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Perfluorooctane sulfonate (PFOS) is a ubiquitous pollutant in global aquatic
ecosystems with increasing concern for its toxicity to aquatic wildlife through
inadvertent exposures. To assess the likely adverse effects of PFOS exposure on
aquatic wildlife inhabiting polluted ecosystems, there is a need to identify
biomarkers of its exposure and toxicity. We used an integrated systems
toxicological framework to identify physiologically relevant biomarkers of
PFOS toxicity in fish. An in silico stoichiometric metabolism model of
zebrafish (Danio rerio) was used to integrate available (published by other
authors) metabolomics and transcriptomics datasets from in vivo toxicological
studies with 5 days post fertilized embryo-larval life stage of zebrafish. The
experimentally derived omics datasets were used as constraints to
parameterize an in silico mathematical model of zebrafish metabolism. In
silico simulations using flux balance analysis (FBA) and its extensions showed
prominent effects of PFOS exposure on the carnitine shuttle and fatty acid
oxidation. Further analysis of metabolites comprising the impacted metabolic
reactions indicated carnitine to be the most highly represented cofactor
metabolite. Flux simulations also showed a near dose-responsive increase in
the pools for fatty acids and acyl-CoAs under PFOS exposure. Taken together, our
integrative in silico results showed dyslipidemia effects under PFOS exposure and
uniquely identified carnitine as a candidatemetabolite biomarker. The verification
of this prediction was sought in a subsequent in vivo environmental monitoring
study by the authors which showed carnitine to be a modal biomarker of PFOS
exposure in wild-caught fish and marine mammals sampled from the northern
Gulf of Mexico. Therefore, we highlight the efficacy of FBA to study the properties
of large-scale metabolic networks and to identify biomarkers of pollutant
exposure in aquatic wildlife.
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1 Introduction

The health of organisms living in stressed or deteriorating
ecosystems is typically assessed using biomarkers that represent
normal vs. perturbed physiological functions (Lopez-Barea, 1995;
Dahlhoff, 2004; Sarkar et al., 2006; Kerambrun et al., 2011; Kroon
et al., 2017). Biomarkers can include the measurement of apical or
biochemical endpoints that are representative of organismal fitness,
such as survival, growth, and fecundity (Villeneuve and Garcia-
Reyero, 2011), or use high-throughput “omics” methods
(transcriptomics, proteomics, metabolomics) to assess the entirety
of an organism’s biological complexity (Iguchi et al., 2005; Brinke
and Buchinger, 2017). The datasets generated from omics analyses
allows the generalized analysis of effects on biological pathways
using various in silico (i.e., bioinformatics or computational biology)
approaches (Ankley et al., 2010; Krewski et al., 2010; Moffat et al.,
2015). However, an integrated physiological perspective is difficult
to discern using conventional in silico pathways-based approaches as
omics changes are mainly assigned to biological functions based
upon ontological relationship (Kienhuis et al., 2011; Marmon
et al., 2021).

At present, we lack a comprehensive framework for assessing the
consequences of perturbations to specific biological pathways on
organismal metabolic physiology (and likely fitness) (Ashburner
et al., 2000; Hardy et al., 2012; Mi et al., 2013; Wolffe et al., 2020).
Exceptions include when dose-response changes in select gene
expressions relate to progressively worsening physiological
outcomes (Waterman et al., 2010; Haggard et al., 2016). Such as
is seen for exposure to hepatic toxicants and the outcome of tumor
development (Waterman et al., 2010; Haggard et al., 2016), or
exposures to endocrine disrupting chemicals and increasing
physiological dysfunction (Sharpe, 2006; Bergman et al., 2012; La
Merrill et al., 2020). Therefore, there is a need to understand how the
perturbation of select (or ensembles of) biochemical pathways (or
metabolic sub-systems), affects large-scale biological networks, in
turn impacting physiological functions. This challenge necessitates
the use of in silico models and methods that can enable the
qualitative or quantitative determination of the metabolites or
metabolic fluxes (i.e., catalytic capabilities of enzymes in
metabolic pathways) that are required to maintain the overall
adaptive potential of an organism’s physiology under changing
environmental conditions. Given the multi-level (genome to
phenome) and multi-variate (transcriptome, proteome,
metabolome) complexity of biological systems, the development
and use of physiologically representative in silicomodels is an active
area of research (Thiele et al., 2020; Gopalakrishnan et al., 2022).

In this manuscript we used an integrated systems toxicological
framework to identify the physiologically relevant biomarkers of
perfluorooctane sulfonate (PFOS) toxicity in fish.We used a novel in
silico computational biology approach to integrate metabolomics
and transcriptomics datasets from in vivo toxicological studies
exposing zebrafish (Danio rerio) to PFOS, with an in silico
stoichiometric model of whole-organism metabolism of zebrafish.
PFOS was chosen for analysis as it is a near ubiquitous pollutant in
global aquatic ecosystems (Muir and Miaz, 2021; Kurwadkar et al.,
2022), with concern for its toxicity to aquatic wildlife (Beach et al.,
2006; Ankley et al., 2021) and humans through inadvertent
exposures (Hansen et al., 2016; Blake and Fenton, 2020; Panieri

et al., 2022). Typically, human and wildlife exposure to PFOS (and
related per- and polyfluoroalkyl substances, or PFAS) can cause
wide-ranging metabolic and endocrine disruptive effects (Ankley
et al., 2021; Fenton et al., 2021). Therefore, the elucidation of
biomarkers that can represent impacted biological pathways and
portend the onset of adverse physiological effects, is a priority area
for further research (Lee et al., 2020; Ankley et al., 2021).

The in silico approach taken in this manuscript involved
integrating metabolomics and transcriptomics (RNA sequencing)
datasets from in vivo toxicological studies, generated by other
authors, in which embryo-larval life-stages of zebrafish were
exposed to PFOS (Ortiz-Villanueva et al., 2018; Martínez et al.,
2019). Zebrafish were chosen as a model organism due to their
common use as an in vivo model for aquatic wildlife and human
health (Hutchinson et al., 2003; Tanguay, 2018; Breuer and Patten,
2020). Untargeted metabolomics (Ortiz-Villanueva et al., 2018) and
transcriptomics datasets (Martínez et al., 2019) from 5 days post
fertilized (dpf) embryo-larval zebrafish exposed to PFOS (from
2 – 5 dpf) were used for model parameterization. Specifically, the
omics datasets from both studies comprised equivalent exposure
concentrations of a solvent control (0.2% v/v dimethyl sulfoxide or
DMSO), 0.06, 0.6, or 2 µM PFOS, and were generated by the same
research laboratory (Ortiz-Villanueva et al., 2018; Martínez et al.,
2019). These datasets were used to constrain or parameterize an in
silico stoichiometric model of zebrafish metabolism (Wang
et al., 2021).

The zebrafishmetabolismmodel comprised a stoichiometricmatrix
which balanced the conversions of 8,344 metabolites in
12,909 interlinked metabolic reactions, and with 61% of these
reactions controlled by the transcripts of 2,714 genes (Wang et al.,
2021). Analysis methods from the constraints-based reconstruction and
analysis (COBRA) metabolic modeling framework were used to
parameterize the zebrafish model and simulate the impacts of PFOS
exposure on themetabolic physiology of zebrafish (Savinell andPalsson,
1992; Schellenberger et al., 2011; Lewis et al., 2012). The COBRA
framework has been successfully used to study the optimal metabolic
functions of various prokaryotic and eukaryotic organisms (including
multi-tissue human metabolic models) (Ibarra et al., 2002; Fong et al.,
2005; Duarte et al., 2007; Mo et al., 2009; Bordbar et al., 2011; Yim et al.,
2011; Swainston et al., 2013; Aurich et al., 2015; Blais et al., 2017;
Opdam et al., 2017; Herrmann et al., 2019; Thiele et al., 2020).
Therefore, the in silico approach taken in this study enabled
assessment of the adverse effects of PFOS exposure and helped to
identify likely biomarkers of its toxicity effects in exposed aquatic
wildlife. In particular, a metabolite biomarker discovered using the
in silico analyses was later confirmed to be representative of PFOS
exposure in aquatic wildlife (fish and dolphins) sampled from the
northern Gulf of Mexico, namely, Galveston Bay (TX) and Mobile Bay
(AL) (Nolen et al., 2024).

2 Materials and methods

2.1 The zebrafish metabolic model

A zebrafish metabolic model constructed by Wang et al. (2021)
was parameterized with in vivo experimental data and used for
subsequent in silico simulations (overall approach is summarized in
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Supplementary Material S1). The model mathematically related the
biochemical (i.e., enzyme catalyzed) conversions and transport of
8,344 metabolites through an interlinked network of
12,909 reactions, and with 61% of these reactions related to the
transcripts of 2,714 genes (SSupplementary Material S2, Zebrafish
Metabolic Model). The mathematical model of the metabolic
network was as a mxn dimension stoichiometric matrix in
which the enzyme catalyzed biochemical conversions of “m”

metabolites in “n” reactions was represented using negative or
positive coefficients to encode metabolite consumptions or
productions respectively. Approximately 13% of the reactions in
the model comprised “Exchange” reactions that represented the
uptake and/or excretion of various metabolites into or out of the
model. The min/max catalytic capabilities (or bounds) for all
reactions in the metabolic model were initially constrained with
arbitrary or experimentally derived data of metabolite availabilities
(Supplementary Material S2, Zebrafish Metabolic Model). Taken
together, the stoichiometric matrix and the min/max reaction
bounds defined the feasible domain of allowable and attainable
metabolic fluxes that can convert substrates to products (Varma and
Palsson, 1994). The imposition of experimentally derived
constraints to these min/max (or lower/upper) bounds enabled
the generation of condition-specific models that represented a
given phenotype or experimental condition (as described in
Sections 2.2–2.5).

2.2 Determination of in vivo biomass
composition of 5 dpf zebrafish for in silico
base-model parameterization

To create a base-model parameterized to the metabolic
physiology of 5 dpf embryo-larval zebrafish, a combination of
existing data (i.e., published by other authors) and new data
generated by us for this study was used. For example, the
proportional contributions of major biomass components
required to generate per Gram dry weight (g DW) of 5 dpf
embryo-larval zebrafish was estimated using methods detailed in
Feist et al. (2007). Data on 5 dpf zebrafish protein and lipid
fractions were obtained from Hachicho et al. (2015), trace ions
from Kaushik et al. (2011), and the proportion of DNA was
estimated from the genome size (in base pairs) as presented in the
zebrafish genome assembly GRCz11 (http://uswest.ensembl.org/
Danio_rerio/Info/Annotation) and converted to unit mass
composition (Gregory et al., 2007). The organic acids pool was
calculated as the remainder proportional fraction (all
calculations are shown in Supplementary Material S2, Biomass
Composition).

The specific amino acids, organic acids, and fatty acids
comprising the protein, organic acid pool, and lipid fractions
respectively for 5 dpf zebrafish were quantified in this study
using untargeted metabolomics. Briefly, 100 newly fertilized
wild-type (AB line) zebrafish embryos were purchased from
the Zebrafish International Resource Center (ZIRC) and
maintained until 5 dpf in E2 embryo medium (Westerfield,
2000). At 5 dpf, 50 cold-stunned embryo-larval zebrafish were
pooled into two separate replicates, freeze-dried overnight
(Labconco FreeZone 6 plus), with metabolites extracted into

crushed dry ice/acetone using a pestle and mortar. The mixed
homogenates were pelleted at 2,000 rcf for 10 min, with the
acetone supernatants filtered at 12,000 rcf for 1 h (at 4°C)
through Amicon Ultra-0.5 centrifugal filters (Millipore-
Sigma). The resulting filtrates were analyzed using mass
spectrometry by the Integrated Metabolomics Analysis Core
(IMAC) at Texas A&M University.

Untargeted liquid chromatography high resolution accurate
mass spectrometry (LC-HRAM) analysis was performed using a
Q Exactive Plus orbitrap mass spectrometer (ThermoFisher,
Waltham, MA) coupled to a binary pump HPLC (UltiMate
3,000, ThermoFisher). Full MS spectra was obtained at
70,000 resolution (200 m/z) with a scan range of 50–750 m/z.
Full MS followed by data dependent (dd) MS2 scans were
obtained at 35,000 resolution (MS1) and 17,500 resolution
(MS2), with a 1.5 m/z isolation window and a stepped
normalized collision energy (NCE of 20, 40, 60). Samples were
maintained at 4°C before injection. The injection volume was
10 µL. Chromatographic separation was achieved on a Synergi
Fusion 4 μm, 150 mm × 2 mm reverse phase column
(Phenomenex, Torrance, CA) maintained at 30°C using a
solvent gradient method. Sample acquisition was performed
using Xcalibur (ThermoFisher). Data analysis was performed
with Compound Discoverer 2.1 (ThermoFisher). The averaged
area under curve (AUC) counts for the various biomass
components of amino acids (protein fraction), intermediate
metabolites (organic acids fraction), and fatty acids (lipid
fraction); along with amounts of trace ions and nucleic acids,
were converted to µmol gDW-1 zebrafish. The molar conversion
to biomass constituents was based upon the protocols of Feist
et al. (2007) and are detailed in Supplementary Material S2,
Biomass Composition.

2.3 Determination of in vivo growth and
metabolic rate of 5 dpf zebrafish for in silico
base-model parameterization

Zebrafish growth rate was calculated by considering the change
in total body length (mm) over time from ~2 to 21 dpf, using data
from https://zfin.org/zf_info/zfbook/stages/and Kimmel et al.
(1995). The relationship between total body length and time was
approximately linearized by plotting the cumulative change in total
body length (mm) vs. the cumulative length increment per unit time
(mm hr-1) (Supplementary Material S2, Growth andMetabolic Rate)
(Hopkins, 1992). An oxygen consumption rate (OCR) for 5 dpf
zebrafish was also calculated using the allometric relationship
between routine (or resting) metabolic rate of zebrafish vs. mass
(Rombough and Drader, 2009). And a cost of growth associated
ATP maintenance (or COG) was calculated from the correlation
between the OCR vs. relative growth rate (RGR) for zebrafish
developmental life-stages spanning from 4 to 30 dpf. The RGR
and COG were calculated using methods described in Conceição
et al. (1998) and are detailed in Supplementary Material S2, Growth
and Metabolic Rate. All physiological parameters were used to
constrain the in silico stoichiometric model to generate a base-
model that was representative of the metabolic physiology of
5 dpf zebrafish.

Frontiers in Systems Biology frontiersin.org03

Nolen et al. 10.3389/fsysb.2024.1367562

http://uswest.ensembl.org/Danio_rerio/Info/Annotation
http://uswest.ensembl.org/Danio_rerio/Info/Annotation
https://zfin.org/zf_info/zfbook/stages/
https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2024.1367562


2.4 Use of omics data from in vivo PFOS
exposed 5 dpf zebrafish for in silico model
parameterization

To convert the 5 dpf zebrafish base-model to condition-specific
model’s representative of PFOS exposure, metabolomics and
transcriptomics datasets from Martínez et al. (2019) and Ortiz-
Villanueva et al. (2018) exposing 5 dpf embryo-larval zebrafish to a
solvent control (0.2% v/v DMSO), 0.06, 0.6, or 2 µM PFOS, were
obtained and prepared for base-model parameterization. Specifically
for the metabolomics datasets, the auto-scaled relative abundances
for the up- or downregulated metabolite levels (as reported in
Supplementary Material of Ortiz-Villanueva et al. (2018)) were
used to scale the AUC’s for the matched metabolites measured in
the wild-type zebrafish (as described in Section 2.2) (Supplementary
Material S2, PFOS Omics Data). The GSE125072 transcriptomics
(RNA-sequencing) datasets of 5 dpf zebrafish exposed to a solvent
control (0.2% v/v DMSO), 0.06, 0.6, or 2 µM PFOS were downloaded
from the NCBIs GEO website (GSE125072 dataset as FASTQ files)
using the NCBIs sequence read archive (SRA) Toolkit as initialized
in a Cygwin-64 terminal. The resulting FASTQ files were processed
using the OmicsBox bioinformatics toolbox v1.2 using established
algorithms (BioBam, Valencia, Spain). For example, sequence
alignment was performed using the STAR (v.2.7.9) aligner
(Dobin et al., 2013), and using the zebrafish reference genome
GRCz11. Gene expression quantification as a transcript count
table was performed using the HTSeq package (Anders et al.,
2015). Subsequently, all counts were log2 (n + 1) transformed
prior to binarization using the BiTrinA toolbox v1.3 (Mundus
et al., 2022) in RStudio (v4.2.0), and using the Binarization
Across multiple SCales or BASC (A) algorithm (transcriptomics
and binarized data is shown in Supplementary Material S2, PFOS
Omics Data).

2.5 The generation of PFOS exposed
condition-specific zebrafish
metabolic models

The zebrafish base-model was converted to condition-specific
metabolic models representative of the various PFOS exposure
concentrations (i.e., 0.2% v/v DMSO (solvent control), 0.06, 0.6,
2 µM PFOS) using the MetaboTools protocols (Aurich et al.,
2015; Aurich et al., 2016), and as enabled in the COBRA toolbox
(Schellenberger et al., 2011). All protocols were initialized in
MATLAB (vR 2021b). The key parameterization steps are
summarized as follows: First, the previously developed base-
model was transformed to condition-specific model’s
representative of PFOS exposure by constraining metabolite
availabilities to generate various (or transformed) models
reflective of the solvent control (0.2% v/v DMSO), 0.06, 0.6, or
2 µM PFOS exposure concentrations (n = 2 per treatment group)
(Supplementary Material S2, PFOS Omics Data). Second,
binarized transcriptomics datasets (described in Section 2.4)
was used to parameterize the viable min/max bounds for
reactions associated with the expressed metabolic enzyme
genes only (and with nulled min/max bounds for the
remainder of reactions). Third, imposition of the previously

stated constraints led to the generation of three condition-
specific metabolic models that were representative of PFOS
exposures, namely, a Low exposure model (solvent control vs.
0.06 µM PFOS), Medium model (solvent control vs. 0.6 µM
PFOS), and High model (solvent control vs. 2 μM PFOS)
(Supplementary Material S2, PFOS Omics Data). While
replicate datasets were used for model parameterization, single
PFOS condition-specific models were generated using the
MetaboTools protocols. Once constructed, the functional
properties of each condition-specific metabolic model were
studied in turn (all models are available in SBML format at
https://www.ebi.ac.uk/biomodels/MODEL2403010004).

2.6 In silico biomarker discovery using
condition-specific PFOS exposure
metabolic models

The structural and functional properties of each condition-
specific metabolic model was studied using the COBRA toolbox
(v2.0) as initialized in MATLAB (v2021b) (Schellenberger et al.,
2011). For each model, the full range of min/max flux constraints
required for the optimal production of ATP was determined
using the flux variability analysis (FVA) computation
(Mahadevan and Schilling, 2003). The production of ATP by
each model was selected as a proxy of metabolic performance due
to its positive correspondence with in vivo metabolic rate and
organismal fitness (Salin et al., 2015) (Supplementary Material
S2, Flux Analysis). The extent of intersection or overlap of the
computed min/max flux ranges were compared across the three
condition-specific metabolic models using a Jaccard index
calculation. This analysis allowed identification of impacted
reactions and associated metabolic sub-systems under PFOS
exposure. Further analysis was performed to determine the
extent of metabolite participation in the impacted reactions.
Therefore, providing insights into metabolite connectivity in
the condition-specific models and helping to identify
candidate metabolite biomarkers that were diagnostic of PFOS
exposure. Finally, flux balance analysis (FBA) was used to
compute the optimal flux through select core metabolic
reactions that produced key intermediate organic acids or
lipids (Feist and Palsson, 2010; Orth et al., 2010). Optimal
fluxes were calculated subject to limiting carbon substrate
availability to per mol glucose or palmitolate (or palmitoleic
acid), and ensuring unlimited O2, H2O, and CO2 availability to
each condition-specific model.

2.7 Statistical analysis

Statistical analysis was performed using the Python programing
language (v3.9.5), with associated data handling (pandas) and
statistical (scipy, scikit) libraries. The normal distribution of data
was tested using the Shapiro-Wilk test, with homogeneity of
variance tested using the Levene test. In this manuscript, a non-
parametric Spearman’s rank correlation only was tested (with α =
0.05). All graphs were plotted using python’s matplotlib
visualization library.
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3 Results

3.1 The metabolic physiology of the 5 dpf
embryo-larval zebrafish base-model

The proportional contributions of major biomass components
comprised: organic acid (0.47), protein (0.40), lipid (0.05), trace ion
(0.05), and DNA (0.03) fractions (Supplementary Material S2, Biomass
Composition). The inverse slope of the relationship between the
cumulative change in total body length vs. the cumulative body
length increment (Spearman Rank rho = −0.84, p-value = 0.002)
yielded a growth rate of 0.011 h-1 (Supplementary Material S2,
Growth and Metabolic Rate). An OCR of 52 µmol O2 gDW-1 hr-1

and COG of 209 µmol ATP gDW-1 hr-1 was calculated for 5 dpf
embryo-larval zebrafish (Supplementary Material S2, Growth and
Metabolic Rate). The OCR was calculated using the allometric
relationship between the resting metabolic rate (nmol O2/hr) and
mass (mg) of larval zebrafish as calculated by Rombough and Drader
(2009). Our computedOCRvalue (using the allometric relationship)was
similar to the experimentally measured OCR of ~30–40 µmol O2 g wet
weight-1 hr-1 for 5 dpf embryo-larval zebrafish reported in Bagatto et al.
(2001). All experimentally derived physiological parameters were used as
constraints to generate the in silico metabolic base-model for 5 dpf
zebrafish. For example, the in vivo growth rate was used to constrain the
lower bound of the in silico biomass generating reaction (MAR00021),
the OCR was used to constrain the O2 uptake exchange reaction
(MAR09048), and the COG was used to constrain the ATP
maintenance (or renewal) reaction (MAR06916) (Supplementary
Material S2, Zebrafish Metabolic Model).

3.2 Comparisons amongst condition-
specific PFOS exposed 5 dpf zebrafish
metabolic models

The analysis of the union of reactions across the three,
condition-specific metabolic models yielded a shared pool of

9,846 reactions, which constituted 76% of all reactions in the
zebrafish base-model. A Venn diagram of shared or unique
reactions amongst the condition-specific models revealed that
96% of metabolic reactions to be shared amongst the three
models (Figure 1). Relative to the union of all reactions, the set
of unique reactions was relatively small in each of the Low (0.7%),
Medium (1.3%), or High (0.3%) PFOS exposed metabolic models.
And while approximately twice as many reactions were shared
between the Low and Medium models (120) vs. the Medium and
High models (66), they only comprised 1.2% and 0.7% of all shared
reactions (Figure 1). Therefore, given the relatively minimal
distinctions in reactions between the three condition-specific
models, comparisons of the simulated metabolic fluxes were
sought to identify the likely effects of PFOS exposure on the
metabolic physiology of zebrafish.

3.3 PFOS effects on the in silico metabolic
physiology of zebrafish

The comparisons of min/max flux values for the reactions
comprising the major metabolic sub-systems revealed a
prominent effect on the carnitine shuttle (Figure 2). The Low
PFOS exposure model showed the carnitine shuttle to be
uniquely impacted as its min/max fluxes were non-overlapping
with those of all other reactions in the Low condition-specific
model. The carnitine shuttle sub-system also appeared to be
consistently affected (or represented) across all metabolic models.
Given that carnitine availability is essential for the regulation of fatty
acid oxidation (Ramsay and Zammit, 2004; Longo et al., 2016), the
other major metabolic sub-system to also be concomitantly
impacted across all three condition-specific metabolic models
included fatty acid oxidation (Figure 2).

The analysis of metabolite connectivity or participation in the
impacted metabolic reactions (i.e., non-overlapping and overlapping
flux categories) revealed highly represented or conserved biomarkers
that were diagnostic of PFOS exposure (Figure 3). An evaluation of
highly represented metabolites in the Low PFOS exposed model
included: carnitine (or L-carnitine) > cholesterol > malonyl-CoA;
for the Medium PFOS model included only cholesterol; and for the
High PFOS model included: carnitine > cholesterol > acetyl-CoA >
SM-pool (sphingolipid metabolism) > PC-LD pool
(glycerophospholipid metabolism) > GSH (glutathione). The
prominent representation of carnitine in the Low and High
PFOS models implicates impacts of PFOS exposure on long-
chain fatty acyl-CoA transmembrane import into the
mitochondria and subsequent β-oxidation (Gooding et al., 2004;
Longo et al., 2016). The participation of additional intermediate
metabolites that are on the nexus of lipid and energy metabolisms
(i.e., acetyl-CoA, malonyl-CoA, cholesterol), strongly implicated
adverse effects on dyslipidemia and organismal metabolic
physiology (Erinc et al., 2021; Fenton et al., 2021).

Finally, the metabolic capability of each condition-specific
model to produce key biomass precursors was tested using FBA.
Specifically, limiting carbon substrate availability to per mol glucose
or palmitolate showed the Medium and High PFOS metabolic
models to exhibit overall higher fluxes for lipid metabolism vs.
for those for organic acids (pyruvate dehydrogenase or PDH; and α-

FIGURE 1
Venn diagram showing the extent of shared or unique metabolic
reactions in the three condition-specific models generated using in
vivo omics data from PFOS exposed embryo-larval zebrafish. The
condition-specific metabolic models comprised Low PFOS
(solvent control vs. 0.06 µM PFOS), Medium PFOS (solvent control vs.
0.6 µM PFOS), and High PFOS (solvent control vs. 2 μM PFOS).
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ketoglutarate dehydrogenase or KGDH) (Figure 4). For example,
fatty acid oxidation via the mitochondrial β-oxidation reaction of 3-
ketoacyl-CoA thiolase (βOXD), and the biomass generating reaction
pools for fatty acids and acyl-CoAs was approximately an order of
magnitude higher in the Medium and High models vs. the Low
model (Figure 4). These flux simulations indicate increased lipid
metabolism under elevated PFOS exposure.

4 Discussion

4.1 In silico predictions of PFOS exposure
biomarkers

In this manuscript, the analysis of condition-specific zebrafish
metabolic models revealed the carnitine shuttle and fatty acid

FIGURE 2
Comparisons of min/max flux overlap across various metabolic sub-systems as represented in the zebrafish metabolic model. The heat map shows
the extent to which (darker colors) ametabolic sub-system is represented in disjoint or Non-overlappingmin/max flux ranges, Overlapping, or Equivalent
(with equal min/max flux ranges). (A) Low PFOS = solvent control vs. 0.06 μM PFOS model, (B)Medium PFOS = solvent control vs. 0.6 μM PFOS model,
and (C) High PFOS = solvent control vs. 2 μM PFOS model.

FIGURE 3
Rank ordered metabolites listed based upon the extent of their connectivity or participation in the metabolic reactions with disjoint or Non-
overlapping andOverlappingmin/max flux ranges. This analysis identified carnitine to be highly represented in the Low and High PFOSmetabolicmodels.
(Low PFOS = solvent control vs. 0.06 µM PFOSmodel, Medium PFOS = solvent control vs. 0.6 µM PFOSmodel, and High PFOS = solvent control vs. 2 μM
PFOS model.).
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oxidation to be consistently modulated under PFOS exposure
(Figure 2; Figure 3). This is not surprising as the two sub-
systems are functionally interrelated. The carnitine shuttle
involves the use of carnitine as a cofactor to transport acyl
moieties of fatty acyl-CoAs across the mitochondrial outer and
inner membranes. Carnitine is a hydrophilic quaternary amine
endogenously produced from protein degradation (Longo et al.,

2016; Li and Zhao, 2021). In the carnitine shuttle, the acyl moiety of
acyl-CoAs is transferred fromCoA to carnitine (enabled by carnitine
palmitoyl transferase I or CPT-I) on the outer mitochondrial
membrane. Acyl-carnitine transfer across the inner mitochondrial
membrane culminates in its reconversion to acyl-CoA by carnitine
palmitoyl transferase II (CPT-II), which is found on the inner
(matrix facing) face of the inner mitochondrial membrane,

FIGURE 4
Graphs showing the contrasting abilities of the three condition-specific PFOS metabolic models to drive flux through key metabolic reactions or
produce key biomass precursors under limited carbon availability of (A) 1 mol glucose or (B) 1 mol palmitolate to produce ATP subject to the availability of
various organic carbon substrates. Low PFOS = solvent control vs. 0.06 µM PFOS model, Medium PFOS = solvent control vs. 0.6 µM PFOS model, and
High PFOS = solvent control vs. 2 μM PFOS model. PDH = pyruvate dehydrogenase; KGDH = α-ketoglutarate dehydrogenase, βOXD =
mitochondrial β-oxidation reaction of 3-ketoacyl-CoA thiolase.
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whereas the enzyme carnitine acyl-carnitine translocase replenishes
the replaced carnitine by shuttling it back across the mitochondrial
membranes to the cytosol, thus renewing the cytosolic carnitine pool
and preventing its depletion (Bartlett and Eaton, 2004; Houten and
Wanders, 2010).

Modulation of the carnitine shuttle and fatty acid oxidation
metabolic sub-systems strongly indicates PPARα induction. PPARα
serves as a sensor of free fatty acid levels and is activated by the
presence of a variety of saturated and unsaturated fatty acids (Berger
and Moller, 2002). Once activated this receptor acts as a
transcriptional master-regulator by up-regulating genes required
for activating fatty acids to fatty acyl-CoAs (fatty acyl-CoA
synthetase), and those involved in fatty acid transport into the
cell (fatty acid transport proteins or FATPs), along with
mitochondrial and peroxisomal β-oxidation genes that metabolize
fatty acyl-CoAs to acetyl-CoA (Berger and Moller, 2002;
Rakhshandehroo et al., 2010). As a result, PFOS mediated
activation of PPARα is expected to be concomitant with elevated
free fatty acid levels and fatty acyl-CoAs. In support of this
expectation, carbon-restricted in silico FBA simulations using per
mol glucose or palmitolate showed elevated metabolic flux (by
almost an order of magnitude) through the fatty acid and fatty
acyl-CoA pools in the Mid and High condition-specific PFOS
metabolic models, relative to the Low PFOS model (Figure 4).

Taken together, our in silico results indicate dyslipidemia effects
under PFOS exposure. The candidate metabolite biomarkers of
PFOS exposure include carnitine, free fatty acids, or fatty acyl-
CoAs. Whereas PPARα and its downstream target genes,
particularly those involved with fatty acyl-CoA mobilization or
breakdown in fatty acid oxidation may provide appropriate
biomarkers for transcriptomics analyses. These biomarkers agree
well with the experimental observations of Ortiz-Villanueva et al.
(2018) and Martínez et al. (2019) from whose in vivo exposure
studies with embryo-larval zebrafish, the metabolomics and
transcriptomics datasets used for model parameterization were
derived. While metabolomics analyses indicated effects on lipid
metabolism (elevated glycerophospholipid, unsaturated fatty
acids) (Ortiz-Villanueva et al., 2018), transcriptomics analyses
indicated the induction of lipid transport and metabolism
(Martínez et al., 2019). Of specific relevance to the in silico
prediction of effects on carnitine (as co-factor) and the carnitine
shuttle made here, a human epidemiological study by Hu et al.
(2019) showed PFOS body-burdens (in maternal perinatal serum
samples) to be uniquely associated with the over-representation of
carnitine and activation of the carnitine shuttle (as determined from
metabolomics analyses). These findings confirmed PFOS toxicity on
lipid regulation and fatty acid metabolism (Hu et al., 2019).
Interestingly, the serum concentrations of PFOS shown to illicit
effects on the carnitine shuttle (≤200 ng mL-1 or ≤0.4 µm PFOS) (Hu
et al., 2019), were within the in vivo toxicological concentrations
used for in silicomodel parameterization in this study (i.e., 0.06, 0.6,
2 µM PFOS) (Ortiz-Villanueva et al., 2018; Martínez et al., 2019).
Indicating a concentration-dependent conservation of
adverse effects.

The relevance of any biomarker identified from laboratory-
based toxicological assessments with model organisms (such as
zebrafish), as being predictive of effects in unrelated aquatic
wildlife species is likely to depend on the extent of genome or

proteome sequence similarity (Lalone et al., 2013; LaLone et al.,
2023). Interspecies differences in receptor sensitivity to a pollutant
ligand has been clearly shown to relate to differences in the
inducibility of metabolic systems and related toxicity (Rusyn
et al., 2006; Feige et al., 2010). However, if there is conservation
of response for effects on a particular metabolic sub-system, then
evaluation of effects on key cofactor metabolites may provide a more
generalized approach towards identifying biomarkers. Carnitine
presents itself as one such biomarker for studying effects on fatty
acid oxidation as it is indispensable for the mitochondrial import of
fatty acyl-CoAs (Longo et al., 2016).

In environmental monitoring studies performed by the authors
of this manuscript, hepatic carnitine levels were shown to positively
correlate with PFOS body-burdens in fish and marine mammals
(stranded dolphins) sampled from the northern Gulf of Mexico
(namely, from Galveston Bay (TX) and Mobile Bay (AL)) (Nolen
et al., 2024). Therefore, the in silico predictions presented in this
manuscript and the subsequent in vivo experimental verification
reported in Nolen et al. (2024), indicate that the dyslipidemia effects
of PFOS exposure likely mediate through disruption of the carnitine
shuttle and modulation of carnitine levels as cofactor. Furthermore,
the apparent agreement between in silico and in vivo results
highlights the efficacy of using FBA to study the physiologically
representative properties of large-scale metabolic networks.

An additional cofactor such as Coenzyme A (CoA) may also be a
candidate to explore as a biomarker for PFOS effects. CoA is also an
essential cofactor responsible for activating carboxylic acid moieties
on various intermediate metabolites (including fatty acids) to CoA-
thioesters (or acyl-CoAs). In turn, acyl-CoAs participate in key
oxidative and biosynthetic reactions (such as fatty acid β-oxidation
and the TCA cycle) (Brass, 1994). Therefore, adjustments of free
CoA/acyl-CoA ratios contribute to major redirections of carbon flux
in healthy vs. stressed metabolic states, although such effects are
likely to be inducible under very high levels of PFOS exposure, as
appears to be the case under di (2-ethylhexyl) phthalate (DEHP)
exposure (Sakurai et al., 1978; Hala et al., 2021).

4.2 Relevance of in silico predictions within
context of reported in vivo PFOS
toxicity effects

To frame the in silico predicted effects determined in this
manuscript with the broader base of knowledge on the in vivo
toxicity effects of PFOS, we find that exposure to PFOS impacts a
wide array of biomarkers, spanning from metabolic to endocrine
systems. Such effects are explainable by its endocrine disruptive
properties (Jensen and Leffers, 2008; Pípal et al., 2022). While
endocrine disrupting chemicals (or EDCs) typically affect
hormone signaling (Bergman et al., 2012; La Merrill et al., 2020),
a broader suite of effects including metabolic disruption can also be
considered (Grün and Blumberg, 2009; Heindel et al., 2017). PFOS
appears to disrupt hormone production and signaling (Du et al.,
2013; Salgado-Freiría et al., 2018), and impacts lipid or carbohydrate
metabolisms in exposed organisms (Bjork et al., 2011; Chung et al.,
2022). A comprehensive review of PFOS effects on lipid metabolism
by Fragki et al. (2021) summarizes PPARα activation to be
responsible for dyslipidemia effects. PPARα plays a critical role

Frontiers in Systems Biology frontiersin.org08

Nolen et al. 10.3389/fsysb.2024.1367562

https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2024.1367562


in regulating fatty acid metabolism via peroxisomal and
mitochondrial β-oxidation (Berger and Moller, 2002). However,
detailed transcriptomics comparisons between primary human vs.
rodent hepatocytes exposed to PFOS indicate strong and
concomitant activations of a broader suite of nuclear hormone
receptors between the two species. These receptors included the
constitutive androstane receptor (CAR) and pregnane X receptor
(PXR) (Bjork et al., 2011). CAR/PXR are responsive to xenobiotic
(synthetic exogenous chemicals or pollutants) exposures as they
induce biotransformation enzyme activities (Wang et al., 2012), and
also play a role in energy homeostasis by inducing lipogenesis and
inhibiting gluconeogenesis (Moreau et al., 2008). Taken together, the
nexus of PPARα (albeit weakly activated in humans; Takacs and
Abbott (2007)), CAR, and PXR activations under PFOS exposure
implicate dysregulations of energy homeostasis (particularly
dyslipidemia) and consequent widespread adverse physiological
effects. Therefore, it is not surprising that dyslipidemia is a
consistent metabolic effect reported in humans exposed to PFOS
(Christensen et al., 2019; Sunderland et al., 2019).

Similarly, the study of PFOS effects on zebrafish supports
dyslipidemia effects via elevated fatty acid β-oxidation and
nuclear hormone receptor activations (including PXR) reported
(Cheng et al., 2016). The analysis of specific effects on fatty acid
profiles shows dose-responsive increases in the medium-chain and
long-chain saturated fatty acids of lauric (12:0) and myristic (14:0)
acid in embryo-larval zebrafish exposed to PFOS (Sant et al., 2021).
Overall, while laboratory studies convincingly show effects of PFOS
exposure of endocrine and metabolic disruption (Lee et al., 2020),
less is known of aquatic wildlife effects in field-based studies (Ankley
et al., 2021). This is not surprising given the myriad of confounding
variables that can impact biomarker assessments in wild-caught
animals (Houde et al., 2011). For example, Guillette et al. (2020)
report elevated PFOS body burdens in the serum of Striped Bass
(Morone saxatilis) from a PFAS polluted river (Cape Fear River, NC,
USA), to positively correlate with biomarkers of innate immune
activity and hepatic injury. However, these correlations are
potentially confounded by life-stage differences in fish, pathogen
exposures, and likely exposures to mixtures of pollutants (as the
river basin was also recipient of industrial and municipal discharges)
(Heintz and Haws, 2021).

The requirement of a toxicity biomarker to be representative of
exposure and/or adverse effects (Sanajou and Şahin, 2021), places a
biomarker’s response within close proximity of a toxicants
interaction with a molecular or biological target (the so called
molecular initiating event) (Ankley et al., 2010). Close
correspondence of elevated PFAS exposure with the activation of
a responsive target receptor has been shown for the positive
correlation between levels of select perfluoroalkyl carboxylates
(PFCAs) and PPARα gene expression in the kidney tissue of
stranded cetaceans (dolphins and whales) (Kurtz et al., 2019). In
addition, Kurtz et al. (2019) also showed a positive correlation of
PPARα expression with a target gene, cytochrome P450 4A (cyp4A),
which is responsible for fatty acid metabolism (Simpson, 1997), and
therefore strongly supporting a biologically relevant biomarker
response (Kurtz et al., 2019). The Kurtz et al. (2019) study
demonstrates that consideration of a “systems” view, such as the
activations of responsive or inducible biomarkers (i.e., PPARα and
cyp4a) can provide compelling weight-of-evidence of exposure to a

specific pollutant and likely mechanistically associated
adverse effects.

In this manuscript, the in silico predictions of effects on the
carnitine shuttle and fatty acid metabolism agree with the general
consensus of PFOS’ effects on lipid metabolism. Furthermore, our
subsequent verification of the positive correlation between in vivo
hepatic carnitine levels and PFOS body-burdens in fish and dolphins
sampled from the northern Gulf of Mexico (Nolen et al., 2024), lends
to the verification and validation of the in silico analyses reported in
this manuscript. While the zebrafish metabolism model only
accounted for effects on the metabolic reaction network, it
precluded direct assessment of effects on nuclear hormone
receptors (such as PPARs, CAR, PXR, etc.). We may infer that
the metabolic effects simulated in this manuscript are consequent of
transcriptional regulatory changes that may include perturbation of
various transcription factors. The inclusion of transcriptional
regulatory signaling and effects onto the metabolism model
constitutes a further avenue for model improvement and research.

4.3 Limits of assumptions of the in silico
modeling approach

The zebrafish metabolic model represented the near entirety of
organismal biochemistry (comprising 12,909 reactions) (Wang
et al., 2021). As a result, the model did not represent a tissue-
specific metabolic phenotype. This is not a limitation of the model as
the omics datasets used for its parameterization represented whole-
organism transcriptomics and metabolomics changes (Ortiz-
Villanueva et al., 2018; Martínez et al., 2019). Furthermore, use
of the MetaboTools application enabled the generation of a subset of
condition-specific metabolic reactions that were representative of
PFOS exposure. While the steady-state assumption of FBA presents
a computationally efficient means to solve (or mathematically study
the properties of) large scale metabolic models (Schilling et al., 1999;
Orth et al., 2010), it precludes consideration of system dynamics (at
least as parameterized in its current form). Such absent inclusion of
system dynamics is considered a limitation of the FBA approach
(Murphy et al., 2018). However, FBA and its extensions present an
effective and unified mathematical framework with which to study
the properties of large-scale metabolic networks. Specifically, the
FBA framework can meaningfully integrate transcriptomics and
metabolomics datasets as constraints to determine effects on
metabolic phenotype (Lee et al., 2006; Lewis et al., 2012).

The high level of genomic orthology and biochemical
conservation between zebrafish and humans ensures relevance to
the predictions of adverse effects in humans (Howe et al., 2013;
Breuer and Patten, 2020). And conservation of zebrafish
endocrinology and biochemistry with other piscine species also
makes it an effective model system to study other aquatic wildlife
(Hutchinson et al., 2003; Busby et al., 2010). Overall, the results of
our in silico analyses agree with the in vivo toxicological effects of
PFOS exposure, with the cofactor carnitine uniquely identified as a
likely conserved metabolic biomarker of PFOS effects on fatty acid
oxidation or dyslipidemia.

Finally, consideration should also be given to the fact that
there are over 3,000 structurally related PFAS homologs, which
raises concerns for mixtures exposures and toxicity (Wang et al.,

Frontiers in Systems Biology frontiersin.org09

Nolen et al. 10.3389/fsysb.2024.1367562

https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2024.1367562


2017; Ankley et al., 2021). Despite such variety, only around two
dozen or so PFAS are commonly detected in aquatic wildlife (and
most of whom are aptly represented in the Environmental
Protection Agency’s PFAS priority list (EPA, 2019)). And of
these, PFOS is the most prominently detected (and at the highest
concentrations) (extensively reviewed in Vendl et al. (2021)). Our
own previous research has shown PFOS to be the most
prominently detected homolog in aquatic biota (oysters and
fish) from Galveston Bay (TX) (Nolen et al., 2022). Given that
in humans and fish, PFAS exposures are commonly associated
with dyslipidemia effects (Lee et al., 2020; Fenton et al., 2021), we
may expect PFOS to be the most causal homolog for this etiology.
Furthermore, studies assessing the mixtures toxicity of PFAS
indicate additive or synergistic effects of exposure on
dyslipidemia (Haug et al., 2023; Sadrabadi et al., 2024) and
cell toxicity (Ojo et al., 2020; Addicks et al., 2023; Pierozan
et al., 2023). Therefore, the prediction of carnitine as a likely
biomarker of PFOS toxicity may also be a relatively modal or
representative biomarker of general PFAS exposures.

5 Conclusion

An integrated in silico systems toxicological framework was used
to identify the physiologically relevant biomarkers of PFOS toxicity
in fish. FBA simulations revealed the carnitine shuttle and fatty acid
oxidation to be consistently affected under PFOS exposure.
Specifically, the co-factor carnitine was identified as being a
diagnostic metabolite biomarker of PFOS exposure. These
simulation predictions agree with in vivo toxicological studies
using animal models (including fish) (Lee et al., 2020; Ankley
et al., 2021), human epidemiological studies (Christensen et al.,
2019; Hu et al., 2019; Sunderland et al., 2019), and our own
environmental monitoring data that reports a positive correlation
between hepatic carnitine levels and PFOS body-burdens in fish and
dolphins sampled from the northern Gulf of Mexico (Nolen et al.,
2024). A key finding of our study is that adverse effects on key
cofactor metabolites may provide a generalized approach towards
identifying causal biomarkers to assess pollutant exposure
and toxicity.
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