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The recently proposed Chemical Reaction Neural Network (CRNN) discovers
chemical reaction pathways from time resolved species concentration data in a
deterministic manner. Since the weights and biases of a CRNN are physically
interpretable, the CRNN acts as a digital twin of a classical chemical reaction
network. In this study, we employ a Bayesian inference analysis coupled with
neural ordinary differential equations (ODEs) on this digital twin to discover
chemical reaction pathways in a probabilistic manner. This allows for
estimation of the uncertainty surrounding the learned reaction network. To
achieve this, we propose an algorithm which combines neural ODEs with a
preconditioned stochastic gradient langevin descent (pSGLD) Bayesian
framework, and ultimately performs posterior sampling on the neural network
weights. We demonstrate the successful implementation of this algorithm on
several reaction systems by not only recovering the chemical reaction pathways
but also estimating the uncertainty in our predictions. We compare the results of
the pSGLD with that of the standard SGLD and show that this optimizer more
efficiently and accurately estimates the posterior of the reaction network
parameters. Additionally, we demonstrate how the embedding of scientific
knowledge improves extrapolation accuracy by comparing results to purely
data-driven machine learning methods. Together, this provides a new
framework for robust, autonomous Bayesian inference on unknown or
complex chemical and biological reaction systems.
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1 Introduction

Mechanistic models in Quantitative Systems Pharmacology (QSP) offer more
interpretability than purely data-driven machine learning approaches, but practitioners
often lack complete knowledge of the underlying systems. Methods of Scientific Machine
Learning (SciML) account for this epistemic uncertainty by mixing neural network
techniques with mechanistic modeling forms to allow for the automated discovery of
missing components in mechanistic models Rackauckas et al. (2021); Dandekar et al.
(2020b). In addition to interpretability, SciML models also offer superior prediction
extrapolation beyond the domain in which they were trained, making them attractive
candidates for QSP and systems biology applications.
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The Chemical Reaction Neural Network (CRNN) is a recently
proposed SciML method aimed at discovering chemical reaction
pathways from concentration time course data without prior
knowledge of the underlying system Ji and Deng (2021).
Specifically, the CRNN is a Neural ODE (Ordinary Differential
Equation) architecture in that the neural network learns and
represents the system of ODEs that comprise the reaction
network Chen et al. (2018). The CRNN is a neural network
architecture which is designed to be a flexible representation of
mass action kinetics models, thus imposing prior known constraints
about the guiding equations of chemical reaction models while
allowing for interpretable weights which represent the individual
reaction weights. The weights of the embedded neural networks
represent the stoichiometry of the chemical species and kinetic
parameters of the reactions. Optimization of the neural network
weights thus leads to the discovery of the reaction pathways involved
in the network. As QSP models often involve complex,
interconnected reaction networks such as signaling or metabolic
reactions, the CRNN may aid in the development of these models
when the reactions are unknown or incompletely known.

The learned reaction system and the kinetic parameters of the
CRNN are obtained in a deterministic manner, however to build
trust in predictions and help experts understand whenmore training
data is needed, the uncertainty of the predictions should also be
quantified. For this purpose, Bayesian inference frameworks can be
integrated with the CRNN. Bayesianmethods obtain estimates of the
posterior probability density function of neural network parameters
allowing for an understanding of prediction uncertainty. It is the
goal of this work to extend the CRNN with a Bayesian framework to
increase its utility in QSP and other scientific domains. This is
similar to the work by Li et al. in which they also extend the CRNN

to include a Bayesian framework Li et al. (2023), but here we use a
different methodology for sampling the posterior.

Recently, there has been an emergence of efficient Bayesian
inference methods suitable for high-dimensional parameter systems,
specifically methods like the No U-Turn Sampler (NUTS) Hoffman
and Gelman (2014), Stochastic Gradient Langevin Descent (SGLD)
Welling and Teh (2011) and Stochastic Gradient Hamiltonian
Monte Carlo (SGHMC) Chen et al. (2014). These methods are
based onMarkov Chain Monte Carlo (MCMC) sampling and utilize
gradient information to obtain estimates of the posterior. A number
of studies have explored the use of these Bayesian methods to infer
parameters of systems defined by ODEs Lunn et al. (2002); von
Toussaint (2011); Girolami (2008); Huang et al. (2020), while others
have used Bayesian methods to infer parameters of neural network
models Jospin et al. (2020); Maddox et al. (2019); Izmailov
et al. (2019).

Specifically for Neural ODEs, the addition of Bayesian methods
presents technical complexity as the training of the neural network is
also tied to the solving of the ODE system. However recent work has
demonstrated the feasibility of this approach Dandekar et al.
(2020a). To apply a Bayesian framework to a Neural ODE
model, the authors make use of the Julia programming language
which allows differential equation solvers Rackauckas et al. (2020);
Rackauckas and Nie (2017) to be combined with Julia’s probabilistic
programming ecosystem Ge et al. (2018); Xu et al. (2019). In this
study, we similarly leverage the differential and probabilistic
programming ecosystem of the Julia programming language to
integrate the CRNN with Bayesian inference frameworks.

While powerful in their ability to estimate the posterior
distribution, Bayesian inference methods may suffer from
inefficient sampling of the posterior. The inefficiency often stems
from the pathological curvature of the parameter space that leads to
“bouncing” around minima. To address this, a new optimizer was
proposed by Li et al. that combines an adaptive preconditioner with
the SGLD algorithm Li et al. (2015). The preconditioner performs a
local transform of the parameter space such that the rate of
curvature is the same in all directions, allowing for smoother,
faster descent.

In this study, we propose combining the CRNN with the more
efficient preconditioned SGLD optimizer Li et al. (2015) to discover
chemical reaction networks and quantify the uncertainty of the

FIGURE 1
Overview of the Bayesian chemical reaction networkwhich uses timeseries concentration data (A) to train a constrained neural network (B) that uses
a preconditioned SGLD optimizer to reconstruct the reaction network and estimate the uncertainty in the learned stoichiometry and reaction rates (C).

TABLE 1 Case 1 ground truth reactions.

Equation Rate

2 A → B 0.1

A → C 0.2

C → D 0.13

B+ D → E 0.3
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learned reaction parameters, allowing for its more robust use in QSP
and other scientific domains. We apply this Bayesian SciML method
to a systems biology pathway to demonstrate its application to QSP.
We also compare the results to those generated using purely data-
driven machine learning methods to further demonstrate the
advantages of SciML methods.

2 Methods

Similarly to the originally proposed CRNN Ji and Deng (2021),
we define the Chemical Reaction Neural Network (CRNN) to
represent the following elementary reaction:

]AA + ]BB → ]CC + ]DD (1)

where ] refers to the stoichometric coefficients of the respective
chemical species.

The law of mass action applied to the example reaction
prescribed in Equation (1) leads to the following expression for
the reaction rate r:

r � exp lnk + ]A ln A[ ] + ]B ln B[ ] + 0 ln C[ ] + 0 ln D[ ]( ) (2)
where k is the rate constant of the reaction and [A] refers to the
concentration of chemical species A.

This elementary reaction can be represented by a neuron
governed by y = σ(wx + b) where w are the weights, y is the
neuron output, x is the input to the neuron and σ is the
activation function. The inputs are the concentration of the
species in logarithmic scale, and the output is the production rate
of all species: [ _A, _B, _C, _D]. The input layer weights denote the
reaction orders, i.e., []A, ]B, 0, 0] for the reactants [A, B, C, D]
respectively. The output layer weights denote the stochiometric
coefficients, i.e., [−]A, − ]B, ]C, ]D] for [A, B, C, D] respectively.
The bias denotes the rate constant in the logarithmic scale. This is
depicted in Figure 1.

A reaction network with multiple chemical reactions can be
denoted by a CRNN with a hidden layer. Since the weights and
biases of a CRNN are physically interpretable, it is a digital twin of a
classical chemical reaction neural network. In this study, we employ
Bayesian inference analysis on this digital twin to discover chemical
reaction pathways in a probabilistic manner.

Considering the vector of chemical species Y to be varying in
time, we aim to recover a CRNN which satisfies the
following equation:

_Y � CRNN Y( ) (3)
where _Y and is the rate of change of the concentration of
chemical species Y.

FIGURE 2
Comparison of the Bayesian chemical reaction neural network prediction to the data for the species (A–E) in the four reactions described in Case 1.
No noise was added to the data. A total of 500 posterior sample predictions are superimposed on the data.
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Thus, by representing the ODE governing the variation of the
chemical species Y by a neural network, we can solve Equation (3)
using powerful, purpose built ODE solvers provided by the
differential programming ecosystem of the Julia programming
language Rackauckas and Nie (2017). The solution we obtain by
solving the ODE is denoted by YCRNN(t). In this study, the loss
function between the actual species concentrations and the
predicted values is governed by the Mean Absolute Error (MAE)
with L2 regularization, and given by

L θt( ) � MAE YCRNN t( ), Ydata t( )( ) + λL2 θt · θt( ) (4)

where θt are the weights of the CRNN at time t, λL2 is the
L2 regularization coefficient, YCRNN(t) are the CRNN predicted
values of the species concentrations at time t, and Ydata(t) is the
true species concentration at time t.

To incorporate uncertainty into our predictions, we augment
the gradient descent algorithms with a Bayesian framework. Our
algorithm is shown in Algorithm 1. We use a variation of the
Stochastic Gradient Langevin Descent (SGLD) algorithm
Welling and Teh (2011) and add a preconditioning term
G(θt), which adapts to the local geometry leading to more
efficient training of deep neural networks as noted in Li et al.

(2015). In Algorithm 1, β is a smoothing factor, λ is a small
constant that may be tuned, n is the number of training samples,
and ⊙ and ⊘ refer to element-wise vector product and division
respectively.

Similarly to Li et al. (2015), we utilize a decreasing step-size
that’s given by the following equation:

ϵ t( ) � α + b + t( )−γ (5)
where ϵ(t) is the step-size, t is the epoch number, and α, b and γ are
tunable parameters.

Inputs: ϵt(t = 1: T), λ, β, λL2. Outputs: θt. Initialize:

V0 = 0, θt: Xavier NN initialization. for t in 1: T do

sample batch with size n

YCRNN(t) = ODESolve(CRNN(Y, θt), Y0)

L(θt) = MAE(YCRNN(t), Ydata(t)) + λL2(θt ·θt)
V(θt) � (1 − β)V(θt−1) + β∇Lθt ⊙ ∇Lθt

G(θt) � diag(1 ⊘ (λI + �����
V(θt

√ )))
θt+1 � θt − ϵt(∇LθtG(θt)) + 1

nN (0, ϵtG(θt))
end for

Algorithm 1. Preconditioned SGLD applied to Neural ODE.

FIGURE 3
Reactant recovery probability of chemical species (top) and posterior distributions of learned reaction rates (bottom) for the four reactions described
in Case 1. No noise was added to the training data and a posterior set of 1,000 samples was chosen for the estimation.
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In this algorithm, the induced noise and step-size decay to zero
as the training proceeds. By adding Gaussian noise to each step of
the gradient descent, the optimizer finds a local model, but never
converges due to the induced noise. The decayed learning rate also
prevents the optimizer from leaving the model, leading to random
walking around the mode. The process after settling in a local model
is the sampling phase, and in this phase we draw parameter posterior
samples. The point at which the optimizer enters the sampling phase
can be determined by observing when the loss function stagnates.
Thus, the parameters θ of the CRNN obtained during the sampling
phase lead to the parameter posterior which ultimately helps in
encoding uncertainty in the prediction of the chemical
reaction pathways.

3 Results

3.1 Case 1: simple reaction network

We first consider the chemical reaction given in Searson et al.
(2014) comprising of five species: [A, B, C, D, E] involved in four
reactions, described in Table 1. Similar to Ji and Deng (2021), a
total of 100 synthetic datasets were simulated. Initial conditions
of the first and second species, A and B, were randomly sampled
from 0.2–1.2. Initial conditions for species C, D, and E were set to
0. Each dataset is comprised of 100 time points. Out of the
100 datasets, 90 are used for training and the remaining are

reserved for validation. Further, mini-batching is employed to
accelerate the training process and add additional regularization.
As the validation loss function stagnates, early stopping is
employed. Mini-batching and early stopping prevent the
CRNN from overfitting the training data. Hyperparameters
were tuned via manual searching to find values that
minimized error and improved convergence. Here, we choose
λ = 1e − 6, β = 0.9, and λL2 = 1e − 5. For the step-size parameters
we choose α = 0.001, b = 0.15, and γ = 0.005.

Figure 2 shows the comparison of the Bayesian Neural ODE
prediction compared to the data for the species A, B, C, D, and E in
the four reaction system described in Case 1. A total of 500 posterior
sample prediction are superimposed on the data; and a good
agreement is seen between all trajectories and the data.

Figure 3 shows the recovery probability of species A, B, C, D, and
E in the four reactions described in Case 1, obtained using the
preconditioned SGLD described in Algorithm 1. A posterior set of
1,000 samples was chosen for the estimation. A species is considered
to be present in a particular reaction if its weight is greater than 1e −
4. The probability a species is contributing to a reaction is given by
the ratio of the number of samples in which the species is present in
that reaction to the total number of posterior samples (1,000 in
this case).

However, even if the probability of a species to be present in a
reaction is high, its weight can be low compared to other species.
Thus, we define a score metric for a species i in reaction j governed
by weight wij to be as follows:

FIGURE 4
Recovered score metric for each of the four reactions shown in case 1. Score metrics are calculated using Equation 6 and represent the weighted
probability that a species is a reactant of each reaction. No noise was added to the data.
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scoreij � pij ∑wij/maximum ∑w:j( )( ) (6)

where pij is the recovery probability for the species shown in
Figure 3, ∑wij is the summation of the weight values of species i for
reaction j over all posterior samples and maximum(w:j) is the
maximum value of this summation for the reaction j among
all species.

From the recovered score metrics shown in Figure 4, we can see
that we obtain a sparser discovery of the reaction pathways; which
match with the data shown in Table 1.

3.1.1 Moderately noisy data
We subsequently train on moderately noisy data with standard

deviation of the noise being 5% of the concentrations. The data is
visualized in Figure 5. Figure 5 shows the comparison of the
Bayesian Neural ODE predictions to the data for 500 posterior
samples. Even with the addition of noise, our methodology can
correctly capture the time course of all the chemical species.

The reactant recovery probability and the score metric plots are
shown in Figure 6, Figure 7 respectively. Even with the presence of
noise, the probability plots are seen to assign higher probability to
the correct reaction pathways. The score plots accurately predict the
reaction pathways as seen in the data (Table 1). Figure 6 also shows

the posterior distribution of the reaction rates. Even with the
addition of the noise, the distributions are centered close to the
true reaction rate for all reactions except reaction 1, which still
contains the true reaction rate within its distribution.

3.1.2 Highly noisy data
To test the limits of the Bayesian Neural ODE framework, we

subsequently train on highly noisy data with the standard deviation
of the added noise being 50% of the concentrations. The Bayesian
Neural ODE predictions are visualized in Supplementary Figure S1
alongside the data. We observe that even with 50% noise, our
methodology captures the time course data well.

The reactant recovery probability and the score metric plots are
shown in Supplementary Figures S2, S3 respectively. Even with the
addition of 50% noise, the Bayesian CRNN still accurately predicts
the reaction pathways. Similarly, the posterior distributions of the
reaction rates shown in Supplementary Figure S2 contain the true
reaction rates, however they are no longer centered at the true
reaction rate, with the exception of reaction 4.

3.1.3 Comparison to SGLD
We compare our results to the standard SGLD optimizer to

demonstrate the effect of the preconditioner. Supplementary Figure

FIGURE 5
Comparison of the Bayesian chemical reaction neural network prediction to the data for the species (A–E) in the four reactions described in Case 1.
Themodel was trained withmoderately noisy data, where the standard deviation of the noise was set to 5% of the concentrations. A total of 500 posterior
sample predictions are superimposed on the data.
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S4 shows training and validation loss over epochs for both the
pSGLD and the standard SGLD. The preconditioned algorithm
allows for faster entry into the sampling phase, entering around
6,500 epochs before the SGLD.

Figure 8 compares the learned reaction rates in the case
where 5% noise is added to the training data between the
pSGLD and the SGLD. From this figure we can see that in
general the pSGLD achieved a posterior that more closely
matched the true reaction rates. The average percent
deviation of the samples from the true reaction rates for the
pSGLD were 50.49% ± 20.01, 7.44% ± 7.73, 6.70% ± 4.68, and
9.50% ± 6.14 for reactions 1, 2, 3, and 4 respectively. The
average percent deviation from the true reaction rates for the
standard SGLD were 3.78% ± 2.60, 6.96% ± 2.17, 13.27% ± 2.49,
and 25.65% ± 4.52 for reactions 1, 2, 3, and 4 respectively. The
pSGLD is similar or better in all reactions except for reaction 1.
In reaction 1, the pSGLD has lower confidence, as shown in the
low density, wide coverage of the posterior samples. In the other
reactions, the SGLD demonstrates higher confidence in
incorrect reaction rates whereas the pSGLD better represents

the uncertainty by estimating a posterior that is centered at the
true reaction rate.

3.1.4 Comparison to LSTM
We also compared the Bayesian CRNN to a purely data-

driven machine learning approach, in this case a Long Short-
Term Memory (LSTM) model. This architecture predicts a
sequence, in this case the timecourses for the chemical
reaction species. We utilize the LSTM modules from Flux.jl
Innes (2018), and connect two LSTM modules with
200 hidden nodes each to a densely connected linear output
layer. Similarly to the neural ODE, we train for 2000 epochs with
the ADAM optimizer (learning rate tuned to 0.001).

From Figure 9, we can see that the results of the CRNN and
LSTM model are nearly indistinguishable in the training region, but
the LSTM model diverges from the true concentration values in the
extrapolation region while the CRNN matches the true values. The
mean absolute percent error in the extrapolation region was 9.0% ±
3.2 for the CRNN in comparison to 90.93% ± 58.83 for the LSTM-
based model.

FIGURE 6
Reactant recovery probability of chemical species (top) and posterior distributions of learned reaction rates (bottom) for the four reactions described
in Case 1. The model was trained with moderately noisy data, where the standard deviation of the noise was set to 5% of the concentrations. A posterior
set of 1,000 samples was chosen for the estimation.
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3.1.5 Comparison to neural ODE
Additionally, we compared the Bayesian CRNN to a purely data-

driven neural ODE approach, where the structure does not include
embedded scientific knowledge. For the neural ODE, we built a
densely connected neural network with two hidden layers with
50 nodes each and hyperbolic tangent activation functions. The
neural network was trained for 2000 epochs with the ADAM
optimizer (learning rate set to 0.001). Here we compare the
ability of the learned networks to extrapolate beyond the time
points used for training. We use timepoints 0–30s for training
and then use the trained system to predict concentrations
30–40 extrapolate to timepoint 40.

The results are summarized in Supplementary Figure S5 and
demonstrate the superior ability of the CRNN to accurately predict
beyond region used for training. The mean absolute percent error in
the extrapolation region was 9.0% ± 3.2 for the CRNN in
comparison to 254.7% ± 109.8 for the neural ODE.

3.2 Case 2: EGFR- STAT3 pathway

To further test the capabilities of the Bayesian CRNN, we attempted
to recover the reaction network governing the EGFR- STAT3 signaling

pathway Bidkhori et al. (2012). Our simplified representation of this
pathway consists of seven chemical species and six reactions listed in
Table 2. Here we omit the reverse reactions because they cannot be
identified from the forward reactions with this framework.

In this case, unlike the simple system in case one, the reaction
rates and concentrations vary by one or two orders of magnitude. To
account for this difference in scale, we adjust our loss function to use
mean absolute percent error (MAPE) instead of MAE. Additionally
to allow for more reactions and chemical species, we use
L1 regularization on the weights that correspond to the
stoichiometric coefficients of the reactions θv, as these would
comprise a sparse matrix as the reaction network grows. We
continue to use L2 regularization for the weights that correspond
to the reaction rates, θr. This change to the loss function is depicted
in the equation below.

L θt( ) � MAPE YCRNN t( ), Ydata t( )( ) + λL1 ∑ |θv|( ) + λL2 θr · θr( )
(7)

We sample from the initial conditions ranging from 0 to 1 to
obtain 300 training examples. With 5% Gaussian noise added to
simulated training data. For training, we set λ = 1e − 8, β = 0.9, the
L1 coefficient (λL1) = 1e-4 and the L2 coefficient (λL2) = 1e-5. Step-

FIGURE 7
Recovered score metrics for each of the four reactions shown in case 1. Score metrics are calculated using equation 6 and represent the weighted
probability that a species is a reactant of each reaction. Themodel was trained withmoderately noisy data, where the standard deviation of the noise is set
to 5% of the concentrations.
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size hyperparameters α, b, and γ were set to 0.001, 0.15, and
0.005 respectively.

After training, the Bayesian CRNN accurately captures the time
course for all species in the simplified EGFR-STAT3 pathway and is
robust to noise as shown in Figure 10 and from the score plots in
Figure 11, we can see the CRNN also correctly identifies the reactants of
all the reactions. Figure 12 shows the uncorrected reactant probabilities
and the probability densities for the reaction rates. The true reaction
rates are contained within the probability density functions of reactions
1 and 6 depicted in Figure 12 a and f, but the other reactions do not
include the true rates despite the time courses of the reactants and
products being accurately predicted, demonstrating a potential
identifiability issue. However, the average percent deviation from the
true rates across a posterior set of 1,000 samples remains low, below
40%, for all reactions except reaction 5 which overestimated the rate six-
fold, as shown in Table 3. Reactions 1, 2, and 6 did particularly well with

an average percent deviation of 1.22%± 0.81, 9.74%± 0.64, and 4.08%±
1.28 respectively.

4 Discussion

In this study, we combine the previously published chemical
reaction neural network (CRNN) Ji and Deng (2021) with a
preconditioned Stochastic Gradient Langevin Descent (pSGLD)
Markov Chain Monte Carlo (MCMC) stepper Li et al. (2015) of
neural ODEs, allowing for the efficient discovery of chemical
reaction networks from concentration time course data and
quantification of the uncertainty in learned parameters. The
specialized form of the CRNN is constrained to satisfy the
kinetic equations of reactions, which enables the identification of
the learned neural network parameters as the stoichiometric

FIGURE 8
Comparison of estimated posterior of recovered reaction rates between the preconditioned SGLD and SGLD optimizer for the four reactions in case
1 where noise with a standard deviation of 5% was added.
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coefficients and reaction rates of the reactions while the Bayesian
optimizer provides an estimate of the uncertainty of those
parameters.

We tested the algorithm with a simple system of four reactions and
five species. With no noise added to the training data, the algorithm
perfectly captured the reaction network and accurately matched the
time course for each species. Additionally, the posterior distributions of
the reaction rates were centered around the true reaction rates.With the
addition of noise (standard deviation of 5% of the true concentration) to
the training data, the reaction networks were also accurately captured,
however the posterior distributions of the reaction rates were no longer
centered at the true value but still contained within the distribution.
Evenwith the addition of a large amount of noise (standard deviation of
50%), the reactants of each reaction were correctly identified, and
posterior distributions still contained the true reaction rates. To obtain
posterior distributions centered at the true value in cases with added
noise it is likely that more data is needed as there are various
combinations of reaction rates that minimize the loss between the
training data and the learned time courses.

FIGURE 9
Comparison of LSTMmodel with Bayesian CRNN (chemical reaction neural network) for chemical species (A–E). Only time points 0–30 were used
for training as depicted by the training boundary. Time points 30–40 were used for comparison of the accuracy of extrapolation beyond training
time points.

TABLE 2 Case 2 EGFR-STAT3 reactions.

Equation Rate

EGF − EGFR + EGF − EGFR → EGF − EGFR2 10uM−1s−1

EGF − EGFR2 → pEGF − EGFR2 2.014 s−1

pEGF − EGFR2 + STAT3 → pEGF − EGFR2 − STAT3 5.5uM−1s−1

pEGF − EGFR2 − STAT3 → pEGF − EGFR2 + STAT3 11.74 s−1

pEGF − EGFR2 − STAT3 → pEGF − EGFR2 + pSTAT3 0.4 s−1

pSTAT3 + pSTAT3 → pSTAT3 − pSTAT3 20uM−1s−1
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We demonstrated that the preconditioned SGLD is necessary to
increase training robustness by comparing the results of our
Bayesian CRNN trained with the preconditioned SGLD optimizer
to a Bayesian CRNN trained with a standard SGLD optimizer and
found that not only is the algorithm more efficient and requires less
epochs to train but it also more accurately approximates the
posterior. The standard SGLD shows high confidence in the
incorrect value while the pSGLD in general shows lower
confidence but includes the true values.

Additionally, we demonstrated that the Bayesian CRNN in
addition to being interpretable, improves upon prediction
accuracy when extrapolated beyond the time range used for
training by comparing the CRNN to a purely data-driven
neural ODE model and an LSTM-based model that contain no
prior scientific knowledge about the structure of
chemical reactions.

Application of this model to a larger system, a simplified
representation of the EGFR-STAT3 pathway containing seven

FIGURE 10
Comparison of Bayesian chemical reaction neural network prediction compared to training data for EGFR-STAT3 pathway described in case 2.
Gaussian noise with standard deviation of 5% was added to the training data. 500 posterior sample predictions are superimposed on the data.
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species and six reactions revealed the limitations of this model.
While the model was able to accurately predict the time course of all
species and learn the correct reactions, as evaluated by correct
prediction of reactants and products, the posterior distributions
of the reaction rates for four out of six reactions did not include the
true rates. This is not completely unexpected since as reaction
networks become larger, different combinations of reaction
parameters may result in the same concentration dynamics.

Future work will be needed to solve this identifiability issue,
allowing for the use of this model on larger reaction systems.

The combination of a preconditioned SGLD optimizer with the
CRNN allows for efficient training and posterior sampling as well as
reliable estimates of parametric uncertainty while accounting for
epistemic uncertainty in a way that builds confidence in the learned
reaction network and can help determine if more data is needed.
This work demonstrates that knowledge-embedded machine

FIGURE 11
Recovered score metric for each of the six reactions included in case 2. Score metrics are calculated using equation 6 and represent the weighted
probability that a species is a reactant of each reaction. Gaussian noise with standard deviation of 5% was added to the training data.

TABLE 3 Average percent deviations from true reaction rates for case 2.

Equation Average percent deviation

EGF − EGFR + EGF − EGFR → EGF − EGFR2 1.22% ± 0.81

EGF − EGFR2 → pEGF − EGFR2 9.74% ± 0.64

pEGF − EGFR2 + STAT3 → pEGF − EGFR2 − STAT3 22.41% ± 0.77

pEGF − EGFR2 − STAT3 → pEGF − EGFR2 + STAT3 38.59% ± 0.56

pEGF − EGFR2 − STAT3 → pEGF − EGFR2 + pSTAT3 643.32% ± 8.92

pSTAT3 + pSTAT3 → pSTAT3 − pSTAT3 4.08% ± 1.28
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learning techniques via SciML approaches may greatly outperform
purely deep learning methods in a small-medium data regime that is
common in Quantitative Systems Pharmacology (QSP) and
demonstrates viable techniques for the automated discovery of
QSP models directly from timeseries data.
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