
osteocytes (Eriksen, 2010). RANK-RANKL binding triggers

TABLE 5 Representation of cytokines in mathematical models of bone remodeling.

References Cytokine Variable type Cytokine interactions

Kroll (2000)3, Idrees et al. (2019)1 IL-6 Dynamic Stimulates OCL formation (time-delayed)

Production rate by OBL

Elimination rate of IL-6

Wang et al. (2011)2, Ji et al. (2014)2, Ji et al. (2020)2 IL-6 Dynamic Production rate by BMSC via TGF-β

Stimulates RANKL expression by pOBL

Production by tumor-BMSC adhesion via VLA4

Stimulates tumor cell proliferation

Martin and Buckland-Wright (2004)3,‡ MCSF Constant Presence in healthy bone tissue

Pivonka et al. (2013)2, Lerebours et al. (2016)2,§ MCSF Constant Binding on uncommitted OCL

Proctor and Gartland (2016)3,‡ MCSF Dynamic Stimulates HSC differentiation to pOCL

Production by OBL progenitor

Production by pOBL and OBL

Production by PTH-stimulated pOBL and OBL

Degradation rate of MCSF

Garzón-Alvarado (2012)1,‡ IGF Dynamic Inhibits OBL differentiation

Production by tumor cells

Lee and Okos (2016)2 IGF-1 Dynamic Binding kinetics to IGFBP3 receptor

Stimulates pOBL formation

Stimulates pOBL differentiation to OBL

The modeling approach is denoted by superscripts as follows: (1) power law, (2) mass action kinetics, or (3) neither. All models that follow the mass action kinetics approach include RANK,

RANKL, OPG, and TGF-β. Models that do not follow this approach but include any of the signals above are indicated by the ‡ symbol. Spatiotemporal models are indicated by the § symbol.

Abbreviations: RANK, receptor activator of nuclear factor kappa-B; RANKL, receptor activator of nuclear factor kappa-B ligand; OPG, osteoprotegerin; TGF-β, IL-6, transforming growth factor

beta; interleukin-6; OCL, osteoclasts; OBL, osteoblasts; BMSC, bone marrow stromal cells also known as mesenchymal stem cells; pOBL, preosteoblasts; VLA4, very late antigen-4; MCSF,

macrophage colony-stimulating factor; HSC, hematopoietic stem cells; pOCL, preosteoclasts; PTH, parathyroid hormone; IGF, insulin-like growth factor; IGFBP3, insulin-like growth factor

binding protein 3.

TABLE 6 Representation of immune cells in mathematical models of bone remodeling.

References Immune Cell(s) Variable type Cell interactions

Akchurin et al. (2008)3,‡ Monocytes Dynamic Proliferation and fusion of monocytes

Differentiation to OCL

Proctor and Gartland (2016)3,‡ HSC Constant Differentiation to pOCL by MCSF

Islam et al. (2021)1 Naïve CD4+ T cells, Tregs Dynamic Differentiation of Naïve T to Tregs

Effects of butyrate on T cell differentiation

Migration of Tregs between compartments

Effects of Tregs on TGF-β fold change

The modeling approach is denoted by superscripts as follows: (1) power law, (2) mass action kinetics, or (3) neither. All models that follow the mass action kinetics approach include RANK,

RANKL, OPG, and TGF-β. Models that do not follow this approach but include any of the signals above are indicated by the ‡ symbol. Abbreviations: RANK, receptor activator of nuclear factor

kappa-B; RANKL, receptor activator of nuclear factor kappa-B ligand; OPG, osteoprotegerin; TGF-β, transforming growth factor beta; OCL, osteoclasts; HSC, hematopoietic stem cells; pOCL,

preosteoclasts; MCSF, macrophage colony-stimulating factor; Tregs, regulatory T cells.
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intracellular cascades, such as the nuclear factor kappa B (NF-κB)
pathway, which produces nuclear factor of activated T cell
cytoplasmic 1 (NFATc1), a transcription factor that induces
osteoclastic genes (Walsh and Choi, 2014). These genes regulate
cell proliferation, differentiation, and survival through the
osteoclastic lineage, a process called osteoclastogenesis. RANK-
RANKL binding is inhibited by osteoprotegerin (OPG), a soluble
decoy receptor expressed by osteoblastic cells that binds to RANKL
(Eriksen, 2010).

As shown in Figure 2, the wingless-related integration site (Wnt)
pathways play a complementary role in bone remodeling by
regulating osteoblastogenesis (Bennett et al., 2005; Bennett et al.,
2007). Wnt is a family of 19 glycoproteins that can activate the
canonical Wnt/β-catenin pathway, the non-canonical Wnt/Ca2+

pathway, and the Wnt/planar cell polarity pathway (Bonewald and
Johnson, 2008; Houschyar et al., 2019; Maeda et al., 2019). Wnt

ligands, such as osteoclast-derived Wnt-3a and Wnt-10b, activate the
canonical pathway by binding to low-density lipoprotein receptor-
related protein 5 or 6 (LRP5/6) and the Frizzled coreceptor (Lerner
and Ohlsson, 2015; Maeda et al., 2019; Perkins et al., 2023). This
increases β-catenin levels, upregulating osteoblastic genes (Perkins
et al., 2023). The canonical pathway promotes mesenchymal stem
cell differentiation into preosteoblasts by inhibiting their
differentiation into adipocytes and chondrocytes (Siddiqui and
Partridge, 2016; Maeda et al., 2019; Kim et al., 2020).
Additionally, canonical signaling upregulates OPG expression
by osteoblastic-lineage cells (Kramer et al., 2010; Bellido et al.,
2014; Plotkin and Bivi, 2014), suppressing osteoclastogenesis
(Siddiqui and Partridge, 2016). The canonical cascade is
inhibited by osteoblast-derived dickkopf-related protein 1
(DKK1) and osteocyte-derived sclerostin, which bind to LRP5/
6 instead of Wnt ligands (Maeda et al., 2019). Osteocytes secrete

TABLE 7 Estrogen representation in mathematical models of bone remodeling.

References PMO treatment Estrogen effects in the models

Explicit estrogen effects

Rattanakul et al. (2003)3,‡ Estrogen Estrogen amplitude

Increasing OCL removal rate

Schmidt et al. (2011)2, Post et al. (2013)2 Estrogen, tibolone, Ca placebo Inhibiting OPG production rate

Estrogen decay

Estrogen production rates (endo and exogenous)

Berkhout et al. (2015)2, Berkhout et al. (2016)2 Ca placebo, bisphosphonates Estrogen elimination rate

Chaiya and Rattanakul (2017)3 Estrogen Intermittent dosing

First-order OCL degradation

Zero-order OBL production

Javed et al. (2018)3,‡ Denosumab Inhibiting RANKL production

Relative estrogen concentration

Jorg et al. (2022)3 Bisphosphonates, RANKL antibodies, SCL antibodies, PTH analogs Inhibiting OCL differentiation

Inhibiting SCL secretion

Stimulating OCL apoptosis

Age-dependent estrogen concentration

Implicit estrogen effects

Lemaire et al. (2004)2 Parameter variations Decreasing OPG production rate

Scheiner et al. (2013)2, Larcher and Scheiner (2021)2 - Disease-modifying PTH production (dosage)

Scheiner et al. (2014)2 Denosumab Disease-modifying RANKL production

Disease-modifying mechanical sensitivity

Trichilo et al. (2019)2, Martin et al. (2019)2 PTH Disease-modifying RANKL production (dosage)

Lemaire and Cox (2019)2 Denosumab, romosozumab Decreasing OPG production rate

Decreasing TGF-β production rate

The modeling approach is denoted by superscripts as follows: (1) power law, (2) mass action kinetics, or (3) neither. All models that follow the mass action kinetics approach include RANK,

RANKL, OPG, and TGF-β. Models that do not follow this approach but include any of the signals above are indicated by the ‡ symbol. Abbreviations: RANK, receptor activator of nuclear factor

kappa-B; RANKL, receptor activator of nuclear factor kappa-B ligand; OPG, osteoprotegerin; TGF-β, transforming growth factor beta; PMO, post-menopausal osteoporosis; OCL, osteoclasts;

Ca, calcium; OBL, osteoblasts; SCL, sclerostin; PTH, parathyroid hormone.
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sclerostin to terminate and prevent activation of a remodeling
cycle (Eudy et al., 2015; Ait Oumghar et al., 2020; Creecy
et al., 2021).

As in the Wnt/β-catenin pathway, non-canonical signaling
stimulates osteoblastogenesis when osteoclast-derived Wnt binds
to osteoblastic receptors (Lerner and Ohlsson, 2015). Contrarily,
non-canonical signaling can inhibit or stimulate osteoclastogenesis
(Lerner and Ohlsson, 2015). Osteoblast-derived Wnt-16 inhibits
osteoclast differentiation directly by activating osteoclastic
receptors. However, it indirectly stimulates osteoclastogenesis by
activating osteoblastic receptors that upregulate OPG production
(Kim et al., 2020). Together, these findings highlight the complexity
of Wnt signaling and its regulation of bone remodeling. In the
remainder of this paper, we use Wnt and Wnt signaling to refer to
the canonical Wnt/β-catenin pathway, unless otherwise specified.
For further details on chemical agents that regulate cells of the BMU
organized by cell type, readers are referred to Jee (2001).

3 Background on bone remodeling
from a systemic perspective

The numerous signals that regulate bone remodeling originate
not only from bone cells (Figure 2) but also from beyond the bone
microenvironment (Figure 3). Systemic influences on bone
remodeling are seen in multiple bone diseases. Rheumatoid
arthritis, for example, is an autoimmune condition that causes
joint inflammation and destruction but also increases the risk of

osteoporosis twofold (Haugeberg et al., 2000; Hauser et al., 2014;
Llorente et al., 2020). This hints at immune-bone crosstalk.
Furthermore, sex hormones have long been thought to control
the bone remodeling process due to the link between estrogen
decline and postmenopausal osteoporosis (Rattanakul et al., 2003;
Li et al., 2016; Ait Oumghar et al., 2020; Lehmann et al., 2021). Sex
hormones also regulate the immune system (Kovats, 2015). Bone
cancers (e.g., osteosarcoma) and metastatic bone disease also
interfere with bone homeostasis (Buenzli et al., 2012b; Araujo
et al., 2014; Ji et al., 2014; Farhat et al., 2017). Intestinal dysbiosis
also influences the bone remodeling cycle (Li et al., 2016; Zaiss et al.,
2019; Hao et al., 2021). The complexity of bone remodeling extends
beyond the local bone environment to the systemic whole body level
(Figure 3). The rest of this section provides an overview of several
local and systemic cellular and chemical signaling mechanisms that
modulate bone remodeling.

3.1 Osteoimmunology

Evidence that immune activity modulates bone remodeling first
appeared in Horton et al. (1972) (Takayanagi, 2007; Della Corte
et al., 2020). This study showed that bone cultures from rats had
increased resorption activity after treatment with supernatant from
cultures with human peripheral blood mononuclear cells. This was
an early sign of crosstalk between bone and immune cells. However,
the importance of bone-immune interplay was not fully realized
until multiple publications in the 1990s showed that signals from the

FIGURE 1
Bone remodeling cycle. Resting bone is covered in bone lining cells with healthy osteocytes embedded in the bone. Step 1, Activation: Bone
remodeling starts when the osteocytes are activated or damaged. Step 2, Resorption: During the resorption phase, osteoclasts are formed from
preosteoclasts and break down bone in a cavity. Step 3, Reversal: Mononuclear cells that are known as reversal cells prepare the surface as preosteoblasts
arrive at the cavity during the reversal phase. These preosteoblasts proliferate and convert into osteoblasts. Step 4, Formation: Osteoblasts reform
the bone matrix by depositing osteoid, which later mineralizes. While the matrix is being deposited, some osteoblasts embed in the bone, becoming
osteocytes. Step 5, Resting: The bone remains resting until another cycle of bone remodeling is initiated. Created with BioRender.com.
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immune system signal bone remodeling (Iotsova et al., 1997; Wong
et al., 1997; Fuller et al., 1998; Dougall et al., 1999; Kotake et al., 1999;
Naito et al., 1999; Suda et al., 1999). One such study found that
RANK, a protein of the tumor necrosis factor (TNF) superfamily
secreted by immune cells, is a crucial receptor in bone remodeling
(Dougall et al., 1999). Mice lacking this receptor protein had fewer
B cells in the spleen, almost no peripheral lymph nodes, and fewer
mature osteoclasts. The importance of these discoveries is
highlighted by Arron and Choi (2000). This seminal article
coined the term osteoimmunology to describe the intersection of
bone and immune research, leading to a new subfield of research.
Several more recent reviews provide in-depth surveys of
osteoimmunology beyond the scope of the present review
(Lerner, 2006; Eastell et al., 2016; Weitzmann and Ofotokun,
2016; Weitzmann, 2017; Dar et al., 2018; Ponzetti and Rucci,
2019). Several cytokines and immune cells influence bone
remodeling and are summarized in the following.

3.1.1 MCSF, TGF-β, and other cytokines
In addition to Wnt and RANK-RANKL-OPG signaling, two

cytokines play essential signaling roles in bone remodeling:
macrophage colony-stimulating factor (MCSF) and TGF-β.
MCSF stimulates osteoclastogenesis by binding to monocyte

progenitor cells and preosteoclasts. This triggers intracellular
cascades that induce NFATc1, the main transcription factor for
osteoclastogenesis (Guder et al., 2020). The importance of MCSF
stems from its role in stimulating the first stage of osteoclastogenesis
(Figure 2), which RANKL does not stimulate, and the proliferation
of osteoclast precursor cells. The role of TGF-β is less
straightforward. Its regulatory effects are concentration
dependent (Janssens et al., 2005; Wu et al., 2016). Moreover, it
regulates both bone formation and bone resorption. Low
concentrations of TGF-β stimulate osteoclast production while
promoting preosteoblast migration and proliferation. High
concentrations inhibit osteoclastogenesis. Also, high
concentrations inhibit preosteoblast migration and late-stage
osteoblast differentiation. Although these contradictory findings
still puzzle researchers, the mechanism of changes in TGF-β
concentration during remodeling is well understood. Inactive
TGF-β is stored in the extracellular matrix of bone (Epsley et al.,
2021). As osteoclasts remove bone, TGF-β is released and activated,
increasing the concentration of TGF-β (Janssens et al., 2005;
Matsumoto and Abe, 2011).

Numerous other cytokines also regulate bone remodeling. TGF-
β is not the only cytokine released from the bone matrix during
resorption; others include IGF-1, IGF-2, and BMP2 (Sims and

FIGURE 2
Osteoclasts and osteoblasts form via osteoclastogenesis and osteoblastogenesis, respectively. In osteoclastogenesis, osteoclasts are derived from
monocyte progenitor cells that differentiate into mononuclear preosteoclasts, which fuse into active multinucleated osteoclasts. Preosteoclast
proliferation and fusion is stimulated by osteoblastic lineage-derived receptor activator of nuclear factor kappa B ligand (RANKL) binding to RANK on
osteoclastic cells. Osteoblast-produced osteoprotegerin (OPG), a decoy receptor, inhibits osteoclastogenesis by binding to RANKL. In
osteoblastogenesis, osteoblasts originate from mesenchymal stem cells that differentiate into preosteoblasts. Osteoblastogenesis is typically stimulated
by canonical wingless-related integration site (Wnt) signaling, which occurs when osteoclast-derived Wnt-10b ligands bind to lipoprotein receptor-
related protein 5 or 6 (LRP5/6) and Frizzled coreceptors on osteoblastic cells. Canonical Wnt signaling also stimulates OPG expression and inhibits
osteoblast apoptosis. Osteoblastogenesis is inhibited by osteoblast-derived dickkopf-related protein 1 (DKK1) and osteocyte-derived sclerostin, which
bind to canonical Wnt LRP5/6 receptors. Receptors and ligands expressed from osteoclastic or osteoblastic sources are not explicitly shown with arrows
to simplify this diagram; instead, they are indicated by color. Ligands from osteoclastic sources include Wnt-10b (white). Receptors from osteoclastic
sources include RANK (orange). Ligands from osteoblastic sources include RANKL, sclerostin, and DKK1 (purple). Receptors from osteoblastic sources
include OPG, LRP5/6, and Frizzled (blue). Created with BioRender.com.
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Martin, 2020). Typically, cytokines are classified as osteoclastogenic
or osteoblastogenic, though their roles may be concentration-
dependent as described with TGF-β. Bone resorption is inhibited
by anti-inflammatory cytokines such as interleukin (IL)-4, IL-10, IL-
13, IL-18, and interferon (IFN)-γ (Walsh et al., 2006). Conversely, it
is stimulated by pro-inflammatory cytokines such as IL-1, IL-1β,
TNF-α, IL-6, IL-11, IL-15, and IL-17. These cytokines modulate
RANKL and Wnt signaling to increase osteoclast activity (Walsh
et al., 2006; Tilg et al., 2008). For example, TNF-α upregulates the
expression of RANKL, DKK1, and sclerostin in osteocytes (Kitaura
et al., 2020; Epsley et al., 2021). The influx of RANKL promotes
osteoclastogenesis, while the influx of DKK1 and sclerostin inhibits
osteoblastogenesis. Cytokines interact in a complex network with
RANK-RANKL-OPG, Wnt, MCSF, and TGF-β to regulate bone
remodeling.

For further detailed coverage of cytokines and growth factors
that locally regulate bone cell function and thorough diagrams of
signaling ligands and their associated receptors, intracellular kinases
and transcription factors, and biological outcomes, readers are
referred to Plotkin and Bivi (2014).

3.1.2 Immune cells
Immune cells contribute to bone homeostasis through cytokine

expression and direct immune cell activity. Osteoclasts are derived from
innate immune cells called monocytes (Saxena et al., 2021). Monocytes
are more commonly differentiated into macrophages and dendritic
cells. Studies have shown that these cells can transdifferentiate into
preosteoclasts (Bonomo et al., 2016; Saxena et al., 2021; Srivastava and
Sapra, 2022). Macrophages further modulate bone remodeling through
the expression of inflammatory cytokines IL-1, IL-6, and TNF-α or
bone formation factors IL-10, BMP-2, andTGF-β (Fischer andHaffner-
Luntzer, 2022). In contrast, dendritic cells primarily stimulate
osteoclastogenesis through RANK-RANKL activation of T cells,

which upregulates T cell production of RANKL, IL-1, IL-6, IL-17,
and TNF-α (Bonomo et al., 2016). However, not all T cells are
osteoclastogenic.

Different populations of T cells affect osteoclasts and osteoblasts
in different ways. Naïve CD4+ T cells can differentiate into
osteoclastogenic subtypes, e.g., T helper (Th)17 and Th9 cells, or
anti-osteoclastic subtypes, e.g., Th1, Th2, and T regulatory (Treg)
cells, characterized by their cytokine expression profiles (Guder
et al., 2020). For example, Th17 cells express high levels of IL-17,
which upregulates RANK in preosteoclasts and RANKL in
osteoblasts, increasing bone resorption (Fischer and Haffner-
Luntzer, 2022; Srivastava and Sapra, 2022). Th17 cells also
secrete IL-6, RANKL, and TNF-α to promote osteoclastogenesis
and suppress osteoblast activity (Srivastava et al., 2018; Epsley et al.,
2021). Cytokine profiles of Th1, Th2, and Treg cells contrast the
profiles from Th17 cells. These cells secrete anti-osteoclastic
cytokines such as IFN-γ, IL-4, TGF-β1, and IL-10 (Okamoto
et al., 2017; Srivastava et al., 2018; Guder et al., 2020). However,
following the pattern of Wnt, TGF-β, and other cytokines, T cell
roles are not always clear. Activated Tregs secrete DKK1, which
inhibits Wnt-mediated bone formation (Lehmann et al., 2021). This
inhibitory effect contrasts studies showing Tregs increase Wnt-10b
production by CD8+ T cells (Tyagi et al., 2018). Despite this, studies
indicate a balance between Th17 and Treg cells is important for
healthy bone remodeling, such that higher Th17 to Treg ratios
contribute to rheumatoid arthritis and osteoporosis (Okamoto et al.,
2017; Srivastava et al., 2018). Declining bone health is associated
with many classic inflammatory diseases, such as periodontitis,
rheumatoid arthritis, and aseptic prosthesis (Epsley et al., 2021).
To obtain a more complete picture of bone remodeling, it is vital to
consider these complex bone-immune interactions.

3.2 Endocrine system and pharmaceuticals

Figure 4 highlights the influence of the endocrine system and
other common bone-related medications on bone health. The cross-
talk between the endocrine and the skeletal systems is expansive.
Here, we discuss only parathyroid hormone (PTH) and estrogen,
which are most prevalent in bone mathematical research.
Intermittent PTH and hormone replacements for estrogen are
commonly used as pharmacological interventions for bone
diseases. As such, we consider pharmaceuticals together with the
endocrine system.

3.2.1 Parathyroid hormone
PTH is a systemic hormone that regulates calcium levels in the

blood in part by triggering calcium release from the bone. Chief cells
within the parathyroid gland produce PTH when serum calcium
levels are low (Chaiya and Rattanakul, 2017). The increase in
circulating PTH triggers bone remodeling, and subsequently,
osteoclasts release calcium from the bone into the blood to
maintain homeostasis (Peterson and Riggs, 2010; Coelho et al.,
2016). This ability to stimulate remodeling has led to the
development of synthetic PTH for osteoporosis treatment.
However, PTH is another signaling factor with a dual role in
osteoclastogenesis. Circulating PTH stimulates osteoclast activity
by increasing the RANKL to OPG ratio but inhibits osteoclast

FIGURE 3
Several local and systemic cells and chemicals influence bone
health, and their complex interactions can be explored via
mathematical models of the bone remodeling process. Created with
BioRender.com. Adapted from “Pie Chart 7X” by BioRender.com
(2022). Retrieved from https://app.biorender.com/
biorender-templates.
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formation by decreasing sclerostin and DKK1 (Silva and Bilezikian,
2015; Kenkre and Bassett, 2018; Wein and Kronenberg, 2018; Guder
et al., 2020). Exogenous PTH alters bone remodeling differently
depending on the administration schedule. Continuous
administration decreases overall levels of bone density, whereas
intermittent administration increases bone density levels (Coelho
et al., 2016; Lemaire and Cox, 2019). This has led many researchers
to develop mathematical models to understand the mechanisms of
PTH regulation.

The dual role of PTH is currently understood to involve both
stimulation of preosteoblast production and inhibition of
preosteoblast differentiation (Chaiya and Rattanakul, 2017). As a
result, preosteoblast cell populations increase while osteoblast
populations remain unchanged. This causes an increase in the
RANKL to OPG ratio since osteoblastic cells produce more OPG
and less RANKL (Gori et al., 2000) as they mature. A short burst of
PTH stimulates remodeling by increasing RANKL and suppressing
OPG. High concentrations of PTH over a long period, as in the case
of hyperparathyroidism, dysregulate bone remodeling due to the
overproduction of osteoclasts. This leads to a larger resorption cavity
that the limited number of osteoblasts cannot fill. This
interrelationship between bone cells and PTH exemplifies the
complexity of the bone remodeling process.

3.2.2 Estrogen
Estrogen and bone health have been closely linked for decades

due to the correlation between postmenopausal estrogen decline and
bone loss (Khosla et al., 2012). Although early research on the
mechanism of estrogen regulation of bone remodeling was unclear,
recent studies in osteoimmunology have improved our
understanding. Estrogen deficiency increases bone turnover and

unbalanced remodeling (Khosla et al., 2012). This occurs through
estrogen-mediated inhibition of RANKL production and
stimulation of OPG expression, which limits osteoclastogenesis
(Eriksen, 2010; Florencio-Silva et al., 2015; Noirrit-Esclassan
et al., 2021). Estrogen has also been shown to prevent apoptosis
of osteoblasts and osteocytes (Florencio-Silva et al., 2015). This is
consistent with studies showing that estrogen deficiency induces
osteocyte apoptosis (Tomkinson et al., 1997; Tomkinson et al., 1998;
Emerton et al., 2010; Khosla et al., 2012; Delgado-Calle and Bellido,
2022). Ovariectomized (OVX) murine experiments demonstrate
that estrogen directly supports bone formation by upregulating
Wnt-10b in bone marrow stromal cells (Perkins et al., 2023).

Further evidence of the estrogen-bone link is based on the
presence of estrogen receptors (ER) on bone cells and targeted
deletion studies. ERα is found on osteoclastic and osteoblastic cells,
while ERβ is found on osteoblasts (Sharma et al., 2020). Targeted
deletion of osteoblastic ERα in murine models led to low bone mass
in both males and females (Almeida et al., 2017; Gao et al., 2021).
The targeted deletion of ERα in osteoclasts and osteoclast progenitor
cells increased osteoclast numbers in females but not in males
(Almeida et al., 2017). Another study of ERβ deletion in
mesenchymal stem cells found that bone mass increased only in
female rodents (Almeida et al., 2017). These knockout studies
indicate that estrogen signaling is vital to bone homeostasis in
males and females, with sex-based differences in these signaling
mechanisms.

Estrogen regulates bone remodeling through direct and
immune-mediated mechanisms (Khosla et al., 2012). For
instance, estrogen protects against T-cell-mediated bone loss by
upregulating Wnt signaling. While mice with DKK1-expressing
T cells experienced OVX-induced bone loss, knockout mice

FIGURE 4
Endocrine and pharmaceutical modulators of bone health. Intermittent dosing of parathyroid hormone (PTH) stimulates preosteoblast formation
and inhibits preosteoblasts’ differentiation to osteoblasts. Estrogen inhibits the development of osteoclasts while also protecting osteoblasts and
osteocytes from apoptosis. Glucocorticoids inhibit osteoblast development and survival, increase osteocyte apoptosis, and decrease osteoclast
apoptosis. Antiresorptives such as bisphosphonates and monoclonal antibodies promote osteoclast apoptosis. Created with BioRender.com.
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without DKK1-expressing T cells did not, and prior to OVX, these
mice exhibited higher bone mass (Lehmann et al., 2021). The loss of
bone in response to estrogen deficiency is recognized as a cytokine-
driven process involving T cell populations such as Tregs and
Th17 cells that results in the bone resorption activity of
osteoclasts exceeding that of bone-forming osteoblasts (Pacifici,
2012). The anti-inflammatory effect of estrogen extends to
macrophages and dendritic cells. Estrogen deficiency has been
shown to induce the transdifferentiation of pro-inflammatory
M1 macrophages into osteoclasts and increase the ratio of M1 to
anti-inflammatory M2 macrophages (Saxena et al., 2021). Without
estrogen, more dendritic cells were shown to express IL-7 and IL-15,
which upregulates IL-17 and TNF-α production by T cells (Saxena
et al., 2021). Furthermore, a cross-sectional clinical study of
postmenopausal women showed that elevated inflammatory
markers such as IL-6, IL-β, and TNF-α were negatively correlated
with bone mass (Damani et al., 2023). These findings indicate
estrogen regulates bone remodeling through immune-mediated
effects and direct signaling within the bone microenvironment.

3.2.3 Pharmaceuticals
Pharmaceuticals can indirectly regulate remodeling while

treating various diseases, or they can be designed to target
mechanisms in the bone remodeling cycle intentionally.
Glucocorticoids are anti-inflammatory agents that are used
broadly but have negative effects on bone health by decreasing
osteoblast and osteocyte populations and increasing osteoclast
survival (Hardy et al., 2018). Despite this, they are often used to
reduce chronic inflammation in rheumatoid arthritis that can
otherwise lead to osteoporosis. Teriparatide, a PTH analog that
has anabolic effects on the bone, has several proposed mechanisms
for its action (Wein and Kronenberg, 2018). Since teriparatide
requires expensive daily injections, it is used mainly for severe
osteoporosis or those who need to use glucocorticoids long-term
for other conditions (Hodsman et al., 2005).

Estrogen replacement therapy (ERT) is a pharmaceutical
intervention directly designed to impact bone remodeling based
on the association between estrogen decline and osteoporosis after
menopause. Hormone replacement therapy (HRT) augments
estrogen with progestogens. Selective estrogen receptor
modulators (SERMS) act as estrogen receptor agonists in some
tissues like bone and antagonists in other tissues, sometimes
detrimentally (Ellis et al., 2015). These treatments have different
and controversial risks associated with breast cancer, coronary heart
disease, and stroke that impact their adoption based on
individualized management of benefits and risks (Manson et al.,
2013; Ellis et al., 2015; Hodis and Sarrel, 2018; Faubion et al., 2022;
Onwude, 2022; Nudy et al., 2023).

Another group of medications to reduce bone loss are
antiresorptives, which target signaling mechanisms of bone
remodeling that contribute to osteoclast activity. Bisphosphonates
are antiresorptives that are currently the most common treatments
for bone loss. These drugs inhibit bone resorption by inducing
osteoclast apoptosis and reducing osteoclast activity (Berkhout et al.,
2015; Coelho et al., 2016; Aibar-Almazán et al., 2022).
Bisphosphonates even alter bone remodeling after treatment is
terminated because they bind to hydroxyapatite crystals on the
surface of the bone matrix (Drake et al., 2008; Aibar-Almazán

et al., 2022). They can be released from the surface in subsequent
remodeling cycles (Coelho et al., 2016). Bisphosphonates are
generally well tolerated but are most often discontinued due to
gastrointestinal distress or concerns about side effects such as
osteonecrosis of the jaw or spiral fractures of the femur midshaft
(Aibar-Almazán et al., 2022). The monoclonal antibody denosumab
is a newer antiresorptive. Denosumab inhibits resorption by
blocking RANK-RANKL binding. It acts as an OPG mimic,
binding to RANKL to prevent osteoclast activation. Although
denosumab is more effective at preventing bone loss than
bisphosphonates and used for metastatic cancers that target bone,
there is a higher risk of osteonecrosis of the jaw (Aibar-Almazán
et al., 2022; Fu et al., 2023) and higher frequency of second tumors in
cancer patients on denosumab (Stopeck et al., 2010; Fizazi et al.,
2011; Henry et al., 2011; Raje et al., 2018; Tovazzi et al., 2019).

Romosozumab is the newest pharmaceutical intervention for the
bone remodeling cycle. Romosozumab is a monoclonal antibody that
binds to sclerostin, allowing Wnt ligands to activate the canonical
pathway, stimulate bone formation, and inhibit bone resorption
(Figure 2). The disadvantage is that romosozumab is associated with
more undesirable side effects than bisphosphonates including increased
risk of adverse cardiovascular events (Asadipooya andWeinstock, 2019;
Aibar-Almazán et al., 2022). Overall, targeted treatments of the bone
remodeling cycle have poor compliance and high discontinuation rates
due to a combination of high costs, unwanted side effects, and
psychological factors (Aibar-Almazán et al., 2022). Viable new
treatments need to eliminate or reduce these concerns.

3.3 Gut metabolites and immune
connections

Gut and bone health are connected via shared crosstalk with the
immune system. The gut regulates immune response and bone
remodeling through the intestinal barrier. The intestinal barrier
consists of a mucus layer and tight junction proteins, which protect
the immune system frompathogens and toxins (Paone andCani, 2020).
Intestinal microbes help maintain this barrier (Anderson et al., 2010;
Sjögren et al., 2012). Sjögren et al. (2012) found that conventional mice
had increased gut permeability and inflammatory cytokines, resulting in
lower bone mass than germ-free mice. Since systemic immune
inflammation can increase bone resorption, it follows that gut-
induced immune inflammation can cause bone loss. Additionally,
estrogen deficiency compromises the gut barrier, affecting
inflammation onset and trafficking of immune cells from the gut to
the periphery (Braniste et al., 2009; Li et al., 2016; Rios-Arce et al., 2017).

Gut microbial populations contribute to gut-mediated
immunomodulation of bone health through metabolites such as
short-chain fatty acids (SCFAs). SCFAs stimulate mucus production
and tight junction protein expression (Gizard et al., 2020; Paone and
Cani, 2020; Arnold et al., 2021). Additionally, SCFAs can enter the
bloodstream, where they not only inhibit NF-κB pathways and
downregulate TNF-α but also upregulate macrophage and
dendritic cell expression of IL-10 (Hosseinkhani et al., 2021). In
a study of healthy male mice, dietary supplementation with the
SCFA butyrate showed increases in Clostridia populations,
circulating Tregs, Wnt-10b, osteoblastogenesis, and bone mass
(Tyagi et al., 2018). Chen et al. (2020) also showed increased
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SCFAs and Tregs due to prebiotic lactulose administration in OVX
mice, preventing subsequent bone loss. Furthermore, SCFAs have
been shown to improve calcium absorption, balance Tregs and Th17
cells, and produce bone-forming IGF-1 (Behera et al., 2020; Lu et al.,
2021; Perkins et al., 2023). Another study demonstrated that a
change in microbial composition reduced SCFAs, increased gut
permeability, increased serum lipopolysaccharide (an inflammatory
marker), and, ultimately, increased osteoclast activity, leading to
bone loss (Behera et al., 2020). Further studies provided evidence in
support of probiotic and prebiotic restoration of intestinal barrier
function and prevention of bone loss (Schepper et al., 2019; Chen
et al., 2020). The numerous osteogenic functions of SCFAs thus
indicate their potential for treating inflammatory bone loss.

Evidence linking gut health and inflammation has led researchers to
explore opportunities for dietary prebiotic and probiotic treatment of
estrogen-deficient bone loss (Sjögren et al., 2012; Britton et al., 2014; Li
et al., 2016). Dietary manipulation of the gut microbiota using probiotics
(e.g., Lactobacillus and Bifidobacteria) protected against bone loss in a
small clinical trial (Takimoto et al., 2018) and in animal models of
periodontal disease (Messora et al., 2013), diabetes (Zhang et al., 2015),
and estrogen deficiency (Britton et al., 2014; Ohlsson et al., 2014; Li et al.,
2016). Li et al. (2016) induced sex hormone deficiency in germ-free and
conventional mice. They found that conventional mice had degraded
intestinal walls, increased immune inflammation, and increased bone
loss compared to germ-free mice. Their treatment of conventional mice
with probiotics prevented inflammation and bone loss. Mechanistically,
another study demonstrated that probiotic treatment of mice with drug-
induced osteoporosis increased Wnt-10b levels (Perkins et al., 2023).
Consumption of SCFAs and prebiotics, which can be fermented to form
SCFAs, also increased intestinal calcium absorption in adolescents and
post-menopausal osteoporosis patients (Behera et al., 2020; Lu et al.,
2021). Other murine studies indicated that prebiotic and probiotic
treatments prevented OVX-induced increases in Th17 cells and the
inflammatory cytokines IL-17, TNF-α, IL-6, and RANKL (Lu et al.,
2021). These changes were accompanied by reduced intestinal
permeability and increases in IL-10, IGF-1, and BMPs that promote
osteoblastogenesis and improve bone strength (Behera et al., 2020).
Additional studies linked prebiotics, such as oligosaccharides, to altered
SCFAs, enhanced intestinal barrier function, and programmed
tolerogenic immune cell responses (Chonan et al., 1995; Abrams
et al., 2005; Weaver et al., 2011; Legette et al., 2012; Arpaia et al.,
2013; Furusawa et al., 2013; Smith et al., 2013; Chang et al., 2014; Singh
et al., 2014; Tan et al., 2016; Chen et al., 2017;Hu et al., 2018; Ghosh et al.,
2021). Numerous studies including several of our own showed how
foods with prebiotic activity affect SCFAs, the immune system, and the
bone evenwithout alterations in gut barrier function or where there is no
compromise in gut barrier function (Chonan et al., 1995; Roberfroid
et al., 2002; Arjmandi et al., 2004; Abrams et al., 2005; Scholz-Ahrens
et al., 2007; Bu et al., 2009; Weaver et al., 2011; Legette et al., 2012;
Vulevic et al., 2008, 2015; Rendina et al., 2012; Smith et al., 2014; Ojo
et al., 2016, 2019, 2021; Graef et al., 2018a,b; Shen et al., 2019; Smith et al.,
2019; Dodier et al., 2021; Keirns et al., 2020; Smith et al., 2022).

3.4 Metastatic cancer cells

Many cancers metastasize to bone, including prostate, breast,
and myeloma cancers (Ait Oumghar et al., 2020; Coleman et al.,

2020). Cancer cells dysregulate the bone remodeling cycle by
secreting osteoclastogenic cytokines that initiate bone resorption
to make room for tumor growth (Marathe et al., 2008). This
increased remodeling leads to increased bone formation during
the early stages of tumor growth (Ayati et al., 2010). However,
continued remodeling results in a tumor-initiated resorption rate
that exceeds that of bone formation. It also increases the rate of
tumor growth, which is stimulated by the TGF-β released from the
bone matrix during resorption. Eventually, the growing tumor fills
the resorption cavity before osteoblast signaling occurs (Ji et al.,
2014). Cancer cells also secrete molecules besides cytokines to
promote bone resorption or inhibit bone formation. For example,
myeloma cells produce DKK1 to prevent osteoblast development
(Zhang and Mager, 2019). These are just a few examples of how
cancer and bone interact; readers are referred to Coleman et al.
(2020) and Rao et al. (2020) and references therein for further
details. The complex interplay between multiple organ systems in
metastatic cancer means that almost all cancers have adverse effects
on bone health (Drake, 2013).

4 Techniques for mathematical
modeling of bone remodeling

Biochemical models of bone remodeling consider the population
dynamics of bone cells, which are regulated by numerous chemical
signaling factors. Temporal bone cell dynamics are modeled using
ordinary differential equations (ODEs) (Tables 2–4), while
spatiotemporal dynamics are modeled using partial differential
equations (PDEs) and/or agent-based models (ABMs) (Table 1).
ODEs can incorporate processes such as bone cell proliferation,
differentiation, and death. Most bone remodeling ODEs are single-
compartment models focusing on cells and signals locally within the
bone microenvironment. ODEs can also describe multiple
physiological compartments simultaneously to show how factors
outside the bone microenvironment affect bone remodeling.

ODEs are the most common technique for mathematical
modeling of bone remodeling but cannot explicitly include
geometric and transport effects (Tables 2–4). Spatiotemporal
models that incorporate these effects more accurately depict the
bone remodeling process. For example, continuous PDEs can model
the migration of osteoclasts and osteoblasts to specific locations
within the remodeling site. These are important steps in bone
remodeling that ODEs cannot resolve. However, PDEs are more
computationally expensive to solve than ODEs because they include
spatial and temporal effects. ABMs are less widely adopted for
spatiotemporal modeling of bone remodeling (Araujo et al., 2014;
Arias et al., 2018). Like PDEs, ABMs can model cell movement and
how the spatial positioning influences the bone remodeling cycle.
However, ABMs are discrete rather than continuous, so their
computational intensity depends on the number of agents and
the algorithms used to execute their interaction rules. In ABMs,
cells are represented as agents that follow rules to move, proliferate,
transform, die, and/or secrete signaling factors. The rules governing
these cell actions consider the surrounding cell environment and
probabilities for introducing stochasticity into the rules.

Two prevailing mathematical formulations that describe bone
cell population dynamics and their biochemical signaling dynamics
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in the BMU are commonly incorporated into models of bone
remodeling using ODEs, PDEs, and ABMs. One formulation is
based on the power law approach, popularized for bone remodeling
by Komarova et al. (2003). The second formulation uses the mass
action kinetics as in the models of Lemaire et al. (2004) and Pivonka
et al. (2008). These distinct approaches form the basis of many
temporal and spatiotemporal models of bone remodeling (Figure 5,
which includes all publications from Tables 1–3 and Supplementary
Tables S1–S2 but not all labels are shown because of space constraints).
Models that do not explicitly follow either approach (Kroll, 2000;
Rattanakul et al., 2003; Martin and Buckland-Wright, 2004; Moroz
et al., 2006; Moroz andWimpenny, 2007; Akchurin et al., 2008; Ji et al.,
2012; Proctor and Gartland, 2016; Chaiya and Rattanakul, 2017; Javed
et al., 2018; Zhao and Zhang, 2019; Javed et al., 2020; Nutini et al., 2021;
Jorg et al., 2022) (Table 4) are not included in Figure 5; however,most of
those detailed in Supplementary Table S3 show citation connections for
the field’s literature.

4.1 Power law approach

In biochemical models of bone remodeling, researchers
represent the effects of signaling molecules on bone cell
populations using different functional forms. The power law
approach uses nonlinear functional relationships where output
effects depend on an input raised to some power. These
approximations are frequently used to model nonlinear biological

systems because they capture complex dynamics relatively simply
(Savageau, 1970; Vera et al., 2007; Srinath and Gunawan, 2010).

Models following the power law approach represent the lumped
effects of types of signaling molecules on bone cell populations
through the exponent terms in the power law functions. In the case
of the Komarova et al. (2003) model, signaling molecules are
grouped into general autocrine and paracrine signaling terms.
The autocrine terms encompass all the signals released for self-
regulation, e.g., osteoclast-derived signals that regulate the osteoclast
population. The paracrine terms encompass all the signals other cells
release, e.g., osteoblast-derived signals that regulate the osteoclast
population. The general form for describing bone cell dynamics
following the power law approach is

dA
dt

� αAA
g11Bg21 − βAA (1)

where A represents the number of cells of type A, B represents the
number of cells of type B that interact with A through paracrine
signaling, g11 represents autocrine (A to A) signaling action, g21
represents paracrine (B to A) signaling action, and αA and βA
represent proliferation and degradation rate constants,
respectively. Generally, gij denotes the combined effects of signals
produced from cell type i (or a cascade involving this cell type) that
regulate cell type j. Here, the proliferation of A (j = 1) depends on
autocrine from A (i = 1) and paracrine from B (i = 2) signaling
effects. The degradation rate is commonly assumed to be
proportional to the current population.

FIGURE 5
A network graph shows the citation relationship between mathematical models of bone remodeling that use the power law approach popularized
by Komarova et al. (2003) and the mass action kinetics approach popularized by Lemaire et al. (2004) and Pivonka et al. (2008), which are detailed in
Tables 1–3 and Supplementary Tables S1–S2. Each dot indicates a model publication, and curves represent a citation from one article to another. Yellow
dots indicate temporal models, and dark blue dots indicate spatiotemporal models. Larger dots correspond tomodels with more publications (cited
by). Models most connected to other articles are higher in the diagram (map relevance), while the left-to-right organization aids in clarity and label
visibility (cluster). Note that not all labels are shown because of space constraints. The naming convention is the first author’s last name followed by the
year of publication. This literature map was created using the online tool app.litmaps.com.
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The power law approach results in small parameter spaces. For
example, the model in Komarova et al. (2003) contains only ten
parameters fitted for a single BMU using experimental data from
Parfitt (1994). A small parameter space requires fewer data for
model calibration and validation and enables quick exploration of
cell population balances through parameter sweeps. The lower
computational complexity also allows researchers to connect the
power law model to other biological system models, particularly for
physiological homeostasis conditions. However, the empirical
nature of power law models leads to ambiguity about which
signaling factors control the bone remodeling cycle and how they
interact mechanistically. The power law models cannot be easily
extended for situations like diseases or treatments when these signals
are perturbed outside the conditions used to fit the power law
parameters. The lack of direct mechanistic interpretation is a
common criticism of the power law approach (Moroz and
Wimpenny, 2007).

4.2 Mass action kinetics approach

Another common form for ODE models of bone remodeling
uses mass action kinetics. This fundamental concept is commonly
used to model chemical and biological reactions, such as those seen
in enzyme kinetics, ecological systems, and disease dynamics (Voit
et al., 2015). In our classification, mass action kinetics includes
Michaelis-Menten and Hill equations for enzyme and ligand
binding kinetics. The mass action kinetics model structure for
bone remodeling leverages the foundational model by Lemaire
et al. (2004) and refinement by Pivonka et al. (2008) (Figure 5).
The mass action kinetics approach is a major alternative to the
power law approach as it better identifies how specific signaling
factors affect the balance between osteoblast and osteoclast
populations.

Bone models following the mass action kinetics approach
capture the effects of signaling factors on cell dynamics with π

terms. These terms represent the fraction of occupied receptors and
are first defined by Lemaire et al. (2004). The model by Pivonka et al.
(2008) simplifies the π terms using Hill functions defined in Eqs 3, 4
that represent ligand-receptor binding kinetics as activating or
repressing processes, generalizing the work of Lemaire et al.
(2004). Despite some differences between the π terms and
models of Lemaire et al. (2004) and Pivonka et al. (2008), they
share fundamental derivation steps. In the mass action kinetics
approach, bone signaling factor actions are commonly represented
by the reversible ligand-receptor relationship:

L + R ↔ L · R (2)
where L is the ligand, R is the receptor for the ligand, and L · R is the
bound ligand-receptor complex. These ligand-receptor binding
reactions in Eq. 2 for all ligands and receptors are converted into
ODEs by applying mass action kinetics with the pseudo-steady state
approximation. This assumes that the cellular response to signals is
much slower than the dynamics of ligand-receptor binding. The π
terms in Lemaire et al. (2004) are derived by finding the ratio of the
ligand-receptor complex to the unbound ligand. Pivonka et al.
(2008) generalizes these equations to obtain ligand

concentrations for the formulaic π terms. Rather than deriving π

terms from each ligand-receptor binding combination, Pivonka et al.
(2008) assumes that Hill functions represent stimulation and
inhibition of cell activity due to the presence of a signaling
factor. Readers are referred to Lemaire et al. (2004) and Pivonka
et al. (2008) for full derivation details. There are two forms of these
Hill functions: one for activating signaling factors (Pivonka
et al., 2008)

πX
act,m � Xn

K1 +Xn
(3)

and another for repressing signaling factors (Pivonka et al., 2008)

πY
rep,m � 1

1 + Y
K2
( )n (4)

where X is the concentration of an activating signaling factor that
affects cell type m, K1 is the activation coefficient, n is the Hill
coefficient, Y is the concentration of a repressive signaling factor that
affects cell type m, and K2 is the repression coefficient. Unlike
enzyme kinetics, K1 and K2 are related to a cell response, not strictly
biochemical dissociation constants. The concentrations of X and Y
can be defined by ODEs or algebraic equations. It is important to
note that a signaling factor can perform both activating and
repressing actions and impact different cells, so it can have
multiple corresponding π terms.

Although the π terms in Lemaire et al. (2004) and Pivonka et al.
(2008) have slight derivation differences and biological assumptions,
the resulting models are functionally similar. Consider a cell type A
that is formed by the differentiation of precursor cells pA. This
differentiation process is activated by signaling factor X1 and
inhibited by signaling factor Y1. Apoptosis of A is activated by
signaling factor X2 and inhibited by signaling factor Y2. Following
the examples from (Pivonka et al., 2008), we provide the general
form for describing bone cell dynamics following the mass action
kinetics approach as

dA
dt

� αpApAπ
X1
act,pAπ

Y1
rep,pA − βAAπ

X2
act,Aπ

Y2
rep,A (5)

where A is the population of cells of type A, pA is the population of
precursor pA cells, πX1

act,pA is the activation from signaling factor X1,
πY1
rep,pA is the repression from signaling factor Y1, πX2

act,A is the
activation from signaling factor X2, π

Y2
rep,A is the repression from

signaling factor Y2, and αpA and βA represent differentiation and
apoptosis rate constants, respectively. The π terms replace the
autocrine and paracrine exponents from Eq. 1 but still account
for bone cells’ autocrine and paracrine signaling. Unlike the
exponents in Eq. 1, the π terms allow the concentrations of
signaling factors to depend on the population of BMU cells. Eq.
5 considers activating and repressing signals acting on both the
source and sink terms. For different model scenarios considering
various biological mechanisms, only one or neither of these signals
may impact a term or more than one signal of the same type may be
applied to a term.

The mass action kinetics approach results in larger parameter
spaces than the power law approach. Whereas the power law model
by Komarova et al. (2003) contains ten unknown parameters, the
mass action kinetics models by Lemaire et al. (2004) and Pivonka
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et al. (2008) contain 23 and 30 parameters, respectively. The
parameter increase is a consequence of the mechanistic
incorporation of signaling factor effects. As a result, the mass
action kinetics approach helps determine the importance of
signaling factors within a specific study and how changes in their
levels alter the bone remodeling cycle. The caveat of this approach is
that more parameters can lead to overfitting of limited data. The
mass action kinetics approach is also more computationally complex
and expensive, limiting its use in larger multiscale models of
biological systems.

4.3 Representative mathematical forms for
modeling the BMU

In the following, we provide example mathematical forms for
changes to bone volume due to remodeling and for bone cell
population balances that are frequently considered in
mathematical models for bone remodeling from a local
perspective (i.e., focusing on the BMU).

4.3.1 Bone volume
Regardless of the approach, models of bone remodeling

generally include the dynamics of osteoblast and osteoclast cells.
While cell populations’ evolution and signaling interactions vary
between models, osteoblasts always form bone, and osteoclasts
always break down bone. The net effect of bone regulation by
these cells can generally be represented in ODE form by
(Frost, 1964b)

dz

dt
� Rf − Rr � kfOBL − krOCL (6)

where z is bone volume fraction, often corresponding to the ratio of
bone volume to tissue volume (BV/TV) bone histomorphometric
quantity (Bouxsein et al., 2010; Dempster et al., 2013), TV is
frequently the trabecular volume (Burr and Akkus, 2014), Rf is
the formation rate, Rr is the resorption rate, kf is the formation rate
constant for the action of the osteoblasts, and kr is the resorption rate
constant for the osteoclast activity. The variables OBL and OCL in
Eq. 6 usually represent changes from the steady state population,
sometimes called active cell populations. Additionally, bone volume
may be replaced with bone mass or other relevant bone properties.
Bone volume, total osteoblast population, and total osteoclast
population cannot have negative values.

4.3.2 Osteoclasts
A thorough understanding of osteoclast bone resorptive activity

and population dynamics is crucial to predicting how much bone is
resorbed during a remodeling cycle. The difference between the net
formation and degradation terms determines the osteoclast
population dynamics. The power law approach is used to
mathematically represent these dynamics following Eq. 1 as
(Komarova et al., 2003)

dOCL
dt

� αOCLOCL
g11OBLg21 − βOCLOCL (7)

where OCL represents the number of osteoclasts, OBL represents the
number of osteoblasts, g11 represents autocrine (osteoclast to

osteoclast) signaling action, g21 represents paracrine (osteoblast to
osteoclast) signaling action, and αOCL and βOCL represent
proliferation and degradation rate constants, respectively. The
proliferation of osteoclasts (j = 1) depends on autocrine from
osteoclasts (i = 1) and paracrine from osteoblasts (i = 2)
signaling effects. The degradation rate of osteoclasts is assumed
to be proportional to the current population.

Some power law models modify the signaling dynamics to
account for a specific molecular factor by reformulating the
population dynamics and recalculating general signaling
exponents (Komarova, 2005; Graham et al., 2013). For instance,
if a signaling factor FOCL alters osteoclast proliferation, the osteoclast
equation is modified to become

dOCL
dt

� FOCLαOCLOCL
g11OBLg21 − βOCLOCL (8)

with new values for g11 and g21 as compared to Eq. 7.
By the mass action kinetics approach following Eq. 5, the

population of osteoclasts is given by (Pivonka et al., 2008)

dOCL
dt

� αpOCLpOCLπ
X1
act,pOCL − βOCLOCLπ

X2
act,OCL (9)

where OCL is the osteoclast population, pOCL is the preosteoclast
population, πX1

act,pOCL is the activation from signaling factor X1, π
X2
act,OCL

is the activation from signaling factor X2, and αpOCL and βOCL represent
differentiation and apoptosis rate constants, respectively. In Pivonka et al.
(2008), differentiation and apoptosis terms are both activated and not
inhibited. X1 is RANKL, and X2 is TGF-β. Different combinations of
activating and repressing π terms are proposed in models from other
publications. When following the mass action kinetics approach,
researchers typically examine individual signaling factors during
formulation. As a result, the overall structure of the osteoclast equation
rarely undergoes drastic changes. Instead, new signaling factors are simply
added through more π terms in the mass actions kinetics approach.

Uncommitted monocytes and preosteoclasts are rarely modeled
as dynamic populations (thus, pOCL is a constant in Eq. 9).
Osteoclasts are assumed to differentiate from a large pool of
hematopoietic stem cells, so the uncommitted population is
usually modeled as a fixed quantity. Although this assumption is
reasonable for healthy bone remodeling, it loses validity when
studying diseases where hematopoietic stem cell numbers are
reduced (Weilbaecher, 2000; Matatall et al., 2016). Preosteoclasts
are usually omitted for simplification under the assumption that
remodeling is already occurring, i.e., the activation stage is assumed
to occur instantaneously (Figure 1). However, this neglects the time
needed to initiate this remodeling stage.

4.3.3 Osteoblasts
Mathematical models must include osteoblast cell dynamics to

understand changes in bone formation rates. Osteoblast population
balances are similar to those of osteoclasts given in Eqs 7, 9, and
these balances are modeled by the power law approach following Eq.
1 as (Komarova et al., 2003)

dOBL
dt

� αOBLOCL
g12OBLg22 − βOBLOBL (10)

and by the mass action kinetics approach following Eq. 5 as
(Pivonka et al., 2008)
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dOBL
dt

� αpOBLpOBLπ
Y1
rep,pOBL − βOBLOBL (11)

where the parameters here correspond to osteoblast (cell type j = 2)
dynamics and pOBL is the preosteoblast population. In Pivonka
et al. (2008), differentiation is inhibited, and apoptosis is neither
activated nor inhibited. Y1 is TGF-β. Unlike osteoclasts, osteoblasts
are modeled with one or two consumption terms. The use of one
consumption term encapsulates osteoblast apoptosis and its
conversion to other bone cells, such as osteocytes and bone
lining cells. When models include two consumption terms, one
tracks osteoblast conversion to osteocytes. The other consumption
term tracks osteoblast apoptosis and other osteoblast cell losses.

Another difference between osteoblast and osteoclast
population balances is that preosteoblast dynamics are
commonly modeled. A study analyzing a generalized model of
bone remodeling highlights the importance of preosteoblast
populations (Zumsande et al., 2011). For instance,
preosteoblasts release key signaling molecules that initiate the
resorption phase of bone remodeling. Additionally,
preosteoblast cell dynamics must be modeled because the
number of osteoblasts is dictated by the preosteoblast
population after proliferation (Buenzli et al., 2012b). Since
osteoblasts do not proliferate, a decrease in bone formation
may result from fewer preosteoblasts. Preosteoblast population
balances follow the same form as those of osteoblasts and
osteoclasts. The formation term represents differentiation from
uncommitted osteoblasts, while the consumption term represents
conversion to osteoblasts.

4.3.4 Osteocytes
As research continues to indicate that osteocytes are essential

coordinators of bone remodeling, it is vital to include their dynamics
and populations in mathematical models. Osteocyte population
balances are less commonly found in mathematical models than
osteoclast and osteoblast balances but generally follow similar
principles. In power law models, osteocytes are modeled
following Eqs 8, 10 as (Graham et al., 2013; Cook et al., 2022)

dOCY
dt

� FOCYαOCYOBL
g23 (12)

where OCY is the osteocyte population, αOCY is the rate of
conversion from osteoblasts, and g23 is osteoblast signals that
influence the production of osteocytes (cell type j = 3) via
osteoblast embedding. The factor FOCY represents osteocyte
signaling that activates and terminates the bone remodeling cycle.

Differently, models following the mass action kinetics approach
base their osteocyte population on the change in bone volume as
(Martin et al., 2019; Martin et al., 2020; Calvo-Gallego et al., 2023)

dOCY
dt

� η
dz

dt
(13)

where η is the average concentration of osteocytes embedded in
the bone matrix and z is the bone volume fraction. Note the lack
of degradation terms for long-lived osteocytes in Eqs 12, 13. Some
disease or injury conditions may explicitly induce loss of
osteocytes, which can be incorporated by including a loss term
or by reducing the osteocyte initial condition (Graham et al.,
2013; Cook et al., 2022).

5 Mathematical models of bone
remodeling

Bone cells are typically represented similarly across
spatiotemporal and temporal models. In the terminology adopted
here, models that “include” a cell incorporate that cell as a state
variable or dynamic variable, and “included” signals may be state
variables, dynamic variables, constants, or implied. Although
models following the power law approach imply several signaling
molecules, this is indicated by their general autocrine and paracrine
signaling representation, so only signaling features that are
distinguished with a unique mathematical term are considered as
“included” in the model. Figure 6 shows a quantitative comparison
of the cells (top row) and chemical signals (bottom row) commonly
included in the 88 mathematical models of bone remodeling detailed
in Tables 1–4.

Osteoblast and osteoclast dynamics are included in almost every
spatiotemporal and temporal model, whereas osteocyte dynamics
are less commonly modeled (Figure 6; Tables 1–4). This is probably
due to early assumptions about inert osteocytes, as described in
Section 2.2. However, after osteocytes were found to play a
mechanosensory role in bone remodeling, mathematical models
began to include them when investigating mechanical effects on
bone. For example, Moroz et al. (2006) is the earliest model with
osteocytes, and the model includes mechanical stress. Moroz and
Wimpenny (2007) introduces osteocyte regulation and, similar to
Pivonka et al. (2008), defines autocrine and paracrine regulation
mechanisms with more biologically accurate formulas, exploring
four different receptor-ligand binding equations (Michaelis-
Menten, Hill, Koshland-Nemethy-Filmer, and Monod-Wyman-

FIGURE 6
Quantitative comparison of cells (top row) and chemical signals
(bottom row) commonly included in the 88 mathematical models of
bone remodeling detailed in Tables 1–4. Abbreviations: pOCL,
preosteoclasts; OCL, osteoclasts; pOBL, preosteoblasts; OBL,
osteoblasts; OCY, osteocytes; Immune, immune cells; A&P, general
autocrine and paracrine signaling; RANK, receptor activator of nuclear
factor kappa-B; RANKL, receptor activator of nuclear factor kappa-B
ligand; OPG, osteoprotegerin; TGF-β, transforming growth factor
beta; SCL, sclerostin; Wnt, wingless-related integration site; PTH,
parathyroid hormone; Cyt, cytokines other than RANK, RANKL, OPG,
and TGF-β; E, estrogen.
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Changeux) through stability analysis, ultimately concluding that the
simpler Michaelis-Menten and Hill equations are most
useful—consistent with models that adopt the mass action
kinetics approach. Osteocytes are also typically included in
mechano-chemo-biological models (Scheiner et al., 2013; Martin
et al., 2019; Ashrafi et al., 2020; Calvo-Gallego et al., 2023). Other
models with osteocytes aim to understand the effect of sclerostin, a
product of osteocytes, on Wnt activation (Graham et al., 2013; Eudy
et al., 2015; Cook et al., 2022). Although spatiotemporal and
temporal models are remarkably similar in how often and which
bone cells they explicitly model, they differ substantially in the
number and combinations of signaling molecules modeled.
Spatiotemporal models are discussed distinctly in Section 5.1.

The signaling molecules represented in ODEs for bone
remodeling (Figure 6) differ partly due to the choice between the
power law approach or the mass action kinetics approach. The
power law approach uses general autocrine and paracrine signaling
(Table 2). In contrast, the mass action kinetics approach explicitly
models signaling interactions individually, such as RANK, RANKL,
OPG, PTH, and TGF-β (Table 3). Furthermore, most power law
models extend Komarova et al. (2003), and most mass action
kinetics models extend Lemaire et al. (2004) or Pivonka et al.
(2008) (Figure 5). Therefore, model extensions generally retain
the signaling interactions of the original models. Sections 5.2, 5.3
address the evolution of signaling molecule representations since
these foundational models. Table 2 and Supplementary Table S1
itemize the temporal mathematical models that follow the power law
approach. Table 3 and Supplementary Table S2 focus on those that
follow the mass action kinetics approach. Table 4 and
Supplementary Table S3 include those temporal models that
cannot be readily categorized as following either approach. Note
that spatiotemporal models are also classified by approach in
Supplementary Tables S1–S3.

5.1 Spatiotemporal models

The two most comprehensive spatiotemporal models are
mechano-chemo-biological models that combine detailed
biochemical and biomechanical processes (Table 1). One model
uses a traditional transport-based approach that defines site-specific
kinetic rate terms for each cell population equation (Lerebours et al.,
2016). Another formulation uses a finite-element approach where
each mesh point contains at most one BMU, and conditions are set
to prevent the activation of bone formation or resorption in a BMU
adjacent to another active BMU (Calvo-Gallego et al., 2023).
Although both models include explicit parameters for RANK,
RANKL, OPG, and TGF-β, these mechano-chemo-biological
models have limited reuse for studying spatial variations for
chemical interventions.

In contrast, only two non-biomechanical spatiotemporal models
of bone remodeling explicitly model RANK-RANKL-OPG and
TGF-β (Table 1). These models, Buenzli et al. (2011) and Buenzli
et al. (2014), are 1D spatial extensions of the same temporal model.
Buenzli et al. (2011) evaluates whether the biological pathways in
Pivonka et al. (2008) are necessary and sufficient to capture the
expected arrangement of cells in cortical bone and concludes that the
model requires an additional differentiation stage for osteoclasts.

Although this model includes more explicit parameters than other
biochemical models, the values are not quantitatively compared to
data. The Buenzli et al. (2011) model relies on theoretical simulation
results and temporal study parameters and only estimates new
parameters as needed. This is a common approach in
spatiotemporal models, including those by Ayati et al. (2010) and
Ryser and Murgas (2017). Arias et al. (2018) notes that there is no
parameter fitting in their study and acknowledges that experimental
data are necessary to quantify and validate the model. Yet, even
though Ryser et al. (2010) calibrates a model with multiple datasets,
the model is limited to fewer parameters and fewer explicit biological
interactions. The authors of Ryser et al. (2010) offer the perspective
that more parameters “compromise the balance between reliability
and realism” by increasing the uncertainty of the model (Ryser
et al., 2010).

Several spatiotemporal models focus on one phase of
remodeling, such as osteoclast resorption (van Oers et al., 2008;
Buenzli et al., 2012a; Arias et al., 2018), osteoblast formation
(Taylor-King et al., 2020), or osteocyte dynamics (Ryser and
Murgas, 2017). These models do not explicitly model multiple
cell-cell or cell-signal interactions. Instead, they implicitly model
the roles of RANK-RANKL-OPG, TGF-β, Wnt, and other signals
using general autocrine and paracrine signaling parameters (Ryser
and Murgas, 2017; Arias et al., 2018). In some cases, the models
exclude the signaling mentioned above interactions in favor of more
distinctive mechanisms and parameters. For instance, Buenzli et al.
(2012a) includes parameters related to the involvement of blood
vessels in osteoclast generation. Taylor-King et al. (2020), on the
other hand, incorporates parameters for the shape and growth of
osteocyte dendrites. Another example considers the energy-
dependent dynamics of osteocytes (van Oers et al., 2008). The
lack of explicit cell-cell and typical cell-signal interactions in
these models may be attributed to their research motivations.
The fewer bone cells and explicit signals seen in spatiotemporal
models compared to temporal models (Figure 6) may also be due to
their higher computational expense and complexity or to the lack of
detailed spatial information for calibration and validation of such
models at the cellular and molecular scales.

5.2 Power law models

The power law approach is discussed in Section 4.1, and its
general application to the bone volume and cells of the BMU is
shown in Section 4.3. Some adaptations based on Komarova et al.
(2003) aim to explicitly capture signals that are only implicitly
included in the original model, and others add new cells or
signals (Table 2; Supplementary Table S1). In the latter group,
Graham et al. (2013) adds state variables for osteocytes and
preosteoblasts, along with implicit sclerostin/Wnt signaling terms.
Cook et al. (2022) alters Graham et al. (2013) to explicitly account
for systemic changes in Wnt-10b by using an enzyme kinetics
approach to represent changes in Wnt-10b with a Hill function
that modulates cell populations. Among the models that focus on
explicitly capturing certain autocrine and paracrine signals is the
spatial extension by Ryser et al. (2009). This model adds explicit state
variables for RANKL and OPG by setting one of the original
paracrine power parameters equal to zero, namely the one
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corresponding to osteoblast-derived osteoclast regulation, and
formulating separate equations for RANKL and OPG levels.
Camacho and Jerez (2021) follows Ryser et al. (2009) by
dropping paracrine signal exponents to explicitly model TGF-β
and Wnt as state variables in a temporal model. Camacho and
Jerez (2021) also updates the cell population equations to
incorporate TGF-β-induced osteoclast apoptosis and Wnt-
induced osteoblast proliferation. In the bone metastasis model by
Garzón-Alvarado (2012), tumor-induced changes in TGF-β and
parathyroid hormone-related protein (PTHrP) are added as
state variables.

5.3 Mass action kinetics models

The mass action kinetics approach is discussed in Section 4.2,
and its general application to the bone volume and cells of the BMU
is shown in Section 4.3. Extensions of Lemaire et al. (2004), aside
from those based on Pivonka et al. (2008), integrate physiologically
based models for calcium homeostasis (Peterson and Riggs, 2010;
Peterson and Riggs, 2012; Ross et al., 2017) or integrate
pharmacokinetics/pharmacodynamics (PKPD) to study the
treatment of multiple myeloma (Marathe et al., 2008; Zhang and
Mager, 2019) and osteoporosis (Marathe et al., 2011; Lemaire and
Cox, 2019) (Table 3; Supplementary Table S2). So the signals and
biological mechanisms added to models following Lemaire et al.
(2004) focus on modifications necessary to capture disease dynamics
or calcium homeostasis. For example, Peterson and Riggs (2010)
adds equations for calcium across bone, plasma, kidneys, and gut.
Their multi-compartment model consists of 28 ODEs incorporating
molecules such as phosphate (PO4), non-bone PTH, calcitriol, and
multiple intracellular osteoblast signals. Other models, such as
Marathe et al. (2008), connect the PKPD models to the dynamics
of bone remodeling through bone biomarkers that correlate with
osteoclast activity. However, neither Marathe et al. (2008) nor
Marathe et al. (2011) modify the bone dynamics to account for
the onset of disease-related effects. Instead, the clinical data sets used
for calibration and validation are from patients with the disease
under study. The PKPD extension by Zhang and Mager (2019)
amends the bone dynamics to account for the upregulation of
DKK1 by multiple myeloma cancer cells. Two other models
following Lemaire et al. (2004) consider Wnt-related signaling
molecules. Eudy et al. (2015), based on Peterson and Riggs
(2010), incorporates sclerostin effects and osteocyte activity in a
PKPD model for the sclerostin antibody romosozumab. Lemaire
and Cox (2019) also addsWnt-related effects to study anti-sclerostin
treatments for osteoporosis and derives a π term for sclerostin
inhibition of the Wnt pathway based on mass action kinetics,
assuming a constant Wnt concentration. While most models
extend Lemaire et al. (2004), Schmidt et al. (2011) reduces the
model to a system of two dependent variables (osteoblasts and
osteoclasts) and uses dimensional analysis to determine important
aspects of the model that control the dynamics. The reduction is
achieved by changing the cell concentrations to vary with respect to
the initial values given in Lemaire et al. (2004), casting the system
into dimensionless variables, eliminating variables, and applying a
quasi-steady-state approximation. The work also demonstrates
negligible differences from the Lemaire et al. (2004) model for

slow processes such as aging and estrogen deficiency. Like other
models following Lemaire et al. (2004), the reduced model (Schmidt
et al., 2011) is further extended to study postmenopausal
osteoporosis and its treatment in other models including Post
et al. (2013); Berkhout et al. (2015); Berkhout et al. (2016).

The biochemical ODEs derived from Pivonka et al. (2008) focus
on adding mechanical or geometric effects, as well as PKPD models
to study the treatment of osteoporosis and metastatic cancer-based
bone diseases. Here, we highlight changes in bone cell dynamics and
biochemical additions, but we forgo detailed descriptions of the
mechanical and geometric model features (Table 3). Pivonka et al.
(2013) modifies the bone population equations to incorporate
specific surface-dependent geometric regulation effects. In
Scheiner et al. (2013), TGF-β upregulation of progenitor cell
differentiation is added, as well as mechanical strain-based
regulation of preosteoblast proliferation and RANKL production
of osteocytes. Scheiner et al. (2014) extends this model to study
postmenopausal osteoporosis and its treatment with denosumab. In
another extension of Scheiner et al. (2013), Martin et al. (2019) opts
for a more biochemically focused model of osteocyte-driven
mechanical regulation of bone remodeling. Osteocytes are added
as a state variable proportional to the bone matrix fraction. A
separate function accounts for nitric oxide (NO) production by
osteocytes and co-regulation of RANKL by PTH and NO. For the
Wnt/sclerostin-related effects of osteocytes, a multi-ligand Hill
activator function is derived that assumes a constant Wnt
concentration and equal binding affinities for DKK1 and
sclerostin. Other models based on Pivonka et al. (2008) focus on
disease and treatment. Wang et al. (2011) adds a state variable for
multiple myeloma cancer cells and disease-specific regulatory
mechanisms. Ji et al. (2014) extends the model to add
VCAM1 regulation of preosteoblast and osteoblast cell
populations and adds the role of small leucine-rich proteoglycans
in multiple myeloma to study related treatments. Farhat et al. (2017)
extends the Wang et al. (2011) prostate cancer model by adding the
effects of calcium, active and latent TGF-β, and cancer-inducedWnt
and DKK1. Trichilo et al. (2019) quantifies PTH administration
under various conditions by combining features from several
models, along with the intracellular osteoblast signaling equations
in Peterson and Riggs (2010). Unlike most of the models discussed
here, Trichilo et al. (2019) retains the state variable formulations for
TGF-β, OPG, RANK, RANKL, OPG-RANKL binding, and RANK-
RANKL binding to account for non-steady-state regulation during
intermittent PTH administration. Additionally, the expression for
preosteoblast expression of RANKL is modified to be more
biologically accurate.

5.4 Systems biology models and discussion
of opportunities for future models

Biochemical and cellular processes are the targets for most
pharmaceutical and dietary interventions for bone diseases
(Section 3). Considerable evidence from in vivo and in vitro
studies have shown that prebiotics alter more than one aspect of
the gut-bone axis (see Keirns et al. (2020) and references therein).
Multifactorial aspects of the pathologies of bone loss in aging and
menopause compounded with impacts of dietary factors on
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interactions between the immune, gastrointestinal, endocrine, and
skeletal systems compel us to advocate for systems biology
approaches to understand better this complex network of
processes that connect dietary prebiotic and probiotic treatments
to immune modulation and bone outcomes. Additionally,
connecting the gut to bone through biological mechanisms is
relevant more generally for orally administered bone therapeutics.
Ultimately, bone loss is a systemic problem with multi-organ
involvement. Improved mechanistic understanding of these
complex relationships is needed to enhance interventions for
bone loss. Multi-organ-system mathematical models of
physiological and pathophysiological bone remodeling can help
unravel these mechanisms while reducing the experimental costs
associated with animal testing. There are few multi-compartment
models of bone remodeling (Peterson and Riggs, 2010; Islam et al.,
2021), and this approach warrants exploration in future models.
Additional opportunities exist for creating multiscale models of
bone remodeling by using ODEs, PDEs, and/or ABMs for
interacting processes across temporal and spatial scales (Ford
Versypt, 2021).

5.4.1 Reversal cells and bone lining cells
Most mathematical models of bone remodeling have overlooked

reversal cells and bone lining cells. Their absence is reasonable, given
that these cells’ importance and mechanistic behavior are not well
understood. Moreover, the modeling work of Arias et al. (2018)
suggests that reversal and bone lining cells are not required to
capture the dynamics of bone remodeling.

These cells are only included in one model each. Trichilo et al.
(2019) models a constant population of bone lining cells. They also
include a dynamic parameter that describes bone lining cell
differentiation into osteoblasts. This parameter varies with PTH
dosage, introducing another mechanistic avenue for PTH to regulate
osteoblastogenesis. The mononuclear cells modeled in Martin and
Buckland-Wright (2004) remove collagen fibrils from the bone
surface during resorption. The behavior of these mononuclear
cells is in line with current understanding of the role that
reversal cells play in bone remodeling, indicating that the so-
called mononuclear cells in Martin and Buckland-Wright (2004)
are reversal cells. While reversal and bone lining cells have
historically been excluded, future mathematical models paired
with experimental work could help provide mechanistic insights
into their functions.

5.4.2 Cytokines
As mentioned earlier, Wnt plays an important role in modulating

bone health. However, few models consider the details of this
interaction. When mathematical models consider the Wnt/
sclerostin interaction, Wnt levels are often excluded or assumed
constant (Supplementary Tables S1–S3). Instead, these models
focus on sclerostin levels (Figure 6) (Graham et al., 2013; Eudy
et al., 2015; Lemaire and Cox, 2019; Martin et al., 2019). Two
models with dynamic Wnt concentrations only allow Wnt to be
altered through the presence of a tumor (Buenzli et al., 2012b; Farhat
et al., 2017). Cook et al. (2022) includes a generalized dynamic
concentration of Wnt-10b, where the amount of exogenous Wnt-
10b (from dietary sources) influences BMU cell populations and
bone volume.

While the RANK-RANKL-OPG and Wnt pathways are key
regulators of the bone remodeling cycle, other cytokines modulate
these signals and bone cell activity. Despite this, there is a distinct
lack of variety in the cytokines considered in mathematical
formulations of bone remodeling. Table 5 shows that only three
cytokines aside from RANK-RANKL-OPG and TGF-β are explicted
modeled: IL-6, MCSF, and IGF. One benefit of including other
cytokines in bone models is the potential to explore their importance
under various remodeling conditions, yet many models with
cytokines lack this analysis. For example, IGF is included in
Garzón-Alvarado (2012) to simulate osteosclerosis because
tumors are known to increase IGF levels and thus increase
osteoblast activity. However, this work does not directly analyze
the effect of IGF on bone cell dynamics. Although the modeling and
analysis of IL-6 and MCSF is limited, some studies analyze their role
in remodeling using perturbation or sensitivity analysis.

Only two of the five models that include dynamic IL-6 levels
analyze its effect on bone cell dynamics during the bone remodeling
cycle (Table 5). IL-6 is included in Kroll (2000) in their study of the
effects of PTH on bone dynamics, albeit in a simplified manner.
Following Kroll (2000), Idrees et al. (2019) adapts Komarova et al.
(2003) to include IL-6 in the simulation of intermittent versus
continuous PTH treatment. Whereas Kroll (2000) scales
theoretical parameter values so that osteoblast counts remain
below 1000 cells, Idrees et al. (2019) performs a meta-analysis of
various experiments to estimate parameter values statistically. This
is an improvement over many other bone models that extract
experimental values from multiple studies or rely on sparse and
disparate clinical data sets.

The dynamics of IL-6 in PTH treatment models are simplistic
compared to multiple myeloma models. Wang et al. (2011) accounts
for IL-6 stimulation of multiple myeloma cells and IL-6 activation of
RANKL. Wang et al. (2011) also performs a perturbation analysis to
investigate the relative degree of RANKL activation by PTH versus
IL-6 in homeostatic and diseased remodeling states and finds that
PTH dominates over IL-6 under healthy bone remodeling
conditions. However, IL-6 activates RANKL more than PTH
under elevated IL-6 conditions, representing multiple myeloma
disease. A limitation here is that the model lacks other cytokines
and mechanisms that can alter RANKL activation, which may
dominate over PTH and IL-6.

Wang et al. (2011) is extended by Ji et al. (2014) without any
change in the representation of IL-6. However, the models differ in
their parameter estimation and sensitivity analysis approaches.
Wang et al. (2011) fits the model to achieve adult bone and
cancer cell densities corresponding to literature values, while Ji
et al. (2014) uses genetic algorithms. Although both studies
include sensitivity analysis, Ji et al. (2014) performs sensitivity
analysis at a fixed time point rather than over time as in Wang
et al. (2011). Nonetheless, the results in Ji et al. (2014) support those
in Wang et al. (2011). Upon varying 11 parameter values from 50%
to 150%, Ji et al. (2014) shows that bone volume is most sensitive to
TGF-β and the progression of multiple myeloma disease is most
sensitive to IL-6. Given these results and the biological evidence that
IL-6 contributes to bone pathophysiology, exploring its inclusion in
future mathematical models of bone remodeling is pertinent.

The cytokine MCSF is a key activator of osteoclastogenesis, yet
analysis of its effects via mathematical models of bone remodeling is
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more sparse than IL-6. Martin and Buckland-Wright (2004) is the
first model that includes the role of MCSF. This model investigates
the depth and duration of osteoclast erosion during resorption and
models MCSF as a scalar variable but assumes it is always present. A
sensitivity analysis of resorption depth indicates that changes in
MCSF levels are equivalent to changes in maximum osteoclast
activity, and both effects are minor compared to TGF-β.
Lerebours et al. (2016) and Pivonka et al. (2013) are
biomechanical models that include MCSF activation of
uncommitted osteoclasts. However, they assume the MCSF
concentration is constant, resulting in a continuous activator
function term.

Proctor and Gartland (2016) investigates the kinetics of MCSF
via network-based ODEs. As with Lerebours et al. (2016) and
Pivonka et al. (2013), this work investigates the effect of
mechanical loading and the effects of PTH and circadian rhythm.
In contrast, the network analysis includes multiple parameters that
capture the role of MCSF in remodeling (outlined in Table 5).
Sensitivity analysis of the model shows that the secretion rate of
MCSF by osteoblasts and preosteoclasts and the MCSF degradation
rate result in a change of more than 5% in bone mass. When the rate
of degradation doubles, bone mass increases by more than 60%. One
limitation of this study is the assumption that MCSF secretion rates
are considered equal across cell types. Still, these results warrant
further mathematical investigation of MCSF in homeostatic and
pathological bone remodeling. Ultimately, future mathematical
models of bone biology should explore the complex and
coordinated role of cytokines, growth factors, and hormones in
bone remodeling.

5.4.3 Immune cells
Despite the established interest in osteoimmunology, few bone

models include immune cells (Table 6). Most bone models that
investigate the role of immune cells do so in the context of bone
injury and repair (Trejo et al., 2019; Tourolle et al., 2021; Baratchart
et al., 2022). Of particular interest is the model by Baratchart et al.
(2022). Hypothesis testing of candidate models determines the
interaction of monocytes, macrophages, injury factors, and
inflammatory factors in bone cell dynamics. The model is
supported by biological data, with the parameters calibrated with
one set of experimental data and validated with another. These
methods show how researchers can elucidate the mechanisms of
complex bone-immune dynamics using mathematical models.
However, bone injury and repair models describe the acute
healing process of fractures, which has different signaling
pathways than the continuous bone renewal or remodeling
process for homeostasis and skeletal integrity over a lifetime.
Therefore, bone healing models cannot be directly applied to the
bone remodeling processes.

The few mathematical models of bone remodeling that
incorporate immune cells are outlined in Table 6. Although the
models by Akchurin et al. (2008) and Proctor and Gartland (2016)
seemingly include immune cells (mononuclear cells and
hematopoietic stem cells), these are simply different osteoclast
progenitors. As mentioned earlier, these cells are often lumped
into a general class of uncommitted osteoclasts or preosteoclasts.

Of the models listed in Table 6, only Islam et al. (2021)
investigates the dynamic effect of multiple immune cells in bone

remodeling. The work includes a three-compartment
physiologically based PK model for differentiating naïve CD4+

T cells into Treg cells in the gut, blood, and bone. These Tregs
then influence TGF-β production in the bone and induce Wnt-10b
production. The physiologically based PK model is then linked to a
bone remodeling model that includes the local effects of systemic
changes in Wnt-10b (Cook et al., 2022). Since this is the only
mathematical description of nonlocal immune effects on bone
dynamics, significant opportunities remain for future research to
explore multi-organ systemic interactions between the skeletal and
immune systems.

5.4.4 Endocrine system and pharmaceuticals
Despite its documented importance in bone remodeling and

estrogen-deficient osteoporosis, the incorporation of dynamic
estrogen levels in mathematical models of bone remodeling is
underwhelming (Table 7). Analysis of the 88 cell population-
based bone modeling publications in Tables 1–4 reveals that
roughly a third (30 of 88) mention or model estrogen. Of these
30 models, half (15) capture estrogen effects in their mathematical
model, while the other half only mention estrogen briefly. Most
models that mention estrogen cite evidence that estrogen deficiency
is involved in osteoporosis or modulates bone remodeling (Kroll,
2000; Marathe et al., 2008; Pivonka et al., 2008; Marathe et al., 2011;
Garzón-Alvarado, 2012; Ross et al., 2012; Buenzli, 2015; Chen-
Charpentier and Diakite, 2016; Lee and Okos, 2016; Jerez et al.,
2018; Bahia et al., 2020; Javed et al., 2020). The remaining articles
that mention estrogen acknowledge that estrogen is not
incorporated into their model or that integration of estrogen is
an opportunity for future models (Peterson and Riggs, 2010; Buenzli
et al., 2012b; Coelho et al., 2016; Martin et al., 2019). Altogether, this
indicates that only about 15% of all bone remodeling models
mathematically account for estrogen-induced biochemical
changes in bone cell dynamics.

All models with estrogen effects are osteoporosis-specific models,
and their respective mathematical representations are outlined in
Table 7. Several models do not consider dynamic estrogen levels
(Lemaire et al., 2004; Scheiner et al., 2013; Lemaire and Cox, 2019;
Lemaire and Cox, 2019; Martin et al., 2019; Trichilo et al., 2019;
Larcher and Scheiner, 2021). Instead, they model the effects of
estrogen deficiency by altering RANKL, OPG, PTH, and TGF-β.
Lemaire et al. (2004) and Lemaire and Cox (2019) manually lower the
OPG and TGF-β production parameters for osteoporotic scenarios.
Trichilo et al. (2019) and Martin et al. (2019) increase RANKL levels
with a RANKL dosage term fitted to OVX rat data and clinical
postmenopause data. Scheiner et al. (2014) accounts for more
estrogen-deficiency effect by using π terms to capture disease-
related increases in RANKL, decreases in mechanical loading
sensitivity, and denosumab competition with RANK and OPG.

Two models with dynamic estrogen levels aim to determine the
most effective therapeutic dose to prevent bone loss. In Rattanakul
et al. (2003), periodic estrogen treatment is modeled with a linear
increase in osteoclast removal. Chaiya and Rattanakul (2017)
reformulates the model to be explicitly piecewise. Using the power
law approach to illustrate, the osteoclast rate equation becomes

dOCL
dt

� αOCLg11OBLg21 − βOCL if t ≠ nT
αOCLg11OBLg21 − βOCL − ρOCL if t � nT

{ (14)
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where ρ is the parameter related to estrogen treatment, T is the
prescribed dose time, and n is the treatment number. In
addition to Eq. 14, Chaiya and Rattanakul (2017) adds a
constant term to capture the osteoblast-stimulating effects of
estrogen treatment on the osteoblast rate equation. The
motivation of this work is to understand alternative
treatment regimes for ERT because long-term continuous
treatment, while effective in increasing bone volume, has
been shown in some studies to increase the risk for breast
cancer and heart disease (Levin et al., 2018).

Models of dynamic estrogen loss often use an exponential decay
equation for estrogen concentration or an estrogen-dependent
dynamic parameter (Schmidt et al., 2011; Post et al., 2013;
Berkhout et al., 2015; Berkhout et al., 2016). Although Berkhout
et al. (2015) notes that estrogen concentration could better explain
disease dynamics, they opt for the decay equation instead due to
the high uncertainty in their model. In addition to estrogen decay,
Schmidt et al. (2011) and Post et al. (2013) modify the OPG
production parameter following Lemaire et al. (2004). Javed et al.
(2018) derives an alternate formulation for remodeling altogether
to simplify the mass action kinetics models proposed by Lemaire
et al. (2004) and Pivonka et al. (2008). Estrogen changes are
represented by a hyperbolically scaled estrogen term that
modulates the RANKL state variable. In contrast, Jorg et al.
(2022) models estrogen as an age-dependent concentration with
a characteristic time scale of menopause onset that is fit to clinical
data. This model also considers how estrogen alters
sclerostin levels.

Most models of estrogen dynamics only consider bone cell
or RANK-RANKL-OPG interactions, despite accumulating
evidence that estrogen modulates other mechanisms of bone
remodeling such as Wnt signaling and immune-bone
interactions (see Section 3.2.2). Future models need to
incorporate these complex dynamics in the ongoing effort to
improve mechanistic understanding of estrogen-deficient
osteoporosis.

Many bone remodeling models explore the effects of one or
more drugs on bone health (Riggs and Cremers, 2019; Ait Oumghar
et al., 2020) (Supplementary Tables S1–S3). Researchers typically
start by modeling a healthy or diseased remodeling cycle (or
leveraging existing models) and then extend the process to
include drug effects. For example, glucocorticoid therapies and
their interactions with the bone remodeling cycle are modeled in
Lemaire et al. (2004), Schmidt et al. (2011), and Lemaire and Cox
(2019). These models alter one parameter related to a symptom of
glucocorticoid treatment, specifically reduced osteoblast
populations. This essentially involves reducing αOBL in Eq. 10 or
Eq. 11. However, reducing one parameter corresponding to an effect
observed with glucocorticoid treatment is a simplistic approach that
may miss important mechanistic impacts on the bone
remodeling cycle.

Other models (e.g., Jorg et al. (2022)) study bisphosphonates,
denosumab, or romosozumab. The antiresorptive drugs are
modeled by combining the PKPD information of the drug of
interest and an already-established mathematical model of the
BMU. PK information consists of factors that explain how the
drug disperses in the body. These are usually differential
equations that track the amount of a drug in a target area.

PD information describes how the drug interacts with the body.
The effects can be shown directly through new parameters in the
model or implicitly applied by changing an existing parameter.

5.4.5 Gut metabolites and immune connections
Whereas the immune-bone connection gained traction in

the 2000s, the link between gut and bone metabolism is more
recent. So it follows that fewer mathematical models of bone
remodeling consider gut-mediated impacts on bone health.
Only one mathematical model of bone remodeling
incorporates gut and immune cells (Islam et al., 2021). This
model explores butyrate treatment of bone through T-cell-
mediated changes in Wnt-10b. Although much is still
unknown about the gut-bone connection, the Islam et al.
(2021) model is initialized with data from mouse
experiments that complement the mathematical model.
Sensitivity analysis and in silico hypothesis generation link
the calculated parameters to experimental conditions that
can be modified to explore new treatments. This highlights
the benefit of experimentally supported mathematical models of
bone remodeling. The multi-compartment modeling approach
of Islam et al. (2021) and Peterson and Riggs (2010) provide
examples of how mathematical models of bone remodeling may
explore relationships of systemic multi-organ effects.

5.4.6 Metastatic cancer cells
Similar to pharmaceutical modeling, most cancer models start

by modeling normal bone homeostasis and supplement it with an
equation for tumor dynamics (Marathe et al., 2008; Ayati et al., 2010;
Araujo et al., 2014; Ji et al., 2014; Coelho et al., 2016; Farhat et al.,
2017). Many cancer models also add or adjust parameters such as
RANKL, TGF-β, and PTH, which are known to be modified by
tumors. The populations of these cancer tumor cells (T) are usually
modeled in one of two ways. The first modeling method is based on
growth curves, as in

dT
dt

� γTdensityλ − ηT (15)

where γ and η are growth and decay parameters, Tdensity is a
relationship between the current and maximum cancer cell
population, and λ is an additional relationship term to capture
the effects of other cancer interactions considered (Ayati et al.,
2010; Buenzli et al., 2012b; Coelho et al., 2016; Zhang and Mager,
2019; Miranda et al., 2020). For example, in the Coelho et al.
(2016) model, λ in Eq. 15 corresponds to the concentration of
osteoclasts.

The second common way to model cancer populations follows
the mass action kinetics approach. Here, the populations are
controlled by different signaling factors represented by π terms
(Wang et al., 2011; Ji et al., 2014). In a publication that uses both
modeling methods, the growth curve is better for early cancer, and
the mass action kinetics structure is better for established cancer
(Farhat et al., 2017).

The mechanisms of tumor growth and metastasis have
important spatial considerations. This is the primary motivation
behind existing bone remodeling PDEs and ABMs of cancer (Ayati
et al., 2010; Ryser et al., 2012; Araujo et al., 2014), which track the
movement of cancer cells in space.
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6 Conclusion

Understanding the controlling factors in bone remodeling is
vital for treating bone-related diseases. Existing mathematical
models of remodeling have provided valuable insight into the
mechanisms of remodeling. However, the scattered and varied
parameter fitting techniques are a common limitation across
these models. It is essential to calibrate and validate the models
with more robust datasets through collaborations or rigorous
collation of existing data, e.g., Ledoux et al. (2022), to develop
biologically accurate and reusable bone models. With the emergence
of new technologies for measuring single-cell and spatially resolved
’omics and for in vivo dynamic imaging modalities, static and
dynamic data at the tissue, cellular, and molecular scales should
be leveraged increasingly to enhance modeling efforts for bone
remodeling. As modeling grows in popularity, many more
insights will be drawn from mathematical models, such as the
ones discussed in this review. Systems biology is needed to meet
the challenges associated with viewing bone remodeling as a
systemically controlled process in health and disease.
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