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Cellular heterogeneity is a ubiquitous aspect of biology and a major
obstacle to successful cancer treatment. Several techniques have
emerged to quantify heterogeneity in live cells along axes including
cellular migration, morphology, growth, and signaling. Crucially, these
studies reveal that cellular heterogeneity is not a result of randomness or
a failure in cellular control systems, but instead is a predictable aspect of
multicellular systems. We hypothesize that individual cells in complex
tissues can behave as reward-maximizing agents and that differences in
reward perception can explain heterogeneity. In this perspective, we
introduce inverse reinforcement learning as a novel approach for
analyzing cellular heterogeneity. We briefly detail experimental
approaches for measuring cellular heterogeneity over time and how
these experiments can generate datasets consisting of cellular states and
actions. Next, we show how inverse reinforcement learning can be applied
to these datasets to infer how individual cells choose different actions based
on heterogeneous states. Finally, we introduce potential applications of
inverse reinforcement learning to three cell biology problems. Overall, we
expect inverse reinforcement learning to reveal why cells behave
heterogeneously and enable identification of novel treatments based on
this new understanding.
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Introduction

There is an enigma at the heart of mammalian biology.
Seemingly identical cells in a population exhibit distinct
responses to the same environmental cues. Consequences of
heterogeneity are readily apparent in normal biology and diseases
such as cancer: specialized behaviors of cells, drug resistance, and
fatal metastases. Mechanisms causing heterogeneity remain a
mystery, impeding efforts to shift cell behaviors to prevent or
cure disease.

The prevailing dogma is that heterogeneity among cancer cells
arises randomly, generating “greedy individuals” that compete for
growth factors and optimal environments. However, recent data
suggest that cancer cells function cooperatively as a tissue-like entity,
and work by our group and others demonstrate that single-cell
differences in signaling and function among cancer cells can arise
predictably with consistent variations across a population as a whole
(Spencer et al., 2009; Overton et al., 2014; Spinosa et al., 2019;
Spinosa et al., 2020; Zhan et al., 2020; Kinnunen et al., 2022). These
observations imply that tumor progression benefits from or even
requires interactions among distinct subgroups of cells (Marusyk
et al., 2014). The idea that single, heterogeneous cancer cells work
collectively within a constrained range of variability to drive
population-level outputs in tumor progression is a concept that
may revolutionize how we approach cancer biology and therapy.

To decipher mechanisms regulating single-cell heterogeneity
and cooperative interactions among cells, we propose that the
field adopt a conceptual approach that integrates: (1) high-
dimensional single-cell data, (2) mechanistic modeling, and (3)
inverse reinforcement learning (IRL). While typically used to
imitate (Abbeel and Ng, 2004) or simulate (Banovic et al., 2016)
human behavior, IRL is an artificial intelligence (AI) method that
can interpret responses of single cells to multiple stimuli as a
decision-making policy that is motivated by maximizing a
reward. Key IRL terms, with application to cancer, are defined in
Box 1. In the context of cancer, rewards exist at both single cancer
cell and multicellular tumor-microenvironmental scales. For cancer

cells positioned in nutrient-rich environments, a reward may be
activation of signaling pathways that drive metabolic or cytoskeletal
adaptations necessary for proliferation and invasion. Treatment
with radiation or chemotherapy leads to rewards related to single
and tumor-wide behaviors that promote survival (Shaffer et al.,
2017). Single cancer cells may upregulate drug efflux transporters
and DNA damage repair processes to resist therapy, while soluble
and contact-mediated interactions among cancer and benign
stromal cells promote survival of the tumor overall (Lim et al.,
2011; Li et al., 2021; Xiao et al., 2021). Tumor-wide cellular and
metabolic interactions generate immunosuppressive environments
that restrain and exclude anti-cancer immune responses (DePeaux
and Delgoffe, 2021; Luby and Alves-Guerra, 2021; Arner and
Rathmell, 2023). These examples capture only a subset of the
many possible reward-induced “decisions” cancer cells make that
may support heterogeneity and drive tumor growth and metastasis.

We describe below how high dimensional single-cell data,
mechanistic modeling, and IRL might be integrated to discover
molecular processes underlying “decision-making” by single cells
and their “motivations” for acting competitively or collaboratively in
cancer (Figure 1). By basing IRL findings on single cell data and
mechanistic models, we can ensure that the approach yields
biologically realistic hypotheses (for example, predicted behaviors
in new environments, including reproducing heterogeneity in a
population or evading drug treatment).

Live cell imaging measures heterogeneous
cell states and actions

Live-cell microscopy with advanced image processing methods
can track and analyze single cells over space and time, measuring
cellular phenotypes such as movement, division, proliferation, and
death (Figure 1, steps 1 and 2). Stimuli can be applied to cells to
measure the response of each cell, and multiple stimuli can be
applied successively to determine how various inputs reinforce or
counter outputs such as cell signaling and movement. Live-cell

BOX 1 Key terms in IRL with examples from cancer biology

Term IRL Definition Cancer biology example(s)

Agent An autonomous entity that takes actions in a state-dependent manner to
maximize some unknown reward

Cancer cell, stromal cell

State (S) Variables defining the measurable or model-inferable properties of the agent Size; location; level of activation of a signaling pathway; readiness to divide;
cancer stemness

Action (A) Performed by agents to transition between states Moving up a chemical gradient; not moving; cell division; apoptosis; new
activation of a signaling pathway

Reward
R (S,A)

Benefit that the agent obtains from the environment by taking a particular
action when in a particular state. In IRL, the reward is unknown a priori and
is inferred from observed agent behaviors

High rewards under proliferation or invasion; survival during drug treatment;
generation of immunosuppressive environment

Policy A probabilistic or deterministic mapping from current state to immediate
action. IRL assumes that the agent performs the optimal policy maximizing
the expected cumulative (unknown) reward over some time horizon

A cancer cell may follow a policy of spending resources to send signals to
neighboring stromal cells when it is surrounded by more stromal cells (state),
causing them to alter their metabolism to support the cancer cell

Environment Set of inputs sensed by the agent Extracellular surroundings, including the presence and concentration of
soluble signaling molecules and neighboring cells. Mechanical environment
(stiffness) of surroundings
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microscopy has revealed previously unexamined dimensions of
cellular heterogeneity, including morphology (Gordonov et al.,
2016), engulfment (Chu et al., 2020), and migratory capacity
(Ferreira et al., 2022). Combining live-cell microscopy with a
growing array of optical imaging reporters vastly expands the
number of measurable phenotypes per cell and dynamic
responses of cells over time. As examples, investigators have used
multiplexed fluorescent reporters of cell cycle phases, DNA damage,
cell signaling pathways, or protein stability/degradation (Sakaue-
Sawano et al., 2008; Regot et al., 2014; Spinosa et al., 2019; Suski
et al., 2022; Abd El-Hafeez et al., 2023). Dynamic imaging studies
generate large datasets by collecting information from thousands of
cells over hours to days.

The application of live-cell fluorescence microscopy to cell
biology has revealed two key principles. First, even genetically
identical cells respond heterogeneously to identical stimuli. There
are numerous examples of this heterogeneity in both continuous and
discrete cell actions. For example, the Akt, ERK, and p38 kinase
pathways display a continuum of signaling activities in response to
chemokine stimulation (Kinnunen et al., 2022). Isogenic cells
display a heterogeneous spectrum of chemotactic capacities under
identical gradients (Ho et al., 2023). Heterogeneity is also present in
cellular decisions relating to actions like cell death and cell-cycle
progression. Imaging reporters for these processes have revealed
intercellular variations in dynamics of cell division, inheritance of
cell states, and responses to interventions such as chemotherapy
drugs (Laughney et al., 2014; Kukhtevich et al., 2022; Arora et al.,
2023). The second principle of cellular heterogeneity is that cellular
behaviors are influenced by cell state, which is set by past stimuli. We
and others have used imaging reporters to detect “memory” of past
stimuli, responses to targeted therapy, and how oscillations in kinase
activity can control single cell decisions regulating transcription,

chemotaxis, and apoptosis (Tomida et al., 2015; Hiratsuka et al.,
2020; Wang et al., 2022; Heaton et al., 2023; Ho et al., 2023).
Heterogeneity has been observed even in more complex
environments, including in living tissues and organoids
(Hiratsuka et al., 2015; de Witte et al., 2020; Ponsioen et al.,
2021). Hence, heterogeneity in cell state appears to be a
fundamental property of collections of cells.

Heterogeneity enables at least two emergent behaviors in cancer
cells: cooperation and bet-hedging. Cooperation enables cells to
specialize to create an overall more oncogenic environment. For
example, cancer cells can exploit metabolic byproducts from the
microenvironment (Richardson et al., 2018; Zhu et al., 2020), and
chemokine-expressing metastatic cancer cells can create a favorable
environment for non-expressing cells (Shahriari et al., 2017), which
would otherwise die. We can think of the cells that rely on
byproducts from other cells as selfish exploiters. Bet-hedging
refers to the adoption of phenotypes that are suboptimal in the
current environment but may be better suited to potential future
environments, such as after the application of a cytotoxic drug
(Sharma et al., 2010). Understanding how cancer cells collaborate,
and when selfish cancer stem cells emerge, could enable the
identification of novel cancer targets.

To work with IRL, we envision that live-cell, fluorescence
microscopy combined with automated image processing will
provide large data sets of cellular behaviors (Moen et al., 2019;
Tian et al., 2020). These datasets can include multiple cell types,
complex environments, and the addition of multiple exogenous
stimuli (Zhang et al., 2019; Buschhaus et al., 2020; Ho et al., 2023).
Such datasets can then be converted into sets of single-cell states and
actions, a requirement for IRL. Our current microscopy datasets
contain ~100,000 such data points (state-action pairs), and we can
combine data from multiple experiments, providing ample data for

FIGURE 1
Approach that integrates high-dimensional single cell data, mechanistic modeling, and inverse reinforcement learning (IRL) to learn about cell
decision-making.
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training IRL algorithms. Furthermore, innovations in live-cell
microscopy and fluorescent reporter design will continue to
expand the cell states and actions we can measure. IRL might
also be combined with other sources of data that collect time-
series data consisting of cell states and actions. However, IRL
cannot be performed using only single-cell endpoint
measurements, such as flow cytometry or single-cell (spatial)
transcriptomics, because they do not provide time series data.
Endpoint measurements that can be linked to the states and
actions of a specific cell, such as cyclic immunofluorescence,
could be used to associate specific behaviors with a wider range
of endpoint measurements than can be measured in living cells.

Physically-based mechanistic models
ground IRL findings in reality

Predictions about the drivers of cell behavior need to be placed
in a readily understandable, real-world framework for cell signaling
and function: physically-based mechanistic models. Systems
biologists have already created a broad corpus of knowledge
about heterogeneity in single- and multicellular behavior and
regulation. For example, mechanistic models in cancer have been
developed for multiple signaling pathways, tissue formation, cell
migration, and drug treatment, primarily by combining knowledge
of biology with principles from biochemistry, biophysics, and
engineering, e.g., diffusion and convection, mechanics, and
biochemical reaction networks (Spinosa et al., 2020; Kinnunen
et al., 2022; Menezes et al., 2022). Such models may include both
deterministic and stochastic elements. An emerging data-driven
approach for modeling is system inference. For example,
Variational System Identification (VSI) techniques allow
estimation of the parametric form of the governing partial
differential equations–such as reaction-diffusion and phase field
models–that may underlie cell migration and signaling, directly
from experimental data (Wang et al., 2019; Wang et al., 2021; Ho
et al., 2023; Kinnunen et al., 2023).

An important class of models for our discussion is agent-based
models (ABMs). In the current context, the agents in the models are
individual cells, and they behave and interact in their environment
according to probabilistic rules. In particular, and relevant to our
IRL discussion, we describe the behavior of agents in an ABM
through a Markov Decision Process (MDP), a mathematical
framework where cell-agents decide their actions from their
current states motivated by gaining higher rewards. ABMs model
cellular heterogeneity by explicitly representing cell state, placing
heterogeneous cells in a varied environment, and following the state
changes and actions taken by individual cells over time as the
simulation proceeds. There is now a fairly long history of ABMs
in biology with rules informed by our knowledge of biology and also,
more recently, by machine learning (Norton et al., 2017; Rikard
et al., 2019; Hult et al., 2021; Sivakumar et al., 2022). Yet deducing a
rule, for example, that cells are likely to move in a certain way in a
certain gradient, does not tell us if or why this action supports
heterogeneity and ultimately cancer survival. This is a difficult
problem because the final result (cancer survival, say) is likely
many steps removed from any individual cell’s action. For this,

we can turn to IRL to determine the rewards that drive the policies
the cells follow.

We envision using mechanistic modeling to improve the
interpretability of IRL inference in three ways (Figure 1, steps 3,
4, and 6). First, mechanistic modeling can expand the number of cell
states we can use for IRL. Many cell states do not have associated
live-cell reporters, and there are limitations on the number of
fluorescence reporters that can be simultaneously measured.
However, we can fit data to mechanistic models, elucidating
additional states (Yao et al., 2016; Spinosa et al., 2020). Second,
mechanistic modeling can identify physical limits in cellular actions
or state transitions. For instance, previous work has derived physical
limits on a cell’s ability to sense a chemical gradient (Mugler et al.,
2016). By incorporating these limits into measured state-action
transitions, we can prevent IRL from needlessly exploring
solutions that are physically inadmissible. Finally, we can use IRL
in combination with ABMs to simulate cells following the inferred
rewards with controlled perturbations, yielding actionable
hypotheses and guiding the design of future experiments (Huan
and Marzouk, 2013; Shen and Huan, 2023).

IRL uncovers cell- and tumor-level
“motivations” from observed cell states
and actions

Uncovering the underlying incentive mechanism in a complex
decision-making system is a formidable task, especially when the
system is stochastic and its constituent agents possess substantial
heterogeneity. IRL is a powerful tool that harnesses agent-scale data
to infer the unknown incentive mechanisms governing the behavior
of individual agents. IRL differs from the more commonly used
reinforcement learning (RL): in RL (or forward RL) an agent learns a
good policy for taking actions from trial and error based on a given
(known) reward function; in IRL one tries to discover a reward
function based on the behavior of an agent that follows an optimal
policy in its environment.

In the IRL framework, we model a cancer cell as a decision-
making agent under the mathematical formalism of an MDP
(Bellman, 1957). This approach is rooted in the assumption that
the agent is a rational actor, and the observed data reflect the agent
choosing the optimal state-dependent action to maximize its
expected cumulative reward while navigating the constraints of
its environment. In other words, the agent is assumed to adhere
to an optimal policy for some unknown, underlying reward
mechanism. For example, we know that only a small
subpopulation of cancer cells in a tumor are metastatic (Luzzi
et al., 1998). Using IRL, and assuming that these cells are
maximizing an unknown reward, might reveal that metastatic
cells undergo a set of specific states prior to metastasis, where
migration is highly rewarded. Meanwhile, other nonmetastatic
cells do not pass through these states (Marusyk et al., 2014).
Furthermore, by comparing the magnitude of the rewards
accumulated at each step on the path to metastasis, we could
identify the steps taken by metastatic cells that are most
important to target therapeutically. IRL provides the
mathematical and computational tools to systematically identify
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other cases where individual cells may adopt seemingly suboptimal
phenotypes in order to optimize tumor growth.

In the IRL framework, cells and their surrounding environment
(e.g., a neighborhood consisting of various other cells, soluble
factors, and mechanical properties) are represented by a set of
states. The framework also specifies a set of actions that a cell
can take in each of those states (e.g., movement, division, secretion).
The cell transitions from state to state appear stochastic for two
reasons. First, cell actions can change the environment; for example,
the secretion of a cytokine will change the local concentration.
Second, cells do not have full control over their environment, and
some changes in the environment happen irrespective of cell actions.
For instance, a moving cell may intend to move to a region of lower
cell density, but since other cells are also moving, it may end up in a
region of similar or even higher density. Cells perform actions
according to a policy that maximizes a reward function the cell
receives after reaching a new state for each action. IRL models cell
behavior as a sequence of actions the cell performs as it moves from
state to state until reaching some final goal state, such as continuing
to proliferate after exposure to a chemotherapeutic drug.

IRL is a method for estimating the rewards of an MDP (Figure 1,
steps 3–5). To perform IRL, state-action probabilities are calculated.
Here, we envision state-action probabilities being determined both
from measured data and augmentation of measurements using
mechanistic and data-driven modeling. Next, we parameterize the
reward function and use the MaxCausalEntropy algorithm to
identify the most likely rewards for each state and action (Ziebart
et al., 2010). MaxCausalEntropy is particularly well suited for
modeling cellular behaviors because it explicitly models the
connection between cell state and cell action, which we assume
are connected by (currently incompletely understood) physical and
chemical laws.

With an MDP and rewards in hand, we can formulate and test
critical hypotheses in cancer biology. We can test whether individual
cells in new conditions are behaving consistently with the model, or
if they represent outliers displaying new behavior; in other words,
how heterogeneous, and in what ways, is the new population? We
can calculate the probabilities that cells will exist in particular states,
or take particular sequences of actions, to better understand the
scope of cell behavior. We can simulate populations of cells under
different situations, i.e., make predictions that can then be tested in
experiments (Figure 1, step 6). Finally, we can identify a final state of
interest (for instance, metastatic or drug resistant cells) and identify
the states and actions most likely to lead to that state. These latter
examples highlight the ability of the model to enable us to develop
targeted interventions to control the behavior of cells.

IRL has had remarkable success in various fields, including
human behavior modeling (Antar et al., 2022) and robotics (Finn
et al., 2016), but has only recently been applied to biology. IRL was
used to understand the clonal evolution of tumors (Kalantari et al.,
2020) and mimic the behavior of physicians making cancer
treatment decisions (Imani and Braga-Neto, 2019). Two papers
apply IRL to study the migration behavior of roundworms
(Yamaguchi et al., 2018) and mice (Ashwood et al., 2022), which
are particularly relevant for our application. Yamaguchi et al. used
IRL to study thermotaxis in roundworms (Yamaguchi et al., 2018).
They tracked roundworm migration in a thermal gradient using
recordings and automated video analysis, which generated hundreds

of single-worm trajectories. They modeled the worm state based on
the current temperature and the current temperature gradient. IRL
revealed different migration strategies for worms grown in different
conditions, which recapitulated prior knowledge about worm
thermotaxis. Ashwood et al. applied IRL to mice navigating a
maze (Rosenberg et al., 2021; Ashwood et al., 2022). They also
used video recordings as a data source and were able to identify
different time-varying rewards for water-restricted and -unrestricted
mice. The data used in these studies are structurally very similar to
the data collected from live-cell microscopy, which suggests that
similar techniques may be effective.

Challenges in applying IRL to
cellular behaviors

Despite the effectiveness of IRL in various fields, it comes with
significant challenges and limitations. First, IRL is inherently ill-
posed since many reward functions exist that can explain the
demonstrated trajectories equally well, which can lead to
overfitting. Moreover, the ill-posedness can be exacerbated by
incomplete or imperfect knowledge about the environmental
dynamics and where an explicit, analytical form of the state
transition function is unavailable, as in many biological scenarios.
These challenges emphasize the need to embed IRL within an
experimental framework where inferred rewards can be tested
using new experiments incorporating genetic, chemical, or
environmental perturbations. Second, IRL may infer rewards that
do not make physical sense–for instance, predicting cell division
more quickly than cells could possibly divide–or are difficult to
interpret. Thirdly, IRL faces challenges related to computational
complexity and sample size requirements, both of which usually
increase with the dimensionality of the state-action space.
Meanwhile, as the problem size increases, more diverse examples
of behavior are needed tomaintain sufficient coverage in the training
data. This need highlights another challenge: generalizability. The
difficulty lies in accurately extrapolating to unobserved spaces using
data that often covers only a fraction of the total space. Relying solely
on observations to generalize to state and action regions beyond
training samples becomes especially difficult in high-dimensional
settings, compounded when training data are limited and noisy. To
help resolve these problems, we emphasize that combining IRL with
more traditional biochemical and biophysical modeling will ensure
that the learned rewards are physically meaningful and
interpretable. An example of this approach recently developed by
our team is Fokker-Planck-based IRL (FP-IRL), which we will
elaborate below.

Toward integrating IRL, mechanistic models,
and single-cell biology: three potential
applications

We present three potential applications where IRL may help
uncover key insights for understanding cancer cell heterogeneity.
The first two fall into the category of single-agent IRL. Here we
consider a population of cells observed in our microscopy
experiments (e.g., all cancer cells in the field of view) as a
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FIGURE 2
Applying IRL to understand heterogeneous single-cell behaviors (A)Original observations fromMiura et al. demonstrating that stochastic cell death
after UV exposure is due to differences in p38 activation, phosphatase activation, and JNK activation. (B) Sankey diagram showing how IRL could be used
to study hypothetical data generated based on the observations of Miura et al. Cell states and actions can identify states that affect cell death or continued
proliferation after exposure to UV light. Colored bars show different cell states, while the gray bands show how many cells transition between each state.
Here, a hypothetical population of 100 cells is uniformly exposed to UV radiation (red). Immediately after radiation, cells either activate or do not activate the
protein kinase p38 (blue). Most p38-active cells then suppress the kinase JNK, while p38-low cells allow JNK to activate (purple). Finally, all cells that die are from
the JNK-high population, while some JNK-high cells and all JNK-low cells survive (black). (C) Top: Diagram showing the procession of states and actions for a
single cell. Bottom: Black lines follow the actions taken (solid lines) by a single cell out of many possible actions (dashed lines) to transition to new states. The final
state of the cancer cell, with the greatest accumulated reward, is continued proliferation. Red lines: By targeting a specific state leading to continued proliferation,
we can perturb the cellular rewards to make cell death more favored in cells that would otherwise proliferate.
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collection of single agents operating independently and with no
awareness of each other’s actions but obeying the same policy. For a
concrete example, consider the behavior of individual cells collected
by Miura et al. after exposure to UV-C radiation (Miura et al., 2018).
The study identified a molecular determinant of UV-induced cell
death by tracking cell motion, kinase activity, and cell survival over
time (Figure 2A). Radiation activates JNK kinase after several hours,
which induces cell death. Cells that survive radiation first activate
p38 kinase, which induces transcription of a regulatory phosphatase
that inhibits JNK and prevents cell death.

If we were to use IRL to understand the observations of Miura
et al., we could consider JNK, p38, and cell survival/death as key state
variables. IRL would first reveal the most common series of events
(change in p38, followed by change in JNK, possibly followed by cell
death) based on the transitions between states that are present in the
data. Identifying the most common state transitions may be trivial in
this application, but if more reporters were used or more states were
identified from the data, it could be more difficult to identify
common series of events. IRL would also show the dominant
state-action transitions leading to cell death or survival, where
most cells that survive first activate p38. A Sankey diagram
(Antar et al., 2022) showing the behavior of 100 hypothetical
cells is shown in Figure 2B. Most cells follow the series of events
shown in Figure 2A, while a minority do not because of unknown
sources of regulation affecting p38 and JNK activity. Miura et al.
used separate experiments inspired by biological knowledge to
reveal the phosphatase dynamics underlying JNK suppression.
Since the phosphatase was not captured in the live-cell imaging
experiments, IRL would not be able to identify it. However, IRL
would demonstrate that most cells that first activate p38 do not
activate JNK, which could generate hypotheses about how these two
molecules are connected. Furthermore, after IRL reward inference,
we could use the observed rewards to simulate realistic cellular
behaviors in different environments or in the presence of different
perturbations (Figure 2C). The inferred reward and measured state-
action transitions could be used to identify states most likely to lead
to cell survival. Identifying these states and targeting them could
reveal novel, experimentally testable perturbations to prevent cell
survival. In this example, IRL provides a unique, data-driven lens for
identifying granular cellular activities that drive specific phenotypes.

As another application, we developed a novel IRL algorithm,
called Fokker-Planck IRL (Garikipati et al., 2023), to better
understand how chemokine gradients affect cell migration
decisions (Ho et al., 2023). FP-IRL infers the transition and
reward function simultaneously in a physics-constrained manner
by leveraging a mathematical conjecture on a structural
isomorphism (i.e., equivalence mapping) between the FP
equation, which governs particle motion affected by diffusive and
advective forces, and MDP, which is the mathematical basis for IRL.
We found that the injection of physical principles mitigates some of
the aforementioned challenges, including ill-posedness, physical
interpretability, and computational efficiency. We first validated
FP-IRL on a synthetic problem that mimics cell migration under a
chemotactic gradient. Computational convergence studies showed
that FP-IRL can accurately estimate the reward and transition
functions we defined in the simulation. To test the method, we
then applied FP-IRL to an experimental dataset (1,332 cells over
361 total timesteps) of MDA-MB-231 breast cancer cells expressing

fluorescent reporters for Akt and ERK kinases in a chemotaxis assay
(Ho et al., 2023). We applied a chemical gradient of chemoattractant
CXCL12, which induced cells to move up the gradient. We
modeled the cancer cells as decision-making agents under the
mathematical formalism of an MDP. We defined x- and
y-velocity as state variables and changes in Akt and ERK
signaling as actions. FP-IRL identified that cells have a
higher reward for migrating up the gradient with relatively
high speed, in agreement with our understanding of
chemotaxis. Going forward, this method can be applied to
understand cell migration strategies in new environments.

Our third potential application employs multi-agent IRL to
understand competitive and cooperative cellular interactions that
support overall tumor progression. Here, we can model each agent
(in an overall multi-agent setting) to have its own individual
reward function, for instance that might correspond to short-term
and long-term goals, or local (agent-level) and global (population-
level) goals. Using this approach, we could understand how
multiple cancer cells adopt a range of phenotypes (following
cell-level rewards) to support the overall proliferation of a
tumor (a population-level reward). Experimentally, we could
monitor cell proliferation from a small, sparse population of
cells to a monolayer, and expose them to sequential doses of
different cytotoxic drugs. In this case, we could track the
emergence of heterogeneity and the eventual death of part of
the population in response to different stressors. By assuming that
the dead cells provided some benefit to the living cells and that cell
death was state dependent, we could apply multi-agent IRL to
understand what state-action pairs had high rewards for the
individual cell and which had high rewards for survival of the
population as a whole. Multi-agent IRL is much more
computationally demanding than traditional, single-agent IRL
since it must track and capture the interplay of actions by
different agents. New algorithms and methodology are
currently under development to overcome the computational
challenges.

Discussion

The framework described in this paper—using IRL together with
physically-based mechanistic models to interpret high-dimensional
live-cell imaging datasets—has potentially game-changing
implications for how we understand and treat cancer. First, it
provides a rigorous framework for testing if the hypothesis that
cells pursue rewards is relevant to cancer. It is likely true that in some
cases, clear rewards can be inferred from heterogeneous cellular
behaviors (e.g., cooperation or bet-hedging). However, since
cellular regulation is imperfect and generally mediated by local
signals, it is also likely that some heterogeneity is random,
unregulated, or not driven by cellular cooperation. For
behaviors that are reward-driven, we will also learn some of
the molecular drivers of cell behavior and potential
interventions. Analyzing the reward function will further
enable us to develop targeted interventions to control the
behavior of cells. By inferring decision-making policies for
single-cell and population-scale outputs, we may be able to
design therapies to pre-emptively shift cells from aggressive
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behaviors and disrupt collaborative interactions among
subpopulations of cells in a tumor, rather than reacting to these
processes after they occur. Combining IRL with physically-based
mechanistic models means that we will be able to identify specific,
and potentially targetable, drivers of collaborative behaviors.

Although IRL is an emerging technique and questions remain
about the application of IRL to single-cell behavioral data, we
emphasize that techniques for measuring cell states and actions
and achieving granular control over single cells are expanding
rapidly. IRL will serve as a powerful method for modeling these
new data streams. Specifically, novel reporters have multiplexed up
to seven separate fluorescent channels (Qian et al., 2023) and
demonstrated the ability to extract single-cell biological
information from novel frequency-based fluorescent reporters
(Rajasekaran et al., 2024). Such capabilities dramatically expand
the range of single-cell states and actions that can be measured.
Another emerging approach, where individual cells record a specific
physiological variable, such as promoter activity or chemical
exposure, onto a protein- (Ravindran et al., 2022; Linghu et al.,
2023) or DNA-based (Park et al., 2021) recorder analyzed using
endpoint methods, could serve as a novel source for cell state-action
data. Finally, recent work has recapitulated fully synthetic kinase
networks in mammalian cells (Yang et al., 2023), and optogenetics
enables the activation of signaling molecules in cells (Wilson et al.,
2017). These tools offer finely tuned control over specific cell
behaviors in experimental formats that are compatible with long-
term single-cell measurements.

IRL is a general framework that can be adopted for other
biological contexts where agent-based perspectives are
appropriate. For example, bacteria function as integrated
communities, generating interconnected biofilms under stressful
conditions. Inflammation in cancer, infections, and other diseases
represents a delicate balance between pro-inflammatory and anti-
inflammatory cells and molecules. Inferring the cellular reward
structure for sustaining or ending inflammation may reveal
decision points controlling immunosuppression in tumors and
persistent immune responses in autoimmune disorders. We
believe IRL will help us understand the underlying causes of
cellular heterogeneity by quantifying state-dependent rewards and
ultimately contribute to a novel biological paradigm in which the
individual roles of heterogeneous cells are considered as the basis of
physiological processes.
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