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New discoveries and knowledge are summarized in thousands of published
papers per year per scientific domain, making it incomprehensible for
scientists to account for all available knowledge relevant for their studies. In
this paper, we present ACCORDION (ACCelerating and Optimizing model
RecommenDatIONs), a novel methodology and an expert system that
retrieves and selects relevant knowledge from literature and databases to
recommend models with correct structure and accurate behavior, enabling
mechanistic explanations and predictions, and advancing understanding.
ACCORDION introduces an approach that integrates knowledge retrieval,
graph algorithms, clustering, simulation, and formal analysis. Here, we focus
on biological systems, although the proposed methodology is applicable in other
domains. We used ACCORDION in nine benchmark case studies and compared
its performance with other previously published tools. We show that
ACCORDION is: comprehensive, retrieving relevant knowledge from a range
of literature sources through machine reading engines; very effective, reducing
the error of the initial baseline model by more than 80%, recommending models
that closely recapitulate desired behavior, and outperforming previously
published tools; selective, recommending only the most relevant, context-
specific, and useful subset (15%–20%) of candidate knowledge in literature;
diverse, accounting for several distinct criteria to recommend more than one
solution, thus enabling alternative explanations or intervention directions.
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1 Introduction

Discoveries, predictions, design of treatments and interventions in biological and many
other systems require understanding of system dynamics. To retrieve useful information
and create reliable models for studying system dynamics, modelers often survey published
papers, search model and interaction databases (e.g., Reactome (Fabregat et al., 2018),
STRING (von Mering et al., 2005), KEGG (Aoki and Kanehisa, 2005) etc.), incorporate
background and common-sense knowledge of domain experts, and interpret data and
observations from wet-lab experiments. Several million new scientific papers are published
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every year, with thousands in individual scientific domains, making
it incomprehensible for scientists to account for all available
knowledge relevant to their studies. The time-consuming manual
steps make the creation of models a slow, laborious and error-prone
process. On the other hand, machine learning and bioinformatics
advances have enabled automated inference of network models from
data. Although very proficient in identifying associations and
correlations between system components, these methods still
struggle if tasked with finding directionality of influences and
causation (Lecca, 2021), which are necessary in order to study
system dynamics, the state changes in the system and its
components over time. Inferring large causal models from data
requires significant time and computational resources, it is strongly
dependent on the quality of the data, and on the applied statistics
and machine learning methods (Fisher and Henzinger, 2007). The
rapid growth of the amount of biological data in the public domain
also aggravates the issues with data inconsistency and fragmentation
(Valenzuela-Escárcega et al., 2015). Therefore, to efficiently create
interpretable dynamic models, it is necessary to develop novel
methods that combine (i) automated retrieval and selection of
new, reliable, and useful information about component influences
and causality, with (ii) automated recommendation of how to
incorporate this information into models. Besides the significant
speedup over slow manual steps, this would also expand the current
capabilities for retrieval and processing of textual data and
information about influences and causality. All the above would
in turn result in a consistent, comprehensive, robust, and curated
process for creating dynamic models.

In (Ahmed et al., 2021a), we surveyed different methods that we
developed to automate extension and recommendation of dynamic
models by identifying and selecting relevant information among
large sets of causal relationships, usually retrieved from literature
(Liang et al., 2017; Sayed et al., 2018b; Ahmed and Miskov-Zivanov,
2021; Ahmed et al., 2021b). While all of our previous efforts,
described in (Ahmed et al., 2021a), succeed to some extent in
addressing the above-described challenges, each one of them still
has drawbacks. They are either not scalable for large amounts of
available information (Liang et al., 2017; Sayed et al., 2018b), non-
deterministic (provide different solutions when run multiple times)
(Sayed et al., 2018b), or attempt to create dynamic models based
mainly on the static graph structure, not accounting for the dynamic
behavior (Ahmed and Miskov-Zivanov, 2021; Ahmed et al., 2021b).

In this work, we propose ACCORDION (ACCelerating and
Optimizing modelRecommenDatIONs), a tool that identifies useful
and relevant information from published literature and
recommends model modifications that lead to closely
recapitulating desired system behavior, all in a fully automated
manner. Thus, compared to the work in (Ahmed and Miskov-
Zivanov, 2021; Ahmed et al., 2021b), ACCORDION also considers
the dynamic behavior, and in contrast to (Liang et al., 2017; Sayed
et al., 2018b), it focuses on identifying clusters of strongly connected
elements in the newly extracted information that can have a
measurable impact on the dynamic behavior of the model.
ACCORDION is versatile, it can be used to extend any model
that has a directed graph as an underlying structure (with the system
components as nodes and the influences between components as
directed edges), and update functions for elements, allowing studies
of system dynamics. These models are often referred to as executable

models. To demonstrate the efficiency and utility of the tool, we have
selected nine different case studies using models of three systems,
namely, the T cell differentiation model (Miskov-Zivanov et al.,
2013a), the T cell large granular lymphocyte model (Zhang et al.,
2008), and the pancreatic cancer cell model (Telmer et al., 2021), and
seven machine reading outputs with varying features.

We show that ACCORDION can automatically recommend
new models that significantly reduce baseline model error and
recapitulate known or desired system behavior. The contributions
of the work presented here include:

(i) Recommendation of executable dynamic models of cell
signaling that satisfy known or desired system properties.

(ii) Integration of information retrieval, graph-based methods,
and dynamic system analysis.

(iii) “In-design” validation of dynamic models, i.e., during their
creation (instead of typical “post-design” approach, i.e., after
models are created).

(iv) Rapid exploration of redundancies and the discovery of
alternative pathways of regulation.

(v) Execution of thousands of in silico experiments in at most a
few hours, which would take days, or months, or would be
impractical to conduct in vivo or in vitro.

(vi) Open access ACCORDION tool, that includes novel
approaches and methods ((i)-(v) above), available on
GitHub, with detailed documentation.

2 Methods

Here, we first describe inputs to ACCORDION, followed by the
description of the novel methodology within ACCORDION for
processing these inputs to generate the output. Input and output
examples and the flow chart of the entire approach are provided
in Figure 1.

2.1 Network and model inputs

2.1.1 Baseline model
One of the inputs to ACCORDION is a baseline model, the

starting initial or seed model that is to be extended, setting the
context for other inputs and for the analysis. The baseline model can
be created manually, with expert input, inferred automatically from
data, or adopted from models published in literature (Zhang et al.,
2008; Bianconi et al., 2012; Miskov-Zivanov et al., 2013a; Telmer
et al., 2021) and in model databases (Aoki and Kanehisa, 2005;
Pillich et al., 2017; Fabregat et al., 2018). To allow for studying
dynamics, ACCORDION works with discrete models written in the
BioRECIPE format (Sayed et al., 2018a; Holtzapple et al., 2023;
Holtzapple et al., 2024), that have a directed graph structure,
GBM(VBM, EBM), (BM = baseline model) including both cyclic
and acyclic graphs, where each node v ∈ VBM corresponds to one
model element, representing a protein, gene, chemical, or a
biological process, and each directed edge e(vi, vj) ∈ EBM

indicates that element vj is regulated or influenced, directly or
indirectly, by element vi. A small example baseline model is
shown in Figure 1 (gray nodes and edges in the bottom row).

Frontiers in Systems Biology frontiersin.org02

Ahmed et al. 10.3389/fsysb.2024.1308292

https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2024.1308292


We refer to the set of regulators of an element as its influence set,
distinguishing between positive and negative regulators.
ACCORDION assigns to each element v a discrete variable x,
which can be used to represent the element’s state, such as the
level of its activity or amount. Each model element may have a state
transition function, referred to as an element update rule, which
defines its state changes given the states of its regulators, thus
enabling the study of system dynamics. While the types of
elements and their update rules are not constrained by the main
methods implemented within ACCORDION (Sections 2.2–2.3),
they are largely affected by the information that is available in
new events (Section 2.1.2) and in the baseline model. Most often, the
events described in literature are qualitative, for example, only two
element states (e.g., inactive/active, absent/present) may be
distinguished or relevant, or only two or three levels of
concentration may be considered (e.g., low/high or low/medium/
high). Causal and Boolean types of regulations and update rules are
most suitable in such cases, and ACCORDION is also compatible
with such qualitative information. The details of model
representation and formats accepted by ACCORDION are
provided in the tool documentation (ACCORDION Github,
2024; ACCORDION ReadtheDocs, 2024).

2.1.2 Candidate event set
Another input to ACCORDION is a set of candidate events

(CEs), which can be represented as a set of directed edges

e(vi, vj) ∈ ECE, where the source nodes (vi) and target nodes
(vj) of all edges in ECE form set VCE. Similar to model nodes,
these CE nodes correspond to proteins, genes, chemicals, or
biological processes, and edges between them correspond to
influences and biological mechanisms and can have a positive or
a negative sign. CEs are used to extend the baseline model and they
can be collected from different knowledge sources such as expert
knowledge, published literature and pathway databases. The set of
CEs created either manually or automatically is input
to ACCORDION.

To create a CE set, we use machine reading engines such as
REACH (Valenzuela-Escárcega et al., 2018) to read the published
literature. These engines can output large event sets, and therefore,
allow for a high throughput processing of available information. We
use INDRA (Integrated Network and Dynamical Reasoning
Assembler) (Gyori et al., 2017) software to access the machine
reading engines. INDRA collects and scores new information
extracted either from the textual evidence by machine readers or
from structured pathway databases such as SIGNOR (Licata et al.,
2020). To select the most valuable and high-quality statements,
INDRA computes an overall belief score for each statement, defined
as the joint probability of correctness implied by the evidence.

The set of relevant papers can be selected either using search
tools such as Google or PubMed (Roberts, 2001) or by providing key
search terms to reading engines, which then access the search tools
to find most relevant papers. Examples of queries, sentences

FIGURE 1
Processing steps column: The diagram of the flow and steps for information retrieval and processing, andmodel recommendation, including a user
(Top), components of information retrieval from databases (Middle), and ACCORDION components (Bottom). Input and output examples column:
(Top) Example query used to select relevant papers and example property in Bounded Linear Temporal Logic (BLTL) format. (Middle) Two example
sentences with highlighted entities and events extracted by machine readers. Tabular outputs from REACH engine with Example 1 and Example 2
sentences as input. Graphical representation of REACH outputs. (Bottom) Tabular representation of several elements and their influence sets (positive
and negative regulators) in BioRECIPE format (Sayed et al., 2018a; Holtzapple et al., 2023) and the graphical representation of elements and influence sets.
A toy example graph (Gnew) consisting of a baseline model and connected extension clusters: gray nodes belong to the baseline model, light and dark
green nodes belong to the CE set obtained frommachine reading, blue edges highlight a return path within one cluster, and red edges show a return path
connecting two clusters. Themulti-cluster path starts at Baselinemodel, continues throughCluster 1, then through Cluster 2, and ends in Baselinemodel.
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processed by machine readers, and events in the machine reading
output are shown in Figure 1.

2.2 Influence network recommendation

2.2.1 Gnew creation and return path definition
From the baseline model graph GBM(VBM, EBM), and the CE

sets ECE and VCE, ACCORDION creates a new graph
Gnew(Vnew, Enew), where Vnew = VBM ∪ VCE, and Enew =
EBM ∪ ECE. The edges e(vs, vt) in ECE, where vs is the source
node and vt is the target node, can be classified into three categories:

(i) both source node vs and target node vt are found in the
baseline model: vs, vt{ } ∈ VBM;

(ii) either the source node or the target node is found in the
baseline model: (vs ∈ VBM and vt ∉ VBM) or (vs ∉ VBM

and vt ∈ VBM);
(iii) neither the source node nor the target node is found in the

baseline model: vs, vt{ } ∉ VBM.

Adding the entire set of CEs to the baseline model all at once
usually does not result in a useful and accurate model due to a very
large ratio |ECE|/|EBM|. Alternatively, we can add one interaction at a
time and test each model version, which is time consuming, or even
impractical, given that the number of models increases
exponentially with the size of the CE set. Moreover, adding
individual interactions does not have an effect on the model
when an interaction is not connected with the model (case (iii)
above). It proves most useful to add paths of connected interactions,
which are at the same time connected to the baseline model in their
first and last nodes. This way, we avoid any misleading addition of
individual clusters as well as missing any important, but weaker
connections to other relevant elements. Additionally, this helps
overcome to some extent the machine reader errors and
inconsistencies. Since most of the interactions that will be added
are within the scope of the baseline model. Therefore, our approach
for finding the most useful subset of the CE set includes finding
connected interactions, that is, a set of edges in the graph Gnew that
form a return path.

We define a path of k connected edges as epath(vs1, vtk) �
(ei1(vs1, vt1), ei2(vs2 � vt1, vt2), ei3(vs3 � vt2, vt3), . . . , eik(vsk � vtk−1,
vtk)), and we will refer to epath(vs1, vtk) as a return path, when
vs1, vtk{ } ∈ VBM (Figure 1 (bottom right)). ACCORDION searches for
such return paths after clustering graph Gnew, which is discussed in the
following subsection.

2.2.2 Gnew clustering
To find clusters in Gnew, we apply the Markov Clustering

algorithm (MCL) (Enright et al., 2002), an unsupervised graph
clustering algorithm, commonly used in bioinformatics (e.g.,
clustering of protein-protein interaction networks (Brohée and
van Helden, 2006; Lei et al., 2016)). A number of previous
studies have demonstrated that the MCL algorithm
outperforms other clustering techniques (Blatt et al., 1996;
Bader and Hogue, 2003; King et al., 2004; Brohée and van
Helden, 2006; Frey and Dueck, 2007; Gu et al., 2019). The
MCL algorithm has been proven to converge with undirected

graphs (Enright et al., 2002), and since in this early step we are
interested in clustering a graph given its connectivity only, the
information about adjacency without directionality is sufficient
for this step. The directionality will be included in later steps
when exploring dynamic behavior. Therefore, ACCORDION
provides to the MCL algorithm the information about node
adjacency in Gnew. Furthermore, since graph Gnew can be either
acyclic or cyclic, our work demonstrates a novel application of
the MCL algorithm beyond its previous use on acyclic graphs
only (Mountasser et al., 2017).

MCL simulates random walks on an underlying interaction
network (in our case, graph Gnew), by alternating two operations,
expansion and inflation. First, self-loops are added to Gnew, and the
updated graph is represented as an adjacency matrix M, which is
therefore symmetric, mapping nodes in Gnew to both row and
column headers in M. The entries in matrix M are assigned
value 1 when an edge between their column and row nodes
exists in Gnew or when an entry is on the main diagonal of M
(i.e., same column and row node), and value 0 otherwise. Next,
matrix M is used by the MCL algorithm as an initial version of a
stochastic Markov matrix M′ (Gagniuc, 2017), where each entry
represents the probability of a transition from the column node to
the row node. Since Gnew is not a weighted graph, all transitions are
assumed to be equally likely, and the matrix M′ is normalized such
that the sum of entries in each column equals 1.

The probability of a random walk of length q between any two
nodes can be calculated by raising the matrixM′ to the exponent q, a
process called “expansion”. As the number of paths is likely larger
between nodes within the same cluster than between nodes across
different clusters, the transition probabilities between nodes in the
same cluster will typically be higher in a newly obtained expanded
matrix. MCL further amplifies this effect by computing entry-wise
exponents of the expanded matrix, a process called “inflation”,
which raises each element of the matrix to the power r. Clusters
are determined by alternating expansion and inflation, until the
graph is partitioned into subsets such that there are no paths
between these subsets. The final number of generated clusters,
C1, . . . , Cn, depends on the selected inflation parameter r.

As discussed above, ACCORDION clusters the entire Gnew in
order to account for the connectivity between new elements in CE and
the baseline model, and thus, it likely assigns parts of the baseline
model to different clusters. We will refer to the CE (BM) part of a
generated cluster l as CCE

l (CBM
l ) and to the nodes and edges in these

cluster subsets as VCl,CE (VCl,BM) and ECl,CE (ECl,BM), respectively.

2.2.3 Assembly of candidate influence networks
In this section, we explain the rationale behind adding a specific

new node/edge without removing any node/edge from the baseline
model. ACCORDION relies on having a baseline model which is a
set of interactions that are well established and trusted and need to
be expanded not replaced. Therefore, any contradictions with the
baseline model interactions will be removed. Exploring
contradictions is not in scope of this paper, as it is an extensive
topic, which we have studied as part of our other work (Hansen et al.,
2021; Hansen, 2022). On the other hand, all the different versions of
models that ACCORDION outputs allow the user to explore
different structures of the same model as if they have done
several wet-lab experiments.
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From the generated clusters and the baseline model,
ACCORDION assembles multiple candidate models (CMs) as
follows. ACCORDION can add clusters one at a time, or in
groups. The more clusters or cluster groups are generated, the
number of possible cluster combinations grows, and consequently,
ACCORDIONneeds to assemble and testmoremodels. In addition to
that, in most cases |VBM|< |VCE| and |EBM|< |ECE|, and thus, the
number of new nodes and edges in a cluster tends to be relatively large
compared to the size of the baseline model (we will show related
examples for our case studies later in Section 3).

Adding a large number of new nodes and edges to the baseline
model at once can significantly change the structure, and
consequently, the behavior of the model. Therefore, the default
approach in ACCORDION is to evaluate only individual clusters
generated as described in previous sub-section, as well as merged
clusters Ci,j, created by combining pairs of clusters Ci and Cj

(i, j � 1, . . . n, i ≠ j). ACCORDION determines for each
individual and merged cluster whether it forms a return path
with the baseline model, and for each such cluster,
ACCORDION creates a candidate model by adding the entire
baseline model to the cluster. In other words, the number of
created candidate models is equal the number of clusters
(individual and merged) that form a return path with the
baseline model.

As defined above, the clusters formed from the Gnew graph
can contain nodes and edges of the baseline model. Therefore, for
those clusters (individual or merged) that were used to create
candidate models, ACCORDION computes the node overlap
(NO) value (Ahmed et al., 2021b), as a ratio of those nodes in
a cluster Cl that are present in the baseline model,
VCl,BM� VBM ∩ VCl and the total number of nodes within the
cluster VCl :

NOl � VCl,BM
∣
∣
∣
∣

∣
∣
∣
∣

VCl| |

2.3 Executable model recommendation

In Section 2.2, we discussed the steps to form Gnew, focusing on
its static structure. Here, we describe creation of new update
functions for elements in Gnew, and how an additional input to
ACCORDION is used to evaluate dynamic behavior of
candidate models.

2.3.1 Revising element update rules
When adding new elements and influences to baseline

models, ACCORDION uses the information provided in its
inputs to update existing or create new element update rules.
This information includes element update rules in the baseline
model and the sign of influences (positive or negative) in the CE
set. Whenever a new element v ∈ VCE\VBM with non-empty
influence set is added to the baseline model, ACCORDION
generates a new update rule for v. While the algorithms within
ACCORDION are not dependent on the type of state update rules
used for elements of a baseline model (as discussed in Section
2.1), the selection of CMs will depend on the granularity of the
information provided at the input. The event information

available in the CE set is often qualitative, for example, “A
positively regulates B”. Furthermore, if an update rule for
element B in the baseline model already includes two positive
regulators C and D, i.e., xB � f(xC, xD), then the new event from
the CE set (“A positively regulates B”) can be added to the update
rule for B in two ways: using “OR” operation,
xB � f(xC, xD)OR xA, or using “AND” operation, xB �
f(xC, xD)AND xA (following the definition from Section 2.1,
xA, xB, xC, xD are variables representing level or amount or
activity of elements A, B, C, D, respectively). In the absence of
such detailed information about relationships between
regulators, and following our previous work (Liang et al.,
2017), we use as default the “OR” operator when adding
connecting new interactions that are in the CE with the
interactions within the baseline model. Additionally, when
elements have more than two discrete levels, ACCORDION
can apply other functions when adding new regulators to an
element, and which are compatible with the used simulator (e.g.,
max and min) (Sayed et al., 2017; Andjelkovic and Miskov-
Zivanov, 2021).

2.3.2 Model evaluation
The third input to ACCORDION includes a set of properties

 ∈ T , which define the dynamic behavior that the models
recommended by ACCORDION should satisfy. We refer to this
behavior as “desired behavior” and, dependent on the goals of a
study, this can be actual, observed, measured, or expected behavior
of the modeled system. For instance, we can test whether at any
point within the first s1 time steps, model element vi (i.e., its state
variable xi) reaches value X1 and element vj (i.e., its state variable
xj) reaches value X2, and they both keep those values for at least s2
time steps. We write this property formally as
Fs1Gs2(xi � X1 ∧ xj � X2), where Fs1 stands for “any time in the
future s1 steps”, and Gs2 stands for “globally for s2 steps”.

To select the CM that allows for most closely reproducing the
experimentally observed or desired behavior, and given the
randomness in time and the order of events in modeled systems,
ACCORDION uses a combination of stochastic simulation and
statistical model checking.

The DiSH (discrete stochastic heterogeneous) simulator (Sayed
et al., 2017; Andjelkovic and Miskov-Zivanov, 2021) is used to
obtain element trajectories, i.e., a sequence of element state values in
time, for the baseline model and the CMs. DiSH is a stochastic
simulator that can simulate models at different levels of abstraction,
information resolution, and uncertainty. This range of simulation
schemes is especially valuable when working with diverse
information sources and inputs, such as the ones used by
ACCORDION. Each simulation run starts with a specified initial
model state, where initial values are assigned to all model elements to
represent a particular system state (e.g., naïve or not differentiated
cell, healthy cell, cancer cell). The initial values for the baseline
model elements (nodes inVBM) are usually already known, however,
the newly added elements (nodes in VCE) need to be assigned initial
values as well. For the purpose of presenting ACCORDION here, we
assume that, when no initial values are provided for new elements,
all elements in the same cluster start at a similar level. As our future
step, we will expand ACCORDION with several methods for
inferring and assigning initial values, if data is available.
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ACCORDION runs a statistical model checker (Jha et al., 2009;
Wang et al., 2016) to verify whether the CMs satisfy a set of desired
system properties. The model checker reads properties written using
Bounded Linear Temporal Logic (BLTL) (Jha et al., 2009; Tkachev
and Abate, 2013). For the example above, this would be F[s1]G[s2]
(xi � X1 and xj � X2). For a given executable model M and a
property , the model checker outputs a property probability
estimate, pM

 , that M satisfies , under the specified error
interval for the estimate. An example of a property is also shown
in Figure 1. To avoid the search for all possible state trajectories
through the non-deterministic state transition graph, the
statistical model checker calls the simulator to generate
element trajectories for a defined number of steps and
performs statistical hypothesis testing on those trajectories
with respect to a given property (Miskov-Zivanov et al.,
2013b; Miskov-Zivanov et al., 2016; Liang et al., 2017).

2.3.3 Model scoring and recommendation
Generated CMs can be scored in different ways, depending on

the goals of the study. Once all created CMs are evaluated on how
well they satisfy each given property, ACCORDION can findmodels
that satisfy a particular property j ∈ T with high probability. To
provide the recommendation of top CMs that are closest to expected
probability values for properties, we use several metrics defined
as follows.

Definition 1. The goal property probability for a property ,
denoted as P, indicates either the estimated likelihood or
expected likelihood (e.g., after an intervention) for the real
system to satisfy property .

We note here that, due to randomness of biological systems, P

is not always 0 or 1, and instead can take any value from the
interval [0,1].

Definition 2. For a given model M and property , the model
property error, εM , is the absolute difference between the
probability value pM

 estimated by model checking for model
M and property , and the goal property probability P: εM �
|pM

 − P|.

Definition 3. For a given modelM, the average model error, εMT ,avg,
is computed as a mean of model property errors εMi across all tested
properties i ∈ T .

Definition 4. For a given model M and a set of properties T , we
define σ-score as σMT � 1 − εMT ,avg.

It can be concluded from Definition 4 that the larger the σ-score
for a model is the closer the model is to satisfying all desired
properties.

Definition 5. For a given model M, a set of properties T , and
δ ∈ [0, 1], we define δ-score, denoted as NM

T ,δ, as the percent of
properties in i ∈ T for which it holds that εMj ≤ δ.

The parameter δ indicates how close the pM
j

value needs to be to
the goal probability Pj for the property to be considered satisfied.
ACCORDION users can select the value for δ based on their
modeling goals.

3 Results and discussion

3.1 Benchmarks

In the absence of standardized benchmarks to evaluate
ACCORDION, we created nine case studies. These
benchmarks are available at (ACCORDION Github, 2024;
ACCORDION Jupyter Notebook, 2024). In the Supplement,
we provide an overview of the biological background for all
studied systems, the details of creating the baseline model, and
the steps of selecting literature and creating CE set for each
conducted case study. In Figures 2A, B, we list the main
characteristics of these nine cases, with models of three
biological systems and different sets of CEs for each system.
The three models include control circuitry of naïve T cell
differentiation (T cell) (Miskov-Zivanov et al., 2013a), T cell
large granular lymphocyte (T-LGL) leukemia model (Zhang
et al., 2008), and pancreatic cancer cell model (PCC) (Telmer
et al., 2021). The studies vary in the size and graph features of
baseline models (“BM creation” columns) and the CE sets (“CE
set creation” columns), and are named Tcell CEFA, Tcell CESA,
Tcell CESM, T-LGL QSm, T-LGL QMed, T-LGL QDet, PCC BMAu,
PCC BMAp, and PCC BMPr (see Supplement for details). The size
of baseline models varies from several tens to several hundreds of
nodes or edges, and the number of interactions in the CE sets
varies from half the number of interactions in the baseline model
to six times larger (“BM and CE set relationship” columns,
Figure 2A). In Figure 2C, we illustrate the overlap and
differences between the CE sets in the T cell case studies, to
highlight the variability across CE sets that can be obtained in the
context of the same baseline model.

We also list in Supplementary Table S1 the sets of properties that
the real system satisfies, or should satisfy, which are not fully
satisfied by baseline models and are used to guide new model
assembly for each case study. The properties in Supplementary
Table S1 are provided in both natural language descriptions and
in machine readable BLTL format, together with their goal
probability values (Pj). For each system, besides a baseline
model, we also found a golden model in literature, (Hawse et al.,
2015), for the T cell model, (Zhang et al., 2008), for the T-LGL
model, and (Telmer et al., 2021) for the PCC model. The details of
each golden model are provided in the Supplement and as part of
benchmark descriptions in the tool documentation (ACCORDION
Github, 2024; ACCORDION Jupyter Notebook, 2024). Figure 2A
includes the characteristics of golden models (columns “GM” and
“GM and CE set relationship”).

With the nine case studies, we evaluate ACCORDION’s
performance and demonstrate different use cases by: (i) varying
the size and contents of the baseline model and the CE set (all nine
case studies); (ii) varying the quality of the CE set (Tcell case
studies); (iii) varying the level of detail in user selection of
literature (Tcell CEFA study and all three T-LGL case studies);
(iv) reconstruction of previously published model (all nine
case studies).

We summarize in the table in Figure 2D the overall graph
characteristics of the CMs obtained by ACCORDION for these nine
benchmarks.
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3.2 Recommending new models with
desired behavior

The results listed in Figure 3 emphasize the importance of using
ACCORDION when recommending a new or extended model.
Figure 3 shows values for CMs in the case studies for several
metrics, NO, normalized σ-score, δ-score, and the joint property
probability estimate ~pT across all properties in T (definitions in
Section 2.3 and Supplement). These charts demonstrate that using
only one of the metrics may be misleading since the “best”
recommended CM can be different across these four metrics
(differences highlighted in yellow in Figure 3). Furthermore, the
results show that in some case studies ACCORDION recommends
multiple CMs even when using the same metric (e.g., T-LGL QMed

and QDet for all the metrics). Additionally, we show in the form of
heatmaps, the individual property probability estimates pCMi

j
that

ACCORDION computed in all nine case studies, for each tested
property, for the CMs that formed return paths with baseline
models. This detailed information can be especially useful if users
decide to manually inspect and further modify CMs recommended
by ACCORDION.

In Figure 4A, we show the δ-score,NCMi
T ,δ , values for the top CMs

recommended by ACCORDION in each of the nine studies.
Additionally, for the parameter δ, which indicates the allowed
difference between the computed CM property probability value
and the goal probability, we explored a range of values (0, 0.1, 0.2,

0.3, 0.4, 0.5). To highlight the improvements in CMs when compared
to the original baseline model, we show all results next to their
corresponding baseline model values. ACCORDION achieved δ-
score of 95% when δ = 0.3 (all but one property is satisfied for
this value of δ). Furthermore, increasing δ improves the model score,
however, we observed that 0.2 or 0.3 value for δ is optimal to obtain
useful models with high score. Overall, ACCORDION automatically
selected a small fraction (~20%) of all interactions in the CE set,
sufficient to decrease model error by up to 83% (Figure 4B).
Ideally, we would like the baseline model error to be reduced to 0,
however, our case studies were designed to mimic realistic
scenarios, where the error of the recommended model can be
affected by external factors, as discussed in the following.

Several CE sets did not fulfill the necessary requirement for
properties to be used: all elements that are listed in properties
(Supplementary Table S1, Supplement) need to be present in at
least one of the sets VBM and VCE. As shown in Figure 4C
(“Properties” columns, green), in six out of nine studies, these
elements are either already in the baseline model or in the CE set.
However, in all three T-LGL studies, element GAP is not found in
either of the two sets, VBM and VCE, and in the T-LGL QSm case
additional two elements, Ceramide and SOCS, are not present.
These element omissions occur before ACCORDION is used, in
the input that is collected for ACCORDION, and are due to
machine reading not finding those elements in selected papers.
While the properties that correspond to such omitted elements are

FIGURE 2
(A) Benchmark characterization: CE set creation procedure–using a query or a preselected set of papers, or manually curating the paper selection,
and using a fixed or different CE set across all models for the same biological system; ERO–number of events in the reading output; baseline model (BM)
creation–fixed or different across all three studies for the same biological system; the intersection between BM and CE node and edge sets; the golden
model (GM) VGM and EGM sizes; the relationship between each GM and the corresponding CE set (the number of common edges, the number of
edges that are in GM but not in BM, the number of edges that are in GM but not in BM and are found in the CE). (B) Venn diagrams illustrating the overlap
between three sets, ECE, EBM and EGM for the nine case studies. (C)Overlap and differences between the three CE sets for the T cell studies (legend on the
left side of the figure) and the graph was generated by Cytoscape. (D) Several characteristics of CMs created by ACCORDION for the nine case studies,
including the runtime of ACCORDION for obtaining these CMs.
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not suitable for evaluating ACCORDION, we included them in our
results to demonstrate realistic cases with imperfect CE sets. As
part of our future work on ACCORDION, we plan to include pre-

processing methods to automatically exclude such tests before
clustering the CE set, or to inform the user at the beginning that
property elements are not found in the input.

FIGURE 4
ACCORDION evaluation on nine case studies, Tcell studies SM, SA, FA, T-LGL studies Sm, Med, Det, and PCC studies Au, Ap, Pr: (A)maximumCM δ-
score (NCMi

T ,δ,%) obtained in each case study, compared with the baseline model (BM) δ-score; the results are compared for different values of δ (0, 0.1, 0.2,
0.3, 0.4, 0.5); (B) error reduction ACCORDION achieves in each case study; (C) definitions of two prerequisites for using properties (green) or
reconstructing golden models (orange), and three criteria for evaluating ACCORDION’s outcomes (blue, purple, and red), including possible cases
(shades of each color) (vproperty is the element included in the property, property details listed in Supplement; CMrecommended is the top recommended
model); tables show whether the prerequisites or criteria are satisfied for all nine case studies.

FIGURE 3
The Tcell, T-LGL and PCC use case results. For eachCM (columns in heatmaps and bar charts):NO values; normalized σ-score (~σCMT ), δ-score ( ~NCM

T ,δ,%),
and joint property probability estimate (~pCM

T ); and heatmaps of individual property probability estimates for 27, 19 and 21 properties of the Tcell, T-LGL and
PCC use cases, respectively. Results are shown for 16 (CESM), 22 (CESA) and 27 (CEFA) CMs for the Tcell studies, 2 (QSm), 5 (QMed) and 13 (QDet) CMs for the
T-LGL studies, and 5 (BMAu), 12 (BMAp) and 15 (BMPr) CMs for the PCC studies. Normalized versions for themetrics (equations in Supplement) are used
to clearly distinguish the “best” CM per each metric. Bars highlighted in yellow show that different metrics can recommend different CMs.
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While it is not reasonable to expect from ACCORDION to find
an element that does not exist in its input, it should be able to recover
property elements that are not present inVBM but are found in input
VCE. As Figure 4C (“criterion A”, blue) highlights, ACCORDION
does indeed recover all property elements missing from a baseline
model in at least one of the recommended CMs.

Finally, when ACCORDION recovers all necessary property
elements, most often the reason for non-zero model property errors
(εCMi

j
>0) is in element update rules. For instance, in the Tcell cases, for

the best recommended model per case, ACCORDION was able to
recover FOXO1 which was not in VBM but was in VCE. Moreover,
ACCORDION recovered the update function of FOXO1 in all three
cases and therefore, the properties that correspond to the dynamic
behavior of FOXO1 (9, 18 and 27) under three different scenarios
were all satisfied by most CMs (heatmaps, Figure 3). However, in the
case of update function for AKT, ACCORDION added a number of
new AKT regulators to the baseline model which affected the dynamic
behavior of AKT. There are two ways in which this could be overcome.
First, one could either use other tools to filter or score individual
interactions in CE set (Gyori et al., 2017; Holtzapple et al., 2020) before
they are used by ACCORDION, which we are planning to incorporate
as one of our future steps. Second, ACCORDION can be used to
identify cases where human input is necessary, for example, cases where
many element regulators appear in literature, but not all of which can be
used to form regulatory rules.

3.3 Finding the most relevant set of new
interactions

To test the performance of ACCORDION under a range of
different conditions, we created the use cases such that the
relationship between the number of elements and interactions in
baseline models (|VBM|, |EBM|), and in their corresponding CE sets
(|VCE|, |ECE|) varies from the CE set being smaller than baseline model
in the T-LGL QSm case, to being up to six times larger than baseline
model in other use cases (Figure 2). We also determined the size of the
overlap, |VBM ∩ VCE| (Figure 2A), further highlighting that indeed the
number of new elements that could be added to the model is much
larger than the number of elements in the model.

Additionally, we created these nine case studies such that they
have baseline models with varying level of network connectivity. The
baseline model in the T cell studies (Case studies section,
Supplement), is a previously published, thus functional, model,
while the T-LGL and PCC baseline models were created by
removing nodes and interactions from published models. Since
by construction the clusters that ACCORDION generates are
connected only to a part of the baseline model (Section 2.2), we
used the node overlap metric NO to determine the relationship
between the number of new nodes that are added to the baseline
model and the part of the model these nodes are connected to. The
NO numbers in Figure 3, together with the ratios |ECM\EBM |

|ECE | listed in
Figure 2D, show that ACCORDION is selective, and it only adds to
the baseline model a subset of new interactions that are well
connected with the baseline model.

We investigated the percentage of these interactions selected
from the entire CE set that were included in the top recommended
CM (Figure 2D). For the Tcell cases, ACCORDION recommended
on average 14% of the interactions as candidates for model
extension, whereas for T-LGL and PCC cases, ACCORDION
identified on average 26% and 15% of such interactions,
respectively. These numbers emphasize an important
characteristic of ACCORDION: while allowing for
comprehensive overview of literature, it significantly reduces the
number of selected interactions, such that, if human input is still
necessary, the number of interactions to manually review is
significantly smaller than the original CE set.

Interestingly, higher NO values seem to correlate well with
larger reduction in model error for the Tcell and T-LGL studies.
However, in the PCC studies this correlation does not hold,
where the CMs with a large number of new interactions
compared to the size of the baseline model significantly
decrease the baseline model error (~80% reduction), as shown
in (Figure 4B). This demonstrates another important outcome:
when the baseline model is complete and well tested a smaller
number of extensions can help improve it (e.g., Tcell and T-LGL
cases), while for baseline models that are incomplete (e.g., when
the user starts only with a seed set of interactions and not a
complete model), a larger number of interactions needs to be
added to improve them (e.g., PCC case).

FIGURE 5
(A) Several cluster characteristics measured as functions of inflation parameter (r), for the Tcell CEFA, Tcell CESA, and Tcell CESM cases (r1 = 0.5, r2 = 2,
r3 = 4, r4 = 6). (B) The comparison between BM error and the top model (with minimum CM error, min

i
(εCMi

T ,avg)), recommended by ACCORDION and
previously published layered method in (Liang et al., 2017) and CLARINET in (Ahmed et al., 2021b).
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3.4 Identifying alternative networks

As described in Section 3.1, besides baseline models, we also
used golden models in our case studies. The purpose of comparison
with golden models is to (i) determine how closely ACCORDION
can reproduce previously published models (“criterion B”, purple,
and “criterion C”, red, in Figure 4C) and (ii) what other models,
different from golden models and satisfying the same set of
properties, ACCORDION is able to create.

In all 3 T cell case studies, ACCORDION adds all the interactions
from the EGM\EBM set to its top recommended CMs (columns “GM”

in Figure 4C, orange). For example, one of the merged clusters in the
Tcell case, with NO = 0.7, restored all the missing interactions that
were removed from the golden model. In the T-LGL and PCC studies,
ACCORDION adds 30% and 32% of missing golden model
interactions to recommended CMs. Similar to the discussion in
Section 3.2 about the presence of property elements in VBM and
VCE, only interactions that are present in the input CE set can be
examined by ACCORDION (prerequisite in Figure 4C, orange). To
this end, we find that in all three Tcell studies all golden model
interactions that are missing from the baseline model, i.e., interactions
from the EGM\EBM set, are present in CE sets. On the other hand, the
CE sets in the T-LGL and PCC studies do not contain all the
interactions from the EGM\EBM sets, (Figure 4C, columns “GM”,
orange). There are two possible reasons for this, either papers that were
selected using queries do not include those missing interactions or
machine reading does not recognize these interactions in the papers.

An important outcome from this exercise is that ACCORDION
recommends new CMs, different from golden models, which have high
σ-score and δ-score and contain new interactions that form return
paths with the baseline model. Moreover, in the T-LGL studies, a
significant portion of interactions (41%) was removed from the golden
model to obtain the baseline model. In such cases, ACCORDION
selected from the large CE sets many additional interactions that form
stronger connections with the baseline model (as part of clusters with
highNO values and return paths) than the ones that are in the golden
model, while also being able to find CMs that have high σ-score and
δ-score. For instance, the regulators of AKT in the golden model are
PIP3 andmTORC2, while themodels recommended byACCORDION
also include regulations by TGFβ, IFNγ, CK2, CTLA4, SHIP1, all of
which are suggested in literature. This highlights another possible use of
ACCORDION: for examining redundancies in signaling networks or
discovering alternative pathways regulating the same target element.

3.5 Assistance in query answering

We also explored the relationship between the design of queries and
ACCORDION’s effectiveness, that is, whether the selection of search
terms to mine literature affects the usefulness of extensions selected by
ACCORDION. For the Tcell CEFA case, we used a search query as an
input to PubMed to identify the most relevant papers (Case studies
section, Supplement).We investigated the influence of this query on the
percentage of interaction in clusters used to create CMs with top scores.
In Figure 2D, we show the average and the maximum percentage of
selected interactions, i.e., (|ECM\EBM |

|ECE| )avg and (|ECM\EBM |
|ECE | )max, which are

10% and 33%, respectively. For the best recommended model of this
particular case study, ACCORDIONwas able to recover all the missing

elements that are in VGM and not in VBM, namely, FOXO1, NEDD4,
CK2 and MEK1. Furthermore, as can be seen in Figure 3,
ACCORDION recapitulated the dynamic behavior of FOXO1, an
element that was in the search query used to collect interactions for
the CE set (Case studies section, Supplement), in all three scenarios
(properties 9, 18 and 27). However, the dynamic behavior of AKT
(also in the search query), IL2 and STAT5 was not recovered in one out
of three scenarios, (“High TCR” scenario in Supplementary Table S1,
Supplement, properties 19, 22 and 24). This is due to erroneous
interactions in the CE set extracted by machine readers. As mentioned
previously, we plan to add a pre-processing of CE sets before using them
with ACCORDION (e.g., using interaction filtering (Holtzapple
et al., 2020)).

For the T-LGL model study, we used three different queries (Case
studies section, Supplement). The most elaborate query, in the T-LGL
QDet case study, introduced more descriptive search terms, led to
selecting more relevant papers, and consequently, extraction of
relevant events and element regulators resulting in recommendation
of a CM with high σ-score (0.76) and δ-score (0.75). Additionally, the
update rules of most of the elements were retrieved except three
elements, S1P, GAP and IL2Rβ. The properties that correspond to
these three elements are properties 5, 7 and 12. In contrast, for
T-LGL QSm and T-LGL QMed cases, less properties have been satisfied.
For example, the baseline model error in property 17, related to the
behavior of element JAK, is not corrected in the T-LGL QSm case, while
property 19, related to element NFκB, is not corrected in both T-LGL
QSm and T-LGL QMed cases. This is mainly due to the key regulatory
interactions for these elements not being extracted from literature, or
due to the interactions that are recovered not forming proper update
functions. Overall, by comparing the results for the three queries in the
T-LGL case studies, we have confirmed that a better query design leads
to more useful and relevant information in the input CE sets.

3.6 Runtime and choice of inflation parameter

In Figure 2D, we list the time that ACCORDION takes to
generate clusters when run on a 3.3 GHz Intel Core i5 processor.
The time required by ACCORDION to generate clusters increases
with larger CE sets. For the PCC case studies, the runtime is same
across studies since the same CE set has been used. However, for the
T cell and T-LGL case studies, the CE sets have different sizes, and
thus, result in different runtime. The runtime of the overall
extension algorithm is proportional to the number of properties
that we need to test against. In other words, if we have NC clusters
and NP properties, the time required for the extension algorithm is
at the order of O(NC ·NP). However, the runtime can be
significantly reduced if testing for all properties and clusters is
carried out in parallel, which is part of our immediate future work.

As we see above, the runtime is dependent on the number of
clusters, which in turn is dependent on the cluster granularity and
parameter values chosen for the MCL algorithm. The principal handle
for changing cluster granularity is the inflation parameter r, described
in Section 2.2.

An increase in r causes an increase in the cluster granularity. In
(Enright et al., 2002), the authors determined a good interval to choose
from (e.g., from 1.1 to 10.0), however, the range of suitable values also
depends on the input graph. We explored the effect of r on finding the
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best set of clusters for each benchmark CE set. In Figure 5A, we show
our results for the Tcell case study and the different reading output sets,
we found that r = 1.1 is too low, and r ≥ 6.0 is too high. We have
therefore chosen value r = 4 for our studies and conducted the
experiments discussed in previous sections using this value.

3.7 Comparison with other methods

We compare here the performance of ACCORDION with other
model extension approaches. Themethod proposed in (Liang et al., 2017)
iteratively expands a baseline model, by examining a large machine
reading output in each iteration, and automatically selects a subset of
interactions (influences) that can be directly connected with the baseline
model. The work in (Liang et al., 2017) both expands the model network
and tests the dynamics of the newly built model, by comparing it with a
set of requirements or desired system states. The main drawback of the
method in (Liang et al., 2017) is that it becomes impractical for large
models due to adding new interactions in layers, based on their proximity
to the existingmodel. On the other hand, themethod proposed in (Sayed
et al., 2018b) uses a genetic algorithm to select a set of extensions from
machine reading output to create a newmodel with desired behavior. The
two main disadvantages of this approach are issues with scalability and
the non-determinism, as the solutionmay vary across multiple algorithm
executions on the same inputs.

In (Ahmed andMiskov-Zivanov, 2021; Ahmed et al., 2021b), the
authors proposed a tool and several metrics that rely on interaction
occurrences and co-occurrences in published literature, and account
for the connectivity of the newly added interactions to the existing
models. While it selects new high-confidence interactions that are
well supported by published literature and connected to the baseline
model, this tool focuses on the static model network and does not
consider its dynamic behavior.

We compared ACCORDION’s performance in terms of average
model error of the top recommended model εCMrecommended

T ,avg with two
other previously published methods for model extension from (Liang
et al., 2017; Ahmed et al., 2021b) (the authors in (Ahmed et al., 2021b)
demonstrated that their methods outperform the methods from (Sayed
et al., 2018b), thus, we chose to compare here only with the highest
performingmethods). Figure 5B, shows that among all model extension
methods, ACCORDION is able to find models with the lowest
εCMrecommended
T ,avg . We applied the layered approach from (Liang et al.,
2017) only on the Tcell case study, since it has been shown to mainly
work on smaller models, and we applied the approach from (Ahmed
et al., 2021b) on all three baseline models. Themethod in (Ahmed et al.,
2021b) relies only on the event occurrences and co-occurrences in
literature, without accounting for dynamic behavior, and therefore,
ACCORDION outperforms it, as it is guided by the desired system
behavior (i.e., the set of properties T and their corresponding goal
property probabilities Pj).

4 Conclusion

In this paper, we have described a novel methodology and a tool,
ACCORDION, that can be used to automatically assemble the
information extracted from literature into models and to then
evaluate multiple candidate models to recommend those that achieve

the desired dynamic behavior. Our proposed approach combines
machine reading with clustering, simulation, and model checking
into an automated framework for rapid model assembly and testing
to address biological questions. This unique approach of combining
information retrieval with graph-based methods and dynamic system
analysis is the first of its kind in the systems biology field and enables the
rapid development of models of any system. Furthermore, by
automatically extending models with the information published in
literature, our methodology allows for efficient collection of the
existing information in a consistent and comprehensive way, while
also facilitating information reuse and data reproducibility, and often
helping replace tedious trial-and-error manual experimentation, thereby
increasing the pace of knowledge advancement. The ACCORDION tool
reuses knowledge from multiple literature sources and enhances data
reproducibility evaluating the knowledge in dynamic models. When
compared to the existing tools, ACCORDION also takes into account
the dynamic behavior of the studied system which allows it to
outperform them. The results we presented here demonstrate
different research scenarios where ACCORDION can be used. The
benchmark set presented here and the ACCORDION tool are available
in a GitHub repository (ACCORDION Github, 2024) and the
documentation is available in ReadtheDocs (ACCORDION
ReadtheDocs 2024). As our next steps, we are planning to work
on parallelizing the tool implementation to improve the runtime
when testing large number of properties. Another important
component of our future work are modules to infer update
rules automatically and testing more complicated properties
that capture dynamic behaviors of multiple elements over
varying time sequences. As ACCORDION is the first
framework that connects multiple steps in an automated
pipeline to extend executable network models, we anticipate
further improvements in the form of new versions of the software.
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