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One of the main challenges in cancer treatment is the selection of treatment
resistant clones which leads to the emergence of resistance to previously
efficacious therapies. Identifying vulnerabilities in the form of cellular trade-
offs constraining the phenotypic possibility space could allow to avoid the
emergence of resistance by simultaneously targeting cellular processes that
are involved in different alternative phenotypic strategies linked by trade-offs.
The Pareto optimality theory has been proposed as a framework allowing to
identify such trade-offs in biological data from its prediction that it would lead to
the presence of specific geometrical patterns (polytopes) in, e.g., gene expression
space, with vertices representing specialized phenotypes. We tested this
approach in diffuse large B-cell lymphoma (DLCBL) transcriptomic data. As
predicted, there was highly statistically significant evidence for the data
forming a tetrahedron in gene expression space, defining four specialized
phenotypes (archetypes). These archetypes were significantly enriched in
certain biological functions, and contained genes that formed a pattern of
shared and unique elements among archetypes, as expected if trade-offs
between essential functions underlie the observed structure. The results can
be interpreted as reflecting trade-offs between aerobic energy production and
protein synthesis, and between immunotolerant and immune escape strategies.
Targeting genes on both sides of these trade-offs simultaneously represent
potential promising avenues for therapeutic applications.
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Introduction

Oncology has made tremendous progress over the last few decades (Cancer Progress
Timeline | ASCO). New treatment modalities have been developed and existing ones have
been refined, combined and optimized to the extent that clinical outcome, including overall
survival, has improved significantly for many tumour types (e.g.,(Arnold et al., 2019)). Yet,
in many cases, despite these advances, and although response to therapies is often initially
good for many types of cancer, resistance develops and leads to relapse/refractory tumours
(Vasan et al., 2019). For too many patients, a cancer diagnosis is still synonymous with
premature death and cancer still represents one of the main causes of mortality and
morbidity in human populations.
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With the development of “omics” sciences, the last few decades
have also seen the accumulation of a huge amount of publicly
available data, especially DNA and RNA sequences, as well as
data about numerous signalling pathways and cellular processes.
We are therefore facing a situation where the amount of available
data is no longer the main limiting factor in advancing cancer
therapy. Although, the quality of data in terms of spatio-temporal
correlations with respect to relevant pathophysiological processes
may still remain out-of-reach of currently available resources and/or
technological possibilies. In any case, the availability of such “big
data” has yet to propel cancer research to dramatic new therapeutic
advances or to cure cancer. Indeed, immunotherapy is probably the
most significant innovation in cancer treatment of the last decade
and its development does not directly derive from the omics
revolution but rather from a more conventional incremental
increase in our knowledge of immunology (Paucek et al., 2019).

Arguably, one of the main reasons explaining this inability to
take full advantage of the information contained within these public
databases stems from the lack of a theoretical framework, organizing
principles and methodology allowing to target only their most
biologically relevant elements (thus turning data into
information). Such a theoretical framework should provide a way
to understand the most crucial and essential tasks that malignant
cells must perform in order to survive and the genes used to perform
these tasks, with the ultimate goal of selectively eliminating
malignant cells.

Typically, cancer is understood to be the result of the
accumulation of random mutations in genes involved in
processes such as cell cycle control, apoptosis and DNA repair,
eventually producing the malignant phenotype recognized as cancer
(Sonnenschein and Soto, 2020). This view, often called the
“somatic”, “reductionist” or “somatic mutation theory (SMT)”
does not offer any specific guiding principle to navigate omics
data (Selvarajoo and Giuliani, 2023). Under this classical
paradigm, basic cancer research aims at providing increasingly
detailed descriptions of various genetic alterations and their
impact on cellular pathways, but with no reference to a deeper
organising theoretical framework to increase our understanding of
the phenomenon and thus becomes an essentially descriptive
exercise (Monti et al., 2022).

In order to solve what is currently recognized as one of the main
problems in cancer therapy, namely, the development of resistance
to previously effective treatments (Bukowski et al., 2020; Saleh and
Elkord, 2020), an alternative approach might be to try gaining
insight into cancer cell vulnerabilities by looking at the fitness of
different genotypes through analysis of the genomic fitness
landscapes. In principle, this exercise should allow the prediction
of cancer evolution under various circumstances. The genomic
fitness landscape allows not only the determination of the
selection coefficient and gradient associated with any particular
allele, but also the identification of critical biological functions in
the malignant phenotype and the prediction of response to therapy.
In practice however, this is a daunting task as it requires within
patient serial measurements at single-cell genomic resolution (Salehi
et al., 2021), which is currently out of reach for most research teams.

Interestingly, however, an approach from systems biology may
alleviate the need to characterize tumors’ fitness landscapes to
identify biologically critical tasks and functions performed by

tumor cells. This idea relies on the fact that living organisms and
cells need to optimize multiple tasks simultaneously and inevitably
face trade-offs in doing so. Mathematically, it can be shown that
such constraints imply that the data will form polytopes
(n-dimensional generalization of 3-dimensional polyhedra:
geometrical object with flat polygonal faces, straight edges and
sharp vertices) in trait space (e.g., gene expression space) where
vertices of the polytope each represent the optimal specialist
phenotype for performing a given task (Hart et al., 2015). Known
as Pareto task inference (implemented in the ParTI package in
MatLab available at: Pareto Task Inference (ParTI) method | Uri
Alon (weizmann.ac.il)), this idea comes from the general Pareto
optimality theory that has been used in fields like engineering and
economics for many decades in order to solve multi-task
optimization problems involving trade-offs between different
objectives. Briefly, ParTI allows the use of algorithms to find the
best fitting simplex (the simplest polytope) on the data after
dimensionality reduction by principal component analysis (PCA),
and to test the statistical significance of the simplex by means of the
t-ratio test. This test computes the ratio between the area
encompassed by the fitted polytope to the area defined by the
convex hull of the data (the t-ratio) and then repeat this process
after randomizing the data in order to obtain an empirical null
distribution for the t-ratio. Pareto task inference has so far been
applied to a few biological datasets, including solid tumor gene
expression (Hausser et al., 2019; Hausser and Alon, 2020). Most
importantly, by circumventing the need to reconstruct the fitness
landscape, this method has the potential to directly unveil the most
relevant cellular processes for therapeutic intervention by allowing
one to infer the fitness consequences of disrupting the cell’s ability to
carry out specific tasks.

Although some authors have raised the possibility that the ParTI
algorithm might produce spurious results due to phylogenetic,
ancestral or other population structure (Sun and Zhang, 2020;
Mikami and Iwasaki, 2021), Adler et al. (Adler et al., 2022)
tested whether such problems could affect cancer gene expression
data and found no evidence that this was the case. The risk of false-
positives due to “p-hacking” through data preprocessing has also
been raised (Sun and Zhang, 2020). Amid these concerns, rather
than speculating on possible artefactual polytopes or on the
possibility of statistical false-positives, a more fruitful way of
addressing the validity of the ParTI method is to derive specific
predictions of the Pareto optimization theory besides the
geometrical prediction of polytopes in trait space. In particular,
the biological interpretability and underlying logic of the results
obtained from that method appear to be of particular relevance in
that regard.

For instance, if the most specialized cellular phenotypes (the
“archetypes”) identified as the vertices of the polytope in gene
expression space are the results of artefactual data structure
unrelated to biological specialization and optimization, one
would not expect to find statistically significant and distinct
enrichment in particular biological functions at these archetypes.
Moreover, if polytope formation results from optimization trade-
offs, as per the theory, the various tasks defining the archetypes
should all be considered important, if not essential, for cell survival.
Indeed, trade-offs imply that some of these tasks cannot be simply
eliminated completely from the cell’s functional repertoire,
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otherwise there should be no trade-offs constraining the
optimization process. Hence, archetypes represent different
solutions of proportional allocations of resources to these
essential functions. It is therefore likely that different archetypes
would show different proportions of a number of shared functions/
genes, reflecting these different solutions. Alternatively, a pattern
where all vertices are characterized by a unique and distinct set of
functions and gene-transcripts would not be easely interpretable as
the results of trade-offs constraining the cell’s ability to maximize
certain functions to their full genetic potential since each vertex
would represent a unique and distinct functional domain. Thus, if
the existence of the archetypes identified by the ParTI algorithm is
the results of optimization trade-offs as predicted by the Pareto
optimization theory, we should expect these archetypes to be
statistically enriched in specific biological functions, and to be
characterized by varying proportions of some shared tasks/genes
in different combinations.

Because of its potential as a useful theoretical principle allowing
meaningful analysis of omics and other biological data, and thus to
provide important information about both basic biology and
therapeutically actionable knowledge, the Pareto task inference
approach should be carefully and independently evaluated and
validated. So far, the ParTI package has been used on a few solid
tumor datasets but, to our knowledge, never on hematological
malignancies. Because of their cell type (malignant lymphocytes)
and phylogenetic (from clonal proliferation) high level of
homogeneity, data from lymph node biopsies of lymphoma
patients are particularly well suited to study the validity of this
method. In order to test the above predictions, we analyzed
transcriptomic data from diffuse large B-cell lymphoma (DLBCL)
samples for 481 patients using ParTI code. Archetypes identified by
the algorithm were then tested for functional enrichment and
compared in terms of gene composition and representation.
Results were ultimately evaluated for their interpretability,
potential biological meaning and usefulness for generating
hypotheses.

Materials and methods

Gene expression data

Data were obtained through the National Cancer Institute’s
Genome Data Commons Data Portal (GDC (cancer.gov)). Gene
expression quantification expressed as transcripts per millions
(TPM) from RNASeq was available for 517 DLBCL patient-
lymph node biopsy samples (cases.disease_type in ["mature b-cell
lymphomas"] and cases. primary_site in ["lymph nodes"]) from
projects NCICCR-DLBCL, TCGA-DLBC, and CTSP-DLBCL1. Of
these, 481 (93%) were from the NCICCR-DLBCL project, while only
29 (5.6%) and 7 (1.4%) were from the TCGA-DLBC and CTSP-
DLBCL1 projects respectively. In order to ensure maximum
homogeneity in sampling and sequencing protocol and hence
between-sample comparability of data (Zhao et al., 2020), we
analyzed the 481 cases from the NCICCR-DLBCL project. All
481 samples were fresh frozen lymph node biopsy samples, 96.3%
collected prior to any treatment. The same RNASeq protocol was
applied to all samples (Schmitz et al., 2018). We kept all informative

genes/isoforms (22 250), defined as having standard deviation and
variance ≥1 TPM, for downstream analyses. To avoid p-hacking
issues, we refrained from performing any preprocessing
transformations/manipulations of data and used the raw TPM
gene expression quantification. TPM is considered a better unit
of RNA abundance than RPKM/FPKM since it respects the
invariant-average property (the average TPM is a constant equal
to 106 divided by the number of annotated transcripts) and is
proportional to the average RNA molar concentration (rmc). It
has thus been adopted by the latest computational algorithms for
transcript quantification such as RSEM, Kallisto and Salmon (Zhao
et al., 2020). The resulting data matrix had 481 sample lines by
22 250 genes/isoforms columns.

PCA and pareto task inference analyses

Because the ParTI code package relies on principal component
analysis (PCA) for dimensionality reduction, as proposed by Vieira
(Vieira, 2012), we first tested the validity of performing PCA on the
data by computing the Ψ and ϕ statistics, the number of significant
principal components, as well as the number of genes/isoforms with
significant correlations with each of the principal components, by
permutations and bootstraping using PCAtest in R
(Camargo, 2022).

Following Mikami and Iwasaki (Mikami and Iwasaki, 2021), the
simplex best fitting the data was determined by the SDVMM
algorithm (Chan et al., 2012b). Five such fitting algorithms are
available in ParTI. The SISAL algorithm is not recommended for
datasets of less than about 1000 data points (or more precisely of less
than 10N points, with N being the number of PCA dimensions), and
will estimate the archetypes outside of the convex hull of the data,
while potentially leaving important points outside of the fitted
polytope and t-ratio test analysis (PartiCode homepage: Pareto
Task Inference (ParTI) method | Uri Alon (weizmann.ac.il)
accessed 11/03/2023), which may generate false positive or false
negative results of the t-ratio test. The MVA and MVE algorithms,
which also locate the archetypes outside of the convex hull, could be
used with smaller datasets of <1000 points, but are not robust to
noise and outliers. Contrary to the previous algorithms, the PCHA
algorithm estimate the archetypes within the data but also suffer
from a susceptibility to noise and outliers. Thus, we agree with
Mikami and Iwasaki (Mikami and Iwasaki, 2021) that the SDVMM
algorithm is the only option combining a strict data constraint with a
robustness to noise and outliers and seems clearly preferable for
statistical testing. The default value of eight PCA dimensions, as per
the ParTI’s example file “exampleCancerRNAseq.m”, was kept as
input. Using ParTI’s discrete and continuous attribute functions, we
also tested whether archetypes were associated with three clinical
correlates available in the dataset, namely, tumor cell of origin
(COO) subtype (which was available for all samples), progression
free survival (PFS) in years (which was available for 48% of the
samples), and the international prognostic index (IPI) score (which
was available for 74% of the samples).

Archetype coefficients in original gene expression space were
then extracted from ParTI’s output and genes ordered according to
coefficient value. Genes with the highest positive and negative
coefficient values for each archetype (genes with the highest PCA
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loadings at the archetype location and thus defining the archetype in
terms of most positively/negatively correlated expression values)
were identified by plotting ordered coefficient values and visually
identifying the abrupt change in slope between the vast majority of

genes with coefficients close to zero and the few genes with highly
positive (highly positively correlated) or negative (highly negatively
correlated) values, and taking this inflexion point as cut-off. These
archetype-defining gene lists were then tested for functional

FIGURE 1
Best fitting polytope identified by the ParTI algorithm. 3-D representations A)-D), and 2-D representation E) are shown in PCA space (the axes are the
first three principal components, which explain 66% of variance). The tetrahedron defines four archetypes (coloured ellipses): 1) aerobic energy
production (02Energy) 2) protein synthesis, 3) immunotolerant tumor micro-environment (Immunotolerant-TME), 4) “Plasmablast-like” differentiation.
The four archetypes are represented by pictograms. Ellipse area is proportional to archetype location uncertainty from 1000 bootstrap replicats.
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enrichment using Gene Ontology tools (GO aspect: biological
process) (Ashburner et al., 2000; Thomas et al., 2022; Aleksander
et al., 2023). Functions with a Fisher’s exact test enrichment
p-value <0.05 (after adjustment for false-discovery rate (FDR))
were considered significantly enriched at the archetype. The
composition of significantly enriched functions was compared
and the level of shared vs. unique functions among archetype
analyzed using Circos (Krzywinski et al., 2009).

Data availability

The dataset analysed for this study is publicly available on the
GenomeData Commons Data Portal at GDC (cancer.gov). The code
needed to replicate the ParTI analysis from these data is provided as
Supplementary Table S1.

Results

PCA validation

PCAtest was run for 100 permutations and bootstrapping
replicates and estimated an empirical Ψ value of 51848193.065,
with a max nullΨ = 979604.238 and amin nullΨ = 978848.881, for a
p-value <0.00001. Likewise, the ϕ value was estimated at 0.337, with
a max null ϕ = 0.047 and min null ϕ = 0.047, for a p-value <0.00001.
These results indicate highly significant non-random correlations in
the data, justifying the use of PCA and confirming that the analysis is
biologically meaningful. Moreover, the analysis showed that the first
eight principal components (PC) explained 80% of the total original
variance (from 1.8% to 33% for individual PC). Finally, the number
of genes with significant correlations with each of these eight
principal components ranged from 2830 to 7546. Together, these
results strongly support the use of PCA on this dataset.

Polytope fitting

The elbow method applied by the PartiCode package suggested
the presence of four archetypes, thus defining a tetrahedron (3-d
simplex) (Figure 1). The identified polytope was highly significant
with the t-ratio test indicating a p-value <0.00001. The four vertices
represented archetypes of 1) aerobic energy production (O2Energy),
2) protein synthesis, 3) Immunotolerant tumor micro-environment
(Immunotolerant-TME), and 4) Immune-escape via plasmablast-
like differentiation (“Plasmablast-like”). A detailed description of
the functional analysis characterizing these archetypes follows.

Archetype-defining genes selection

For each of the four archetypes, ordered coefficients were plotted
and revealed a clear pattern of abrupt change from coefficients close
to zero for the vast majority of genes, to a few genes showing strongly
positive or negative coefficients (Supplementary Figure S1).
Archetype-defining genes were therefore selected by considering
a horizontal line (slope = 0) for genes with a coefficient close to zero

and a line with a slope of 1 (vertical) for genes with strongly positive
or negative coefficients. These lines were extrapolated and the line
bisecting these right-angled extrapolated horizontal and vertical
lines at 45° was determined. The mid-point of this 45-degree line,
when positioned so it just touched the data, was considered as the
inflexion point (elbow point) and used as the coefficient cut-off to
select the positive and negative archetype defining genes
(Supplementary Figure S2).

Enrichment analysis

The above procedure identified between 23 and 132 archetype-
defining genes with positive loadings, and between 12 and
85 archetype-defining genes with negative loadings depending on
the archetype (Supplementary Table S2). For each archetype, both
positive and negative gene lists were submitted to the Panther
database for enrichment analysis. All eight archetype-defining
gene lists (one positive and one negative loading list for each of
the four archetypes) were significantly enriched (after FDR
adjustment) in some functions. The 10% functions with the most
significant enrichment p-value for each of the eight lists are
presented in Supplementary Table S3. GO terms associated with
each individual archetype-defining genes are listed in
Supplementary Datasheet S1.

Archetype characterization

The first archetype was positively enriched in aerobic energy
production (three most significant GO terms: oxidative
phosphorylation/aerobic respiration/aerobic electron transport
chain) and negatively enriched in protein translation (three most
significant GO terms: cytoplasmic translation/translation/peptide
biosynthetic process). The second archetype was positively enriched
in protein translation (three most significant GO terms: cytoplasmic
translation/translation/peptide biosynthetic process) and negatively
enriched in energy production and immune functions (three most
significant GO terms: oxidative phosphorylation/adaptive immune
response/cellular respiration). The third and fourth archetype were
positively enriched in a mixture of aerobic energy production and
immune functions, and negatively enriched in immune functions.
The 10% lowest FDR-adjusted p-values of the enrichment analysis
were very small, ranging from 0.0025 to 5.67 × 10−95, indicating that,
from a functional point of view, archetype-defining genes
represented highly non-random genomic sub-samples. As
predicted, a significant proportion (49%) of archetype-defining
genes were shared between at least two archetypes, albeit in
different combinations and proportions (Figure 2).

Archetype 2 and 3 were significantly associated with the COO
“germinal center B-cell” (GCB) and “unclassified” subtypes
respectively (p-value <0.001 and <0.01; hypergeometric
distribution), and those associations remained significant after
the Benjamini–Hochberg correction for multiple tests. Archetype
3 was also significantly associated with the IPI “intermediate” score
(p-value = 0.031; hypergeometric distribution), although the p-value
did not remain significant after Benjamini–Hochberg correction.
Likewise, archetype 3 was significantly associated with a shorter PFS
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(median difference = −3.2 years; p-value = 0.018; Mann
-Whitney), while archetype 2 and 4 were marginally
associated with a longer PFS (median difference = 3.1 and
3.8 years; p-value = 0.056 and 0.085; Mann-Whitney
respectively) but these associations became non-significant
after Benjamini–Hochberg correction. As mentioned
previously, the sample sizes and (therefore statistical power)
for testing archetypes association with IPI and PFS were
reduced by 26% and 52% respectively.

Biological interpretability

Archetype 1 and 2: metabolic trade-offs between
aerobic energy production vs. protein synthesis

One of the most striking features of the functional enrichment
analysis was the contrast between archetype 1, which showed
specialization for oxidative phosphorylation (OXPHOS) at the
expense of protein synthesis, and archetype 2 which was
specialized in protein synthesis at the expense of both OXPHOS
and immune functions (Figures 3A, B). A detailed analysis of the
genes with expression positively correlated with archetype 2 and
negatively correlated with archetype 1 revealed 34 genes involved in
protein synthesis. These genes consisted of various ribosomal
subunits and two translation elongation factors, as well as
CHCHD2. Interestingly, it was recently shown that in
stress conditions produced by carbonyl cyanide
m-chlorophenylhydrazone (CCCP) treatment, a decoupling agent
known to induce oxidative stress (Park et al., 2015),
CHCHD2 knockdown triggered the integrative stress response
(ISR) in cultured HeLa cells (Ruan et al., 2022). The role of the
ISR is to maintain homeostasis under stress conditions, including

oxidative stress, and is known to slow down protein synthesis via the
phosphorylation of eIF2α (Bilen et al., 2022). Indeed, the ISR was
recently observed to inhibit protein synthesis in the context of
oxidative stress from mitochondria-derived production of reactive
oxygen species (ROS) in a cardiac ischemia/reperfusion model
(Zhang et al., 2021). Because of the high rate of energy
production via OXPHOS and the associated ROS generated,
archetype 1 cells may downregulate CHCHD2 in order to restore
homeostasis via the ISR, at the expense of protein synthesis. In
contrast, archetype 2 cells may overexpress CHCHD2 in order to
benefit from its anti-apoptotic effect (Jiang et al., 2022). Recently, the
importance of CHCHD2 in cancer and its potential as drug target
was highlighted by Gundamaraju et al. (Gundamaraju et al., 2020).
Consistent with the hypothesis of a driving role for increased ROS
production in archetype 1, the expression of ROMO1 was negatively
correlated with this archetype. ROMO1 is known to increase ROS
production (Amini et al., 2019) and thus might be downregulated by
archetype 1 as an adaptation to compensate for the high ROS
generated by energy production via the electron transport chain.

Another noticeable contrast between archetypes 1 and 2 was
the positive correlation of the expression of CKS2 and TPT1 with
archetype 2, while the expression of these two genes were
negatively correlated with archetype 1. CKS2 and TPT1 have
both been implicated in cancer, including as potential therapeutic
targets (Acunzo et al., 2014; You et al., 2015; Lee et al., 2022).
TPT1 encodes the translationally controlled tumor protein
(TCTP) and CKS2 encodes the cyclin-dependent kinase
regulatory subunit 2, which is known to bind to and be
necessary for the activity of the cyclin B1-CDK1 protein
kinase, an essential factor for cells to progress past the
G2 phase of the cell cycle (Wang et al., 2021). Interestingly,
both TPT1 and CKS2 have also been associated with

FIGURE 2
Circos plots representing shared defining genes among archetypes identified by the ParTI analysis. Circular representation of genes defining each
archetype. Each segment of the circle represents one archetype (numbered from 1 to 4), and segment length is proportional to the number of archetype-
defining genes. Grey segments represent positively correlated genes (A), andwhite segments represent negatively correlated genes (B). Of the 218 unique
defining genes identified in at least one archetype, 107 (49%) are shared between at least two archetypes. These shared genes are connected by
colored ribbons, with colors corresponding to functional categories (Supplementary Table S3).
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OXPHOS-induced oxidative stress (Lucibello et al., 2011; Jonsson
et al., 2019), as well as with cell-cycle regulation and with protein
synthesis/degradation (Bommer and Telerman, 2020; Grey et al.,
2023). In an hematopoietic cells (HSC) mouse model,
CKS2 knockout was associated with an accelerated cell cycle
(Grey et al., 2018) (which may contribute to the malignant
phenotype) but also with an increase ROS production (Grey
et al., 2023). Moreover, the same study also found that
CKS2 was involved in proteostasis of HSC, which may be
related to the trade-off in protein synthesis identified for
archetype 1 (Grey et al., 2023). The role of TCTP in protein
synthesis regulation is known to involve its interaction with
elongation factors eEF1A and eEF1B (Bommer and Telerman,
2020). The fact that both eEF1A1 and eEF1B2 followed the same
correlation of expression patterns between archetypes 1 and 2 as
TPT1 and CKS2 supports this interpretation.

In general, TPT1/TCTP is thought to protect cells against
apoptosis and oxidative stress (Bommer, 2017). It might thus
seem surprising that its expression should be negatively
correlated with archetype 1 given the proposed trade-offs
involving increased OXPHOS-induced ROS and ISR activation.
However, while mild oxidative stress was found to upregulate
TCTP, strong oxidative stress was found to downregulate its
expression (Lucibello et al., 2011), and both CKS2 and
TPT1 were downregulated in a butyrate resistant cell line
conferring tumorigenesis, apoptosis and stress resistance in a
colon adenocarcinoma model (López de Silanes et al., 2004).
Thus, the level of oxidative stress in archetype 1 might reach
levels associated with reduced TCTP expression.

TCTP and CKS2 expression patterns are linked through the
TCTP/CDC25C/CDK1 pathway, which was shown to be
dysregulated in hepatocellular carcinoma (Chan et al., 2012a).

FIGURE 3
Circos plots representing functional tradeoffs among archetypes identified by the ParTI analysis. Circular representation of genes defining each
archetype. Each segment of the circle represents one archetype (numbered from 1 to 4), and segment length is proportional to the number of archetype-
defining genes. Grey segments represent positively correlated genes, and white segments represent negatively correlated genes. Genes that are
positively correlated in one archetype (A) archetype 1, (B) archetype 2, (C) archetype 3, (D) archetype 4) and negatively correlated in another are
connected by colored ribbons to emphasize tradeoffs. These colors correspond to functional categories (Supplementary Table S3).
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Overexpression of TPT1 has been associated with reduced
CDK1 activity via ubiquitin-proteasome degradation of CDC25C,
which is necessary for the dephosphorylation and activation of
CDK1 (Chan et al., 2012a). By contrast, CKS2 is thought to
promote CDK1 expression (You et al., 2015) and to be required
for its function. Thus, the reciprocal correlation patterns seen
between archetype 1 and 2 might reflect the need to compensate
for the reduced activation of CDK1 by CDC25C from the increased
expression of TPT1 by an increase in CKS2 expression and
vice versa.

In addition, TCTP and CKS2 were both found to exhibit
reciprocal repression with p53. In the case of TPT1, p53 is
repressed via TCTP ubiquitin-mediated degradation of p53 while
p53 directly represses TPT1 transcription (Amson et al., 2012;
Acunzo et al., 2014). Likewise, CKS2 expression was found to be
repressed by p53 (Rother et al., 2007), while the overexpression of
CKS2 was associated with reduced p53 protein abundance in gastric
cancer (Kang et al., 2009). However, the mechanism by which
TPT1 and CKS2/CDK1 are repressed by p53 has been questioned
andmight be due to the indirect DREAM pathway rather than direct
interaction with p53 (Fischer et al., 2014). Interestingly, CDC25C
was also found to be repressed by p53 (Liu et al., 2020) and thus
complex TPT1/CDC25C/CKS2/CDK1/p53 interactions might be

behind the TPT1-CKS2 opposite correlation pattern seen in these
two archetypes. A schematic and synthetic representation of the
hypothetical model outlined above for the metabolic trade-offs
suggested by the analysis of archetypes 1 and 2’s defining genes
is provided on Figure 4. The full network of functional interactions
among genes characterizing archetype 1 and 2 was created using the
GeneMANIA app in Cytoscape v.3.10.1 (Montojo et al., 2010) and is
shown on Figure 5.

Archetype 3 and 4: immune evasion trade-offs
between immune-tolerant tumor micro-
environment vs. immune escape via plasmablast-
like differentiation

A breakdown of the genes characterizing archetype 3 and 4 was
also conducted (Figures 3C, D). Many of these genes turned out to be
known for their involvement in cancer in general and/or lymphoma
in particular. For instance, LMO2 expression was negatively
correlated with archetype 4, while IGHM expression was
positively correlated with this archetype. This expression pattern
has previously been associated with the activated B-cell (ABC)
DLBCL COO subtype (Blenk et al., 2007). LMO2 expression
reduces double-strand break DNA repair mechanisms and has
been associated with a better prognosis in DLBCL patients

FIGURE 4
Metabolic trade-offs between archetypes 1 and 2 are characterized by genes involved in energy production, protein synthesis and immune
functions. The proposedmodel of mechanistic relations underlying these trade-offs between aerobic energy production and protein synthesis involves a
complex interplay between ROS production and its inhibitory effect on protein synthesis, and minimal energy requirement for protein synthesis and
immune functions. Archetype defining functions and genes are shown in red (positively correlated) and green (negatively correlated). Functions and
genes in black are hypothetically inferred and not part of archetype defining genes.
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treated with poly(ADP-ribose) polymerase (PARP) inhibitors
(Parvin et al., 2019). Interestingly, the expression of HLA-
A,B,C,E, B2M and HLA-DRA/DRB1 was positively correlated
with archetype 3, while expression of immunoglobulins (Ig)
IGHM, IGHV4-34, IGHV5-51, IGKV3-20, IGLC2, IGLV1-47,
IGLV3-1, IGLV3-19, IGLV3-21, JCHAIN were negatively
correlated. In contrast, the expression of several Ig genes was
positively correlated with archetype 4, while only the invariant
HLA-DRA was positively correlated with the archetype. This
pattern would be consistent with an immune system escape from
MHC loss (de Charette and Houot, 2018) via a partial plasmablast
cell differentiation pathway (Wilkinson et al., 2012) in archetype 4.
Such a strategy would also be consistent with the many pro-
tumorigenesis effect of cancer derived Ig that have been
identified, including proliferation, migration, invasion, survival,
and immune evasion through inhibitory effect on antibody-
dependent cell-cytotoxicity (ADCC) from NK cells (Cui et al.,
2021). This picture is also consistent with archetype 4 resembling
the ABC subtype of the COO classification (Wilkinson et al., 2012;
van der Meeren et al., 2018; Takahara et al., 2023).

However, since Ig are common neo-antigens in B-cell
malignancies and Ig-derived neoantigen presentation by MHC is
a general phenomenon in lymphomas including DLBCL
(Khodadoust et al., 2019), archetype 3 may limit the production
of Ig in the context of retained MHC expression to avoid displaying
neo-antigen Ig to the immune system (Han et al., 2022a). Moreover,
archetype 3 was also positively correlated with the expression of
CCL18, CCL19, CXCL9 and CXCL10. CCL18 is known to increase

the proliferation of B-cell lymphoma (Korbecki et al., 2020) andmay
contribute to immune evasion from its effect on immune
surveillance mediated by macrophages and dendritic cells and by
simultaneously favoring T cell-tolerance (Korbecki et al., 2020;
Cardoso et al., 2021; Kidani et al., 2022). CCL19 directs B-cell
migration after activation via antigen binding and is known to be
upregulated in both GCB and ABC DLBCL subtypes. Recently,
autocrine CCR7-CCL19 signaling was proposed to significantly
contribute to lymphomagenesis under malignant conditions via a
stronger activation of the survival pathways (Uhl et al., 2022). More
generally, CCR7 signalling upon binding to its ligands (CCL19/21) is
associated with many pro-tumorigenic effects in hematological
malignancies, including migration, proliferation, survival and
immune evasion (Cuesta-Mateos et al., 2021). Interestingly,
increased expression of CCL19, CXCL9 and CXCL10 is
associated with recruitment of immature CD56bright NK cells with
low perforin content in the tumor microenvironment (TME), which
is thought to protect tumor cells from NK cells (Castriconi et al.,
2018). Additionally, MHC expression is a well-known way for tumor
cells to avoid immune detection and destruction by NK cells
(Castriconi et al., 2018). This correlation pattern involving MHC/
CXCL9-10/CCL18-19 might thus represent the signature of an
alternative immune evasion strategy for archetype 3, distinct
form the one displayed by archetype 4. Finally, both archetypes
were positively correlated with the expression of CD74, a gene
involved in B-cell differentiation, proliferation and survival (Zhao
et al., 2019). An integrative schematic summary of the immune
evasion trade-offs suggested by the above analysis of archetypes

FIGURE 5
GeneMANIA functional interactions network among genes defining archetype 1 and 2. Networks include co-expression, predicted interactions from
orthologs, physical interactions, shared pathway, co-localization, genetic interactions and shared protein domains. Genes with positive and negative
expression correlations are shown as red and green nodes respectively. Black nodes represent putatively involved genes inferred from the mechanistic
model summarized in Figure 4. Immunoglobulin genes are not included in GeneMANIA searches and are therefore absent from the network.
However, JCHAIN is included and can be interpreted as proxy for (pentameric) IgM and (dimeric) IgA expression.
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3 and 4 is provided on Figure 6. The full network of functional
interactions among genes characterizing archetype 3 and 4 is shown
on Figure 7.

Comparisons with differential
expression studies

By looking at some of the genes defining each archetype,
trade-offs and expression patterns noted by other studies using
different approaches could be detected. Besides the cases
already highlighted, the proportion of archetype-defining
genes found in nine comparative DLBCL or non-Hodgkin
lymphoma gene expression studies (Monti et al., 2005;
Dybkær et al., 2015; Michaelsen et al., 2018; Davies et al.,
2019; Tripodo et al., 2020; Kotlov et al., 2021; Steen et al.,
2021; de Groot et al., 2022; Rapier-Sharman et al., 2022) was
assessed. Overall, 23% of the archetype defining genes identified
by ParTI were part of the significantly differently expressed
genes reported by these studies. Of note, the recently
comparative transcriptomic study of Rapier-Sharman et al.

(Rapier-Sharman et al., 2022) compared RNASeq gene
expression data from 322 samples, including 134 B-cell
lymphoma samples (of which 123 were LBCL/DLBCL) and
188 healthy B-cell controls. Among the 20 most differently
expressed genes between B-lymphoma and normal control
samples, 7 (35%) were found among the archetype defining
genes identified here by the ParTI algorithm (CXCL9, CXCL13,
C1QA, C1QB, C1QC, CCL18, CCL19). An additional three
(15%) archetype defining genes identified by ParTI were
among the 20 genes showing the most significant differences
in the presence of splice variants (APOE, COL1A1 and RPL5).
Although the tasks and trade-offs identified by ParTI are not
necessarily expected to match differently expressed genes
between malignant and normal cells, the fact that a
significant proportion of genes showing differential
expression between normal and lymphoma cells in
differential expression studies are also found among
archetype-defining genes identified by the ParTI approach
provides additional and convincing evidence that the
identified archetypes are related to the malignant process and
phenotype. As such, it increases confidence that the Pareto

FIGURE 6
Immune evasion trade-offs between archetypes 3 and 4 are characterized by an immunotolerant and plasmablast-like differentiation strategies
respectively. The proposedmodel posits that MHC expression provides a way to avoid NK cells cytotoxicity while the expression of CCL18/19 and CXCL9/
10 promotes an immunotolerant TME by recruiting immature and indolent CD56 “bright” NK cells as well as Treg cells in the case of archetype 3.
Archetype 4 achieves an alternative escape from the immune system by downregulatingMHC expression, thereby avoiding CD8+ T cells cytotoxicity
and inhibiting NK cells action via ADCC inhibiting action of certain cancer Ig. Archetype defining functions and genes are shown in red (positively
correlated) and green (negatively correlated). Functions and genes in black are hypothetically inferred and not part of the archetype defining genes.
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optimality theoretical framework is uncovering biologically
meaningful and interpretable information at the scale of
systems organization, with potential therapeutic relevance.

Discussion

Uncovering cancer cell vulnerabilities in the form of trade-
offs represents a promising avenue to avoid the emergence of
treatment resistance. The presence of trade-offs implies that
certain tasks cannot be completely avoided by the cells, and yet
cannot be simultaneously optimized to the maximum level
allowable in principle by the genetic potential. The genes
underlying these trade-offs are thus attractive therapeutic
targets that could make resistance more difficult to acquire
for the malignant cells. The Pareto task inference approach
predicts that whenever such trade-offs exist, they should
produce detectable geometrical structures in the data. We
further predicted that besides geometrical patterns in trait
space, if the genes located at the vertices of the polytope
identified by the algorithm do indeed represent phenotypic
optima (archetypes), as predicted by the theory, rather than
artefacts unrelated to phenotypic optimization, these genes

should be significantly enriched in biological functions and
characterized by patterns of different combinations of a
certain proportion of shared tasks/genes.

The data analyzed here do indeed confirm those three
predictions at a high level of statistical significance. The t-ratio
test empirically calculates the probability of observing a polytope
providing as good or better fit to the data as compared to the best
possible fit defined as the convex hull. To this end, the data are
randomized and the best fitting polytope and its ratio to the convex
hull for each replicate data set are re-estimated. The value of the
observed ratio is then compared to the distribution of ratios from the
simulated randomized data to derive its probability. This test
strongly supports the presence of a polytope defined by 4 vertices
(tetrahedron) in this transcriptomic dataset.

According to the theory, the vertices of this polytope should
represent optimal specialist phenotypes in trait space. Thus,
these archetypes are predicted to be significantly enriched in
certain particular functions, some of which being either different
or performed by different genes, and others shared among
different archetypes. FDR-adjusted Fisher’s exact-tests on
archetype defining gene lists clearly show that these genes are
non-random genomic sub-samples, being statistically highly
significantly enriched in particular functions. Some of the

FIGURE 7
GeneMANIA functional interactions network among genes defining archetype 3 and 4. Networks include co-expression, predicted interactions from
orthologs, physical interactions, shared pathway, genetic interactions and shared protein domains. Genes with positive and negative expression
correlations are shown as red and green nodes respectively. Black nodes represent putatively involved genes inferred from the mechanistic model
summarized in Figure 4. Immunoglobulin genes are not included in GeneMANIA searches and are therefore absent from the network. However,
JCHAIN is included and can be interpreted as proxy for (pentameric) IgM and (dimeric) IgA expression.
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most significantly enriched functions were different among
archetypes, although the third and fourth archetypes showed
substantial overlap in broadly defined functions, but little
overlap in the genes underlying these functions within each
archetype (the overall percentage of positively and negatively
correlated genes unique to either archetype in pairwise
comparison was 72.5%). The fact that different archetypes are
statistically significantly enriched in different functions and/or
gene combinations rules out the possibility that the observed
functional enrichment is simply reflecting the general “B-
lymphocyte” phenotype and is rather consistent with each
archetype representing distinct optimization solutions. Given
the typical complete effacement of lymph node architecture and
extensive infiltration by malignant B-lymphocytes in DLBCL,
these specialized functional sub-categories are likely to reflect, at
least partly, various B-cell malignant phenotypic strategies,
although some contribution from other cell types from the
TME such as dendritic cells, macrophages or T-lymphocytes
cannot be completely excluded. Nevertheless, even in the
unlikely possibility that the archetypes represent cell-type
specializations rather than tumor-cell specializations, Pareto
theory’s predictions (polyhedron structure of the data, functional
enrichment at the vertices, shared/modular structure of the
functions/genes characterizing the phenotypes) would remain
confirmed, albeit at a different level of cellular differentiation.
Indeed, this theory scales to different levels of biological
organization and has been applied to test for phenotypic
optimization in various kinds of biological entities from cells to
different animal species (e.g., Tendler et al., 2015). Thus, this
possibility would not change the general conclusion that the
theory is valid and that the archetypes identified represent trade-
offs in the functions defining those archetypes.

However, besides these different functional characteristics,
archetypes also displayed significant proportions of shared
genes. As predicted if archetypes result from optimization in
the face of trade-offs, these shared elements were distributed in
different combinations and proportions among different
archetypes. This pattern is consistent with archetypes having
to reconcile various functional constrains by shuffling certain
genetic toolkits, turning on and off the expression of genes in a
way that preserves certain core functions and functional
combinations, at the expense of other less essential and
potentially dispensable elements. Whether the archetypes
identified by the ParTI approach represent irreversible
commitment to certain phenotypic pathways or phenotype
through which cells can cycle sequentially remains an open
question. The former possibility could thus represent stages in
malignant progression, while the latter would include the
possibility that different archetype might represent temporary
adaptations to transient intra or extra-cellular environmental
circumstances. Our analysis also confirmed that the archetypes
identified by the Pareto approach are biologically interpretable
and can be used to generate hypotheses about possible
mechanisms underlying the identified correlation patterns.
Thus, taken together, these results broadly confirm the

predictions of the Pareto optimality theory as applied to
these transcriptomic data.

If trade-offs can be identified by the Pareto task inference
approach, this could open the possibility to exploit these results
to develop therapeutic strategies tailored to minimize the risk of
resistance. Thus, the metabolic and immune evasion trade-offs
suggested by the data may represent therapeutic opportunities
that deserve further study. The first trade-off supports recent
findings suggesting an important role for mitochondria,
OXPHOS and ROS in tumorigenesis (Ghosh et al., 2020; Liu
and Shi, 2020; Vasan et al., 2020), including in relation with the
stress responses induced by increased ROS production and their
impact on macromolecule synthesis (Jin et al., 2022). The
second trade-off is in line with recent suggestions that in
follicular lymphomas, loss of MHCII may be selectively
acquired in cells that have accumulated immunogenic
mutations in their idiotype sequences in order to avoid
displaying Ig neoantigens to T-cells (Han et al., 2022b). In
that study, MHCII expressing lymphoma cells were
associated with a TME rich in a CD4+ T-cell population with
a high cytotoxicity expression profile signature (CD4CTL), while
the reverse was observed for cells expressing low levels of
MHCII (Han et al., 2022b). The pattern revealed by ParTI is
also consistent with earlier findings that MHC loss can occur
through a partial plasmablastic phenotypic differentiation
which could be associated with high levels of Ig production
(Wilkinson et al., 2012). As mentioned previously, the retention
of MHC associated with the expression of CXCL9/10 and
CCL18/19 in archetype 3 might represent an alternative
immune evasion strategy to avoid NK-cells detection (from
the expression of MHC and the action of CXCL9/10 and
CCL19) and promote T-cell tolerance from CCL18 (Korbecki
et al., 2020; Cardoso et al., 2021; Seliger and Koehl, 2022).
Uncovering the best way to exploit such trade-offs in energy
production, protein synthesis and immune evasion, will require
additional detailed studies focused at testing the effect of
disrupting the function of specific archetype defining genes
on both side of the trade-offs simultaneously.
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SUPPLEMENTARY FIGURE S1
Typical distribution of gene expression coefficients at archetype locations.
Most genes have coefficients very close to zero (slope close to zero), with a
small subset of genes having strongly negative or positive coefficients
(slope close to one).

SUPPLEMENTARY FIGURE S2
Archetype defining genes selection method. The intersection of horizontal
(slope close to zero) and vertical (slope close to one) lines was bisected at
45° and the mid-point of this 45° bisecting line was used as the cutoff
coefficient value for archetype defining genes.
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