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Members of the genus Methylacidiphilum are thermoacidophile methanotrophs
with optimal growth temperatures between 50°C and 60°C, and pH between
1.0 and 3.0. These microorganisms, as well as other extremophile bacteria, offer
an attractive platform for environmental and industrial biotechnology because of
their robust operating conditions and capacity to grow using low-cost substrates.
In this study, we isolated Methylacidiphilum fumariolicum str. Pic from a crater
lake located in the state of Chiapas, Mexico. We sequenced the genome and built
a genome-scale metabolic model. The manually curated model contains
667 metabolites, 729 reactions, and 473 genes. Predicted flux distributions
using flux balance analysis identified changes in redox trade-offs under
methanotrophic and autotrophic conditions (H2+CO2). This was also
predicted under heterotrophic conditions (acetone, isopropanol, and
propane). Model validation was performed by testing the capacity of the
strains to grow using four substrates: CH4, acetone, isopropanol, and LP-Gas.
The results suggest that the metabolism of M. fumariolicum str. Pic is limited by
the regeneration of redox equivalents such as NAD(P)H and reduced
cytochromes.
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1 Introduction

Extremophile bacteria such as Methylacidiphilum fumariolicum are an attractive
platform for industrial and environmental biotechnology. Their broad growth
capabilities offer an opportunity to reduce manufacturing costs through processes
without sterilization or using low-cost substrates (Ye et al., 2023). Between 2007 and
2008, a new clade of methanotrophic bacteria in the Phylum Verrucomicrobia was isolated
from geothermal or volcanic environments (Dunfield et al., 2007; Pol et al., 2007; Islam
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et al., 2008). These strains currently belong to the genus
Methylacidiphilum and are aerobic thermoacidophilic
methanotrophs with optimal growth temperatures between 50°C
and 60°C and an optimal pH between 2.0 and 3.0 (Schmitz et al.,
2021). To date, three species have been identified (Hou et al., 2008;
Anvar et al., 2014; Kruse et al., 2019) and three unclassified strains
have been isolated (Erikstad et al., 2019; Awala et al., 2021). In
addition, five complete genomes and 14 draft assemblies are
available in the NCBI genome database (Hou et al., 2008; Anvar
et al., 2014; Erikstad et al., 2019; Kruse et al., 2019; Awala
et al., 2021).

Because of the recent discovery of the Verrucomicrobia
methanotrophic clade, there is limited knowledge about their
broad metabolic capabilities and their further biotechnological
applications. For example, the M. fumariolicum str. SolV has
been proven to grow heterotrophically on C2 and C3 compounds
such as ethane, and propane (Picone et al., 2020), as well as
autotrophically, using H2 as an electron source and CO2 as the
only carbon source (Mohammadi et al., 2017). The pathway for the
oxidation of propane, isopropanol, and acetone was also elucidated
in a recently isolatedMethylacidiphilum sp. IT6 (Awala et al., 2021).
Moreover, it has been shown that the strain SolV can convert
methanethiol (Schmitz et al., 2022) to H2S, and oxidize H2S to
elemental sulfur (Schmitz et al., 2023). Their metabolic capabilities
and resilience to harsh conditions make these bacteria excellent
candidates for use in biofilters that treat H2S-contaminated gaseous
streams or as biomining agents recovering Rare Earth Elements
(REEs) from low-grade sources (Singer et al., 2023). Additionally,
Verrucomicrobia methanotrophs can be a source of novel
thermostable enzymes for the chemical and pharmaceutical
industries (Gevaert et al., 2019; Schmitz et al., 2020). For
example, heterologous expression of PmoD from
Methylacidiphilum sp. IT6 enabled the construction of a whole-
cell biocatalyst in the Type I methanotroph Methylomonas
sp. DH1 used for the production of acetol from acetone (Chau
et al., 2022). We expect that the range of biotechnological
applications of Verrucomicrobia methanotrophs will further
diversify as more strains are isolated from different environments.

Genome-scale metabolic models (M-models) can be used as a
knowledge base to concentrate the available biochemical, genomic,
metabolic, and physiological information of a target
microorganisms (Thiele and Palsson, 2010; Monk et al., 2017).
The genome functions are translated into a set of metabolic
reactions encoded in a mathematical representation as a set of
linear equations and constraints (Orth et al., 2010). The
relationship between genotype and phenotype can be investigated
from the solutions of M-models using Flux Balance Analysis (FBA)
(Feist et al., 2007). Moreover, M-models enable the integration of
multi-omic datasets into a single comprehensive analysis workflow
(Noor et al., 2019; Arnolds et al., 2021; Passi et al., 2022). In
methanotrophs, M-models have been used to study the
mechanisms of electron transfer to the periplasmic methane
monooxygenase (PMMO) (Lieven et al., 2018), one-carbon
metabolism (Nguyen A. D. et al., 2020), metabolic adaptations to
high salinity conditions (Bordel et al., 2020b), nitrate-dependent
methane oxidation (Versantvoort et al., 2019), etc.

In this study, we isolated and sequenced the genome of
Methylacidiphilum fumariolicum str. Pic. Then, we collected

experimental growth phenotypes using four substrates and used
this information to validate our reconstructed M-model. The model,
also referred to as iAS473, was manually curated to comply with the
most recent community standards (Laibe and Le Novère, 2007;
Waltemath et al., 2011; Carey et al., 2020). This knowledgebase
compiles with the latest bibliomic findings of the genus
Methylacidiphilum, specifically the metabolism of M.
fumariolicum. To our knowledge, this is the first manually
curated genome-scale metabolic reconstruction for any
methanotrophic Verrucomicrobia.

2 Results

2.1 Isolation and genome characterization

Taxonomic analysis of the raw sequencing data indicated that 96%
of the sequences were classified as Methylacidiphilum (Supplementary
Figure S1). Based on this result, a two-step assembly process was used to
improve the contiguity of the recovered genome (see Methods Section
4.9). The final genome assembly had a total length of 2.4 Mb and an
average GC composition of 41.31%, which are comparable to those of
other genomes reported for this species by clade (Supplementary Table
S2). It contains a full set of ribosomal and transfer RNA genes (3 and 47,
respectively), and 469 of 471 BUSCO gene markers for
Verrucomicrobia bacteria (Simão et al., 2015), including
2 fragmented and zero duplicated genes. Other assembly statistics
are listed in Supplementary Table S2.

The Average Nucleotide Identity (gANI) values (Varghese et al.,
2015) were calculated fromorthologous gene clusters identified between
this assembly and 11 genomes available for the Methylacidiphilum
genus (see Methods Section 4.10). The genome assembly of our isolate
had a gANI above 97% with all M. fumariolicum genomes, which
exceeded the suggested cut-off of 96% for species affiliation (Sant’Anna
et al., 2019). Therefore, subsequent phylogenomic analyses were
conducted using five available genome assemblies for M.
fumariolicum. The phylogenetic tree, reconstructed from the
117 top-ranking phylogenetic markers (see Methods Section 4.10),
indicates that the assembly reported in this study clusters together
with strain SolV in the same branch (Figure 1A). Together, the gANI
values and phylogenomic analysis indicate that the recovered genome
represents a novel strain of theM. fumariolicum species, for which the
name Methylacidiphilum fumariolicum strain Pic is proposed, where
Pic stands for the name of the municipality in which the volcanic lake is
located (Pichucalco).

Furthermore, the taxonomic affiliation was predicted from the
periplasmic methane monooxygenase subunit A (PmoA), which is
often used as a molecular marker of methanotrophic
microorganisms (Knief, 2015; Hogendoorn et al., 2021). Our
genome assembly contained three complete pmoCAB operons
(Supplementary Table S5). A maximum-likelihood phylogenetic
tree was constructed using PmoA sequences spanning the three
phyla known to have methanotrophs (Verrucomicrobia,
Gammaproteobacteria, and Alphaproteobacteria). The tree
indicates that all PmoA sequences from the assembly reported in
this study clustered with other Verrucomicrobia methanotrophs
(Figure 1B). Interestingly, most Verrucomicrobia methanotrophs
encode more than one copy of the pmoCAB operon (Schmitz et al.,
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2021); therefore, phylogenetic analyses of a single subunit such as
PmoA are inadequate for determining species-level taxonomic
affiliations (Supplementary Figure S2).

2.2 Physiological characterization under
methanotrophic and heterotrophic
conditions

A key physiological characteristic of M. fumariolicum str. Pic is
its capability to achieve high growth rates at temperatures above

50°C. Here we used the oxygen consumption rate as a response
variable linked to biomass growth using a respirometry chamber.
We found that the optimal growth temperatures of strain Pic were
between 50°C and 60°C (Figure 1D).

We also assayed the optimal growth pH by measuring specific
CH4 oxidation rates in experiments ranging from 1.0 to 3.0 at 50°C.
As shown in Figure 1C, oxidation rates were higher between
pH 1.5 and 2.0, sharply decrease after pH 2.5, and become
undetectable at pH 3.0. The pH range in which strain Pic
oxidizes CH4 is narrow in comparison to other M. fumariolicum
strains, which can grow at pH as high as 6.0 (Pol et al., 2007).

FIGURE 1
(A)Maximum likelihood phylogenetic tree reconstructed from the top 117 phylogenetic markers identified forMethylacidiphilum species. Bootstrap
values were estimated using 25,000 replicates. The tree is rooted at midpoint. (B) Maximum likelihood phylogenetic tree for periplasmic methane
monooxygenase subunit A. The sequence of strain Pic clusters with sequences of other Verrucomicrobia methanotrophs. (C) The highest specific CH4

oxidation rate from strain Pic was determined between pH 1.5 and 2.0. (D) The highest O2 respiration rate from strain Pic was determined between
50°C and 60°C. (E) CO2 production rates from strain Pic growing in four different substrates. Results show that strain Pic oxidizes C3 substrates
isopropanol and acetone.
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Growth rates and yields (Table 1) were determined at 50°C and
pH 2.0. The CH4:O2 ratio was typical for Methylacidiphilum strains
(1:1.6); however, the CH4:CO2 ratio of 1:0.93 was much higher than
that expected for these methanotrophs (1:0.65) (Pol et al., 2007).

Three pmoCAB operons (Supplementary Table S4) were
identified in the Pic genome. Interestingly, the strains SolV and
IT6 also have three pmoCAB operons and they have been proven to
oxidize C3 substrates (e.g., IT6 can grow on isopropanol, acetone,
and acetol as carbon source) (Picone et al., 2020; Awala et al., 2021).
The high sequence homology between the pmoA3 of strain IT6 and
strain Pic (Supplementary Table S4) provided computational
evidence that strain Pic could potentially grow on C3 compounds
using operon pmoCAB3 (Supplementary Figure S2). Therefore, the
capacity of strain Pic to oxidize C3 compounds was evaluated by
independent incubations with 50 mM acetone, 50 mM isopropanol,
and 10% LP-Gas (~90% propane and ~10% of a mix of propylene,
butylene, isobutane, and n-butane). Figure 1E shows that the CO2

production rates of cultures with the three substrates were higher
than the negative control, but lower than cultures incubated
with 10% CH4.

2.3 Genome-scale metabolic network
reconstruction

2.3.1 Metabolic network properties
The genome-scale metabolic reconstruction ofM. fumariolicum

str. Pic was generated using a semi-automatic methodology (see
Methods Section 4.12.1). The initial draft reconstruction contained

603 genes, 1,604 reactions, and 1,555 metabolites. Out of all
reactions, 492 (31.2%) had no gene association. The missing
genes for these reactions were filled by manual queries (Camacho
et al., 2009) against protein sequences in the KEGG pathwaymap for
M. infernorum (Hou et al., 2008) or MetaCyc database (Caspi et al.,
2014). Using this method, gene associations for 79 reactions were
identified, while the remaining 415 reactions were removed from the
model, along with 390 metabolites associated with those reactions.
Furthermore, 37 stoichiometric duplicate reactions were removed,
and 43 reactions that represented sub-reactions or reaction
mechanisms were replaced by a lumped reaction. Of the
remaining metabolites and reactions, 618 and 581 could not be
annotated across databases and were removed from the model. Next,
to allow the production of all biomass precursor metabolites,
101 reactions were manually gap-filled and an additional 43 were
added to complete hydroxylamine oxidation metabolism,
C3 substrates oxidation, autotrophic metabolism, and acid
resistance mechanisms. Subsequently, reaction identifiers were
translated into BiGG namespace (King et al., 2016), and 96 new
reaction identifiers, associated with 79 genes, were created for non-
existent reactions in this database (Supplementary Table S7).

The final reconstruction comprised 667 metabolites,
729 reactions, and 473 genes (Figure 2A). Out of the total
number of reactions 162 did not have a gene association. The
reconstruction was named iAS473 following community
standards. Standardized quality analysis with MEMOTE (Lieven
et al., 2020) indicated that the model is stoichiometrically consistent,
and without erroneous generation of energy metabolites (Gevorgyan
et al., 2008; Lieven et al., 2020). Moreover, an annotation consistency

TABLE 1 Comparison of growth characteristics between Methylacidiphilum strains and model iAS473 simulations.

Strain Substrate Condition qSa µ (h-1) YO2
b YCO2

b YX
c Reference

Pic CH4 Experimental 3.5 0.015 1.62 0.93 0.12 This Work

SolV CH4 Experimental n.d 0.070 1.6 0.65 0.35 Pol et al. (2007)

Kam1 CH4 Experimental n.d 0.018 n.d n.d 0.18 Dunfield et al. (2007)

V4 CH4 Experimental n.d 0.038 n.d n.d 0.39 Islam et al. (2008)

IT6 CH4 Experimental n.d 0.047 n.d n.d n.d Awala et al. (2021)

Pic CH4 Simulation 3.5 0.037 1.5 0.57 0.43 This Work

Pic CH4 Simulationd 3.5 0.029 1.6 0.66 0.34 This Work

SolV H2+CO2 Experimental 13.2 0.047 0.32 0.19 0.19 Mohammadi et al. (2017)

Pic H2+CO2 Simulatione 13.2 0.034 0.37 0.11 0.11 This Work

IT6 Isopropanol Experimental n.d 0.042 n.d n.d n.d Awala et al. (2021)

IT6 Acetone Experimental n.d 0.039 n.d n.d n.d Awala et al. (2021)

Pic Propane Simulation 1.16 0.033 3.63 1.84 1.16 This Work

Pic Isopropanol Simulation 1.16 0.038 2.92 1.64 1.35 This Work

Pic Acetone Simulation 1.16 0.033 2.63 1.84 1.16 This Work

aSubstrate uptake rate in units of mmol gDW−1 h-1.
bOxygen and CO2 yields in reference to the substrate in units of mol mol-1.
cBiomass yields in reference to the carbon source in units C-mol mol-1, yields were calculated assuming a biomass formula weight of 24.6 C-mol gDW-1.
dSimulations constraining flux of reaction FALDHpp, to be 20% of the total formaldehyde oxidation rate.
eSimulations constraining flux of reaction HYD4pp to be 76% of the total H2 oxidation rate.

n.d., not determined.
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score of 92% indicated that the model is of high quality. A detailed
description of MEMOTE results may be found in the GitHub
repository (see Data Availability Statement). The Model is
available in SBML Level 3 version 1, with the FBC package
enabled (Hucka et al., 2003; Olivier and Bergmann, 2018).

2.3.2 Manual curation and biomass constraints
2.3.2.1 Electron transport chain

The electron transport chain (ETC.) and energy conservation
mechanisms are active in bacteria using quinones. These molecules
are lipophilic compounds of the cytoplasmic membrane. Bacteria

contain up to three types of quinones: ubiquinones, menaquinones,
and demethylmenaquinones (Meganathan, 2001). Verrucomicrobia
methanotrophs are known for producing menaquinone through a
recently identified pathway using futalosine as an intermediate
(Hiratsuka et al., 2008). Interestingly, the genome sequence of
our strain does not encode for any of the genes necessary to
produce ubiquinol. As a result, all reactions in iAS473 have been
manually curated to use menaquinones as electron transporters.

All components of the, ETC, necessary for energy conservation
(complex I-V) are encoded in the genome of strain Pic (Figure 2C),
including the Alternative Complex III (ACIII) known to act as a

FIGURE 2
(A) Voronoi tree map showing the distribution of reactions, metabolites, and genes. (B) Bar plot showing the number of reactions grouped by
pathway. (C) Metabolic map of the different metabolic modules represented in the model.
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cytochrome-menaquinol reductase in all Verrucomicrobia
methanotrophs (Schmitz et al., 2021). Unfortunately, it is unclear
whether ACIII contributes to the proton motive force (pmf) by
translocating electrons across the membrane (Sousa et al., 2018; Sun
et al., 2018). Because of the uncertainty in the stoichiometry of this
complex, cytochrome-ubiquinol reductase activity was modeled by
reaction CYO1_KT in which two protons are translocated across the
membrane. The stoichiometry of the remaining components of the,
ETC, was modeled by assuming a P/O ratio of 2.5 (Bordel
et al., 2019a).

2.3.2.2 Carbon metabolism
The pathway for CH4 assimilation begins with its oxidation to

methanol by the enzyme methane monooxygenase (MMO) enzyme.
Our model contains the PMMO which is present in the cell wall.
Although themechanisms of electron transfer to this enzyme are still
under debate, previous modeling studies have suggested that
electrons for CH4 oxidation originate from the quinone pool
(Bordel et al., 2019a). In our model, menaquinones were used as
electron donors in the PMMOipp reaction (Figure 2C). Gene
protein reaction rule (GPR) for this reaction was set to operons
pmoCAB1 and pmoCAB2 because those have the highest sequence
similarity to those expressed in the presence of CH4 from strain IT6
(Supplementary Table S4).

Subsequently, methanol is oxidized to formaldehyde by a
methanol dehydrogenase (MDH). We found that our strain
encodes the lanthanide-dependent MDH XoxF, together with the
periplasmic substrate-binding protein XoxJ and the cytochrome C
XoxG (Supplementary Table S5), as well as the gene cluster
pqqBCDE and pqqA required to produce the cofactor
pyrroloquinoline used by periplasmic dehydrogenases, comprising
a total of seven genes. Protein homology and experimental evidence
for strain SolV showed that the cytochrome CGJ can donate
electrons to a secondary cytochrome, suggesting electron transfer
to a terminal oxidase (Versantvoort et al., 2019). We included those
details in iAS473.

Methanotrophic Verrucomicrobia have been shown to
exclusively use CO2 as a carbon source via the Calvin-Benson-
Basham (CBB) cycle (Khadem et al., 2011). Because of this, the
pathways for formaldehyde oxidation become highly relevant to
provide electron equivalents and most of the CO2 used in the CBB
cycle. Formaldehyde oxidation to formate proceeds via pathways
involving methylene derivates of the cofactor tetrahydrofolate
(THF), or the archaea-like cofactor tetrahydromethanopterin
(THMP) (Chistoserdova et al., 2009). In methanotrophic
Verrucomicrobia, formaldehyde could bind spontaneously or
enzymatically to THF to form methylene-THF (Vorholt et al.,
2000; Chistoserdova et al., 2009; He et al., 2020), and be
converted to formyl-THF by the bifunctional dehydrogenase/
cyclohydrolase FolD (Schmitz et al., 2021). Subsequently, formyl-
THF could be converted to formate by a formate-THF-ligase
accompanied by the production of ATP (Marx et al., 2003).
Alternatively, formaldehyde could be oxidized directly to formate
by the MDH-XoxF (Pol et al., 2014). Finally, a cytosolic formate
dehydrogenase could oxidize formate to CO2 using NADH as an
electron acceptor (Figure 2C). Genomic evidence for our strain
showed that all the enzymes necessary to operate the CBB cycle and
regeneration of glyoxylate (e.g., phosphoglycolate phosphatase,

glycolate oxidase) are present in strain Pic
(Supplementary Table S5).

Additionally, we included all reactions necessary to enable
C3 metabolism in our model. We found previous genomic and
transcriptomic evidence of this functions in Methylacidiphilum
sp. IT6 while growing on propane, isopropanol, and acetone
(Awala et al., 2021). In this pathway (Figure 2C; Supplementary
Table S4), propane could be oxidized to isopropanol by a PMMO;
however, transcriptome analyses could not resolve whether this
reaction is catalyzed by PMMO3 or PMMO1 (Picone et al., 2020;
Awala et al., 2021). Then, isopropanol could be converted to acetone
by a glucose-methanol-choline (GMC) oxidoreductase, and acetone
oxidized to acetol by PMMO3. Operon pmoCAB3 contains the gene
pmoD, which was recently shown to be necessary for the oxidation
of acetone (Chau et al., 2022). Finally, acetol could be converted to
methylglyoxal by the same GMC oxidoreductase, and methylglyoxal
assimilated into pyruvate via a three-step pathway. In the model, all
reactions between propane oxidation and methylglyoxal production
take place in the periplasm (Figure 2C) and use menaquinones as
electron transporters (Takahashi et al., 2015). Those reactions are
associated with 10 genes total in our model.

2.3.2.3 Autotrophic metabolism
To date, two Methylacidiphilum strains (SolV and RTK17.1)

have been reported to grow autotrophically using H2 and CO2 under
microaerobic conditions (O2 saturation <2%) (Carere et al., 2017;
Mohammadi et al., 2017). Our genomic evidence shows that our
strain contains three hydrogenase operons, as well as the gene cluster
hypBFCDE/hypA, which encodes chaperone proteins necessary for
the assembly of hydrogenases (Supplementary Table S5).

The three hydrogenases belong to Groups 1d, 1h and Group 3b
(see Methods Section 4.9). Group 1d hydrogenases are uptake
hydrogenases that use a b-type cytochrome to transfer electrons
to the respiratory chain via the quinone pool (Mohammadi et al.,
2017). Group 1h hydrogenases are high-affinity membrane-bound
uptake enzymes (Schmitz et al., 2020), for which the electron
transfer pathway has not been elucidated yet. Finally, Group 3b
hydrogenases are cytosolic enzymes which catalyze the reversible
oxidation of H2 coupled to the reduction of NADH. We added
reactions HYD4pp and NAD_H2 to the model, which represent
periplasmic and cytosolic hydrogenases, respectively (Figure 2C). It
is important to note that microorganisms growing on substrates
with a higher redox potential than NAD(P)H produce electron
equivalents via energy-driven reverse electron flow (Aleem et al.,
1963; Ingledew, 1982; Poughon et al., 2001; Sapra et al., 2003;
Ferguson and Ingledew, 2008). Considering this, the reaction
NADH16pp (complex I) was set to be reversible (Häger and
Bothe, 1987) in simulations under autotrophic conditions.
Onward, we will refer to this as the reverse electron flow hypothesis.

2.3.2.4 Biomass reaction
The composition of the biomass reaction was imported from the

model of the gram negative methanotroph Methylomicrobium
buryatense 5G (B1) (de la Torre et al., 2015) into the first draft
of our model. This reaction was updated forM. fumariolicum Pic by
adding experimental measurements of amino acids (see Methods
Section 4.12.1). Additionally, coefficients of the biomass precursors
were rescaled so that the biomass had a molecular weight of 1 g
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mmol-1 (Chan et al., 2017). The growth-associated ATP
maintenance consumption (GAM) was calculated from
experimental CH4:O2 ratios, and a coefficient of 10.86 mmol ATP
gDW–1 h-1 was added to the biomass reaction. Supplementary Table
S9 provides a detailed breakdown of biomass components.

Before gap-filling, the production of 13 biomass precursors was
blocked. After extensive manual curation we added and connected
reactions to produce all these components. However, we could not
identify the genomic evidence necessary to produce L-homocysteine
and, in consequence, L-methionine. Overall, we included the
necessary orphan reactions for the two L-homocysteine
production pathways described in bacteria (Belfaiza et al., 1998;
Vermeij and Kertesz, 1999; Hwang et al., 2002)

2.4 Model validation and applications of flux
balance analysis

Our model was validated by comparing predicted growth rates
and growth stoichiometries with bibliomic and our experimental
data for four carbon sources (CH4, propane, isopropanol, and
acetone). Under all conditions, NH4 was used as the nitrogen
source. Overall, model predictions were within the same order of
magnitude as that of the bibliomic data (Table 1).

2.4.1 Calculation of redox trade-offs in
methanotrophic metabolism

To validate the model, we performed a sensitivity analysis of the
growth rate while varying Growth Associated Maintenance (GAM)
and Non-GAM while using CH4 as only carbon source. The
sensitivity was calculated as the slope of the curve of growth rate
vs. GAM/NGAM and has units of Δµ ΔGAM-1 or Δµ ΔNGAM-1.
Supplementary Figure S3A shows that the model is largely
insensitive to changes in the GAM, showing constant growth
predictions for GAM values below 32 mmol ATP gDW–1 h-1.
However, the slope changed to 1.2 × 10−4 for values between
32 and 100 mmol ATP gDW–1 h-1. In contrast, changes in
NGAM had a substantially larger effect on the predicted growth
rates, decreasing from 0.036 to less than 0.001 h-1 (Supplementary
Figure S3B). Although the growth rate is constant below NGAM
values of 4.2, from that value onward it decays with a slope of 4.5 ×
10−3, becoming infeasible for all NGAM values above 12 mmol ATP
gDW–1 h-1. The value of NGAM used for all subsequent simulations
was 3.5, which was obtained from a previous model (Bordel
et al., 2019b).

Additionally, we evaluated the possible effects of formaldehyde
oxidation by the XoxF-MDH (reaction FALDHpp). Since this enzyme
uses cytochrome C as the electron acceptor, the direct oxidation of
formaldehyde to formate by XoxF-MDH prevents the production of
NAD(P)H and ATP in the THF-dependent pathway (Figure 2C).
Therefore, simulations showed an increased flux through this
reaction. We found that it reduces the growth rate by limiting the
NAD(P)H available for the CBB cycle and anabolic reactions.
(Supplementary Figure S4A). Using O2 yields as constraint, we
determined that the model showed the highest agreement with the
bibliomic data when 20% of the total formaldehyde flux was oxidized in
reaction FALDHpp (Table 1). Therefore, this ratio was used as a
constraint in all the subsequent simulations using CH4.

Finally, the predicted correlation between O2 uptake rates/CO2

production rates, and CH4 uptake rates was compared with the
experimental growth data from strain Pic (Figures 3A, B). For both
components, the slope of the model was in good agreement with the
slope of the line of best-fit of the experimental data (Table 2). This
indicates that the model can accurately predict metabolic changes
under varying environmental conditions. However, for CO2, the
intercepts of the model and the fit were different (Table 2) because of
a remarkable higher yield of CO2 in our strain. Those results suggest
that the difference in the intercepts is caused by physiological
differences in strain Pic.

2.4.2 Calculation of redox trade-offs in autotrophic
metabolism

We used the model to investigate whether stoichiometric
constraints support growth under the reverse electron flow
hypothesis. Under this hypothesis, when H2 is oxidized by the
periplasmic hydrogenase (HYD4pp), NADH is produced by the
reverse activity of complex I in the respiratory chain (NADH16pp)
at the expense of pmf. Phase plane analysis revealed a trade-off
between this phenomenon and growth rate (Figure 4A). Similar to
the results for reaction FALDHpp, as a higher fraction of H2 is
oxidized through HYD4pp, NADH regeneration becomes a rate-
limiting step in the metabolism, thereby decreasing the maximum
growth rate achievable (Figures 4C, D). Additionally, pmf
consumption reduces the achievable ATP production rate, as
shown by a reduction of 55% in the flux through ATP synthase
reaction (Figure 4D). Model predictions indicate that growth under
the reverse electron flow hypothesis is only feasible if the total H2

uptake rate is higher than 3.4 mmol H2 gDW
–1 h-1, and simulations

indicated that reverse electron flow becomes necessary if
approximately 76% of the H2 flux is oxidized through HYD4pp
(Figure 4B), showing good agreement with bibliomic data
(Table 1; Figure 3C).

2.4.3 Heterotrophic metabolism is limited by
redox reactions

Growth under heterotrophic metabolism was simulated for three
different substrates: propane, isopropanol, and acetone. To make the
simulations comparable between conditions, the substrate uptake rate
was normalized to an equivalent carbon uptake rate of 3.5 C-mmol
gDW–1 h-1, which is the carbon uptake rate measured from experiments
with CH4. With this constraint, the predicted growth rates in
C3 substrates were consistent with bibliomic data from strain IT6
(Table 1). Interestingly, the growth rate in isopropanol was remarkably
higher (isopropanol = 0.038 h-1; propane, acetone = 0.033 h-1). This
occurred because the conversion of isopropanol to acetone by GMC-
oxidoreductases produces two extra redox equivalents in the form of
protons that can potentially be supplied to the, ETC. On the other hand,
when propane or acetone are used as substrates, electrons generated by
GMC-oxidoreductases are consumed in the oxygenation reactions of
the PMMO. The consequence is that flux of CYTCBB3pp1
(cytochrome oxidase) was 23.6% higher in isopropanol, thus
enabling a higher growth rate.

To further investigate those phenotypes, we sampled the
solution space of each condition (total 4) to investigate the
key differences between methanotrophic and heterotrophic
metabolism. Using optGpSampler (Megchelenbrink et al.,
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2014), 10,000 flux distributions were simulated for CH4, propane,
isopropanol, and acetone. Changes in predicted flux variation of
reactions were identified by comparing the median fluxes using
the Kolmogorov-Smirnov test static (KS-value) and the log2 fold
change (log2FC) using CH4 as the reference condition (see
Methods Section 4.13). Overall, the highest differences found
were a reduction in the flux through the CCB cycle against an
increase in glycolytic reactions and the TCA cycle (Figures
5A–C). Because C3 compounds are assimilated at the level of
pyruvate, to produce energy and precursor metabolites carbon
flux needs to be divided between the TCA cycle, and glycolytic

reactions. The higher carbon content enables an increase in
amino acid and nucleotides production (Figures 5A–C), with
the consequential increase in growth rates (Table 1). Another key
difference was the reduction in flux through the THF-dependent
pathway of formaldehyde oxidation. Carbon flux through this
pathway provides methylene-THF, which is used in the
biosynthesis of pyrimidine deoxyribonucleosides. To
compensate for its deactivation, methylene-THF was produced
from glycine and serine by the glycine-cleavage-enzyme-complex
(GLYCL) and the serine hydroxymethyltransferase (GHMT2r),
respectively.

FIGURE 3
(A) Scatter plot of specific O2 uptake rates (left), CO2 production rates (right) as a function of specific CH4 consumption rates and its comparison to
model predictions. (B)Growth rates with four different substrates as a function of carbon uptake rate. (C) Comparison of the predicted O2 and CO2 yields
to bibliomic data under autotrophic conditions. Yields are referenced to 1 mol of H2.

TABLE 2 Comparison between growth phenotypic data from strain Pic and model simulations.

Oxygen Carbon Dioxide

Line of Best-Fita iAS473b Line of Best-Fita iAS473b

Slope 1.16 1.46 0.52 0.54

Intercept 1.45 0.47 1.50 0.40

Log-Likelihood −59.78 −62.10 −43.58 −68.53

R-squared 0.622 0.292 0.416 0.549

aOrdinary least-squares parameters for experimental data of O2 uptake rates/CO2 production rates vs. CH4 uptake rates.
bLinear correlation between O2 uptake rates/CO2 production rates vs. CH4 uptake rates predicted by the model.
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Furthermore, Mass Flow Graphs (MFGs) (Beguerisse-Díaz et al.,
2018) were constructed for each sample to rank reactions based on
their centrality, which was calculated as the PageRank value (Gleich,
2015). MFGs are weighted, directed graphs with reactions as nodes,
edges that represent supplier-consumer relationships between
reactions, and weights given by the mass flow between connected
reactions. In all conditions, the highest-ranking reactions
corresponded to those in the, ETC (Figure 5D), highlighting the
energetic constraints that redox balance has on the metabolism of
these microorganisms. Notably, formate dehydrogenase (FDH) was
a recurring reaction in all simulations (Figure 5D). During the
growth using C3 compounds, formate is a product of
fermentative metabolism. Activation of fermentative reactions
suggests that catabolic pathways, such as the TCA cycle, cannot
meet the energy requirements on their own. Overall, these findings
suggest that growth under heterotrophic conditions is limited by the
production rate of redox equivalents, a result consistent with
findings under methanotrophic and autotrophic conditions.

3 Discussion

Extremophile bacteria have the potential to lower
biomanufacturing costs by reducing the energy, labor, and capital
resources needed for sterilization, agitation, heating, and cooling
(Levett et al., 2016; Ye et al., 2023). Moreover, extremophile bacteria
are sources of novel and robust industrially relevant compounds
(Tao et al., 2016) and proteins (Aulitto et al., 2017). Acidophile
methanotrophs have been used for the co-degradation of
organochlorine compounds (Choi et al., 2021), whereas
halotolerant methanotrophs have been successfully used to
produce ectoine (Cantera et al., 2017; Cho et al., 2022).

M-models have been used to study the metabolism of
methanotrophs using a systems biology approach (Fu et al., 2019;
Nguyen et al., 2020a), and as tools in the rational design of metabolic
engineering of methanotrophs (Henard et al., 2019; Nguyen et al.,
2020b). Recently, an M-model was used to study the halotolerance
mechanisms of Methylomicrobium alcaliphilum (Bordel et al., 2020b).

FIGURE 4
(A) Contour plot showing the monotonic decrease in growth rate as the fraction of H2 oxidized by the periplasmic hydrogenases increases
(HYD4pp). (B)Contour plot showing the directionality of complex I (NADH16pp) as the fraction of H2 oxidized by HYD4pp increases. NADH16pp changes
its directionality when HYD4pp oxidizes 76% of the total H2 flux. (C, D) Metabolic flux distributions of reactions in the electron transport chain when the
fraction of H2 oxidized by HYD4pp is 0 (C) or 1 (D). Activity of HYD4pp constraints themaximum growth rate because the protonmotive force needs
to be diverted from ATP production to NADH regeneration.
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Although automatic reconstruction tools reduce the labor and time
needed to developM-models, extensivemanual curation is still required
to improve the predictive capacity (Zuñiga et al., 2020) as well as the
consistency of the models with Findability, Accessibility,
Interoperability, and Reusability (FAIR) principles (Wilkinson et al.,
2016). In this study, we generated a high-quality, manually curated
model of M. fumariolicum str. Pic. Although several M-models for
proteobacterial methanotrophs have been published (Table 3), to our
knowledge, model iAS473 is not only the first model available for
methanotrophic Verrucomicrobia but also the first model available for
any thermoacidophile methanotroph.

Model iAS473 contains 473 out of 647 that were predicted to be
related to metabolic reactions in the genome assembly of strain Pic
and had a MEMOTE consistency score of 92% (see Supplementary
Material S1). In addition, model iAS473 can simulate all the known
phenotypic capabilities of the Methylacidiphilum genus, specifically
methanotrophic, autotrophic, and heterotrophic. Interestingly,
under methanotrophic conditions, oxidation of formaldehyde by
the XoxF-MDH prevents the production of NAD(P)H via the THF-
dependent pathway. Theoretically, this should exert a negative effect
on the metabolism, as the NAD(P)H pool needs to be divided
between quinol regeneration, the CBB cycle, and anabolism

FIGURE 5
(A–C) The graphs on the left are volcano plots showing themedian flux differences between simulations using CH4 and (A) propane, (B) isopropanol,
and (C) acetone. The plot was generated with the log2 fold change (log2 FC) values from the median of 10,000 simulations and the value of the
Kolmogorov-Smirnov test (KS-value). The cut-offs to identify reactions with significant differences were 0.5 for the log2 FC and 0.2 for the KS-value. The
graphs on the right show the total flux change for reactions with significant differences grouped by pathways. (D) Box plot of the PageRank scores of
the 17most central reactions for 10,000 simulations in each substrate. The PageRank score is a measure of the centrality or importance of a reaction, and
it is higher for reactions with a higher connectivity or reactions with a higher mass flux.
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(Keltjens et al., 2014). Indeed, the model predicts a monotonic
decrease in the growth rate as a higher fraction of formaldehyde is
oxidized by the XoxF-MDH. However, stoichiometric constraints
on NAD(P)H regeneration could be alleviated by alternative
electron transfer mechanisms not considered in this study, such
as the reverse electron transfer of complexes I and III (Keltjens et al.,
2014) or direct electron transfer from cytochrome C to the PMMO
(Lieven et al., 2018). Although the formaldehyde oxidation activity
of XoxF-MDH has only been detected in vitro (Pol et al., 2014), a
similar functional redundancy has been observed between the THF
and THMP-dependent pathways (Marx et al., 2005). It is tempting
to speculate that XoxF-MDH could play a similar role in alleviating
formaldehyde toxicity under transient conditions.

Model iAS473 predicts a similar phenomenon under
autotrophic conditions. In vitro activity assays have shown that
H2 oxidation inMethylacidiphilum species can mostly be attributed
to O2 resistant periplasmic hydrogenases (HYD4pp) (Carere et al.,
2017; Schmitz et al., 2020). However, the activity of these enzymes
prevents NADH production by the O2 sensitive cytoplasmic
hydrogenases. Although NADH could be produced by Group 3b
hydrogenases (Hedderich and Forzi, 2005), these enzymes are highly
O2 sensitive; therefore, it is not clear if their activity alone is
sufficient to supply all electron equivalents required for growth in
Methylacidiphilum species.

Simulations under autotrophic conditions showed that an increase
in the fraction of H2 oxidized by HYD4pp decreases the growth rate
because of the reduction in NADH production (Figure 4A). To
compensate for this loss, complex I carries a reversible reaction to
produce NADH; however, this activity decreases the available pmf used
for ATP production, constraining the growth rate dramatically.
Simulations predicted that a reverse electron flow is necessary if at
least 76% of the H2 flux is oxidized through HYD4pp (Figure 4B), this
result is consistent with activity assays between the membrane and
soluble fractions of H2 oxidizing cells from strain SolV, in which
approximately 62% of the H2 was oxidized by the membrane
fraction (Carere et al., 2017; Schmitz et al., 2020). Since reverse
electron flow is a highly endergonic process, the metabolism needs
to overcome an energy threshold to make growth feasible (Poughon
et al., 2001). Interestingly, model simulations predicted a threshold at
3.4 mmol of H2 gDW

-1 h-1; This result needs to be tested experimentally

and further validated using advanced modeling methodologies such as
metabolism and gene expression models (Tibocha-Bonilla et al., 2022).

The changes in flux patterns between methanotrophic and
heterotrophic conditions, as predicted by the model, were consistent
with transcriptome analyses of strain IT6 grown in isopropanol. Model
simulations indicated that under heterotrophic conditions, carbon
assimilation bifurcates in pyruvate: a fraction of the carbon flux is
diverted to the TCA cycle for the regeneration of the NAD(P)H pool,
while the rest is diverted to glycolysis and the Pentose Phosphate
Pathway to produce precursor metabolites. As expected, a significant
proportion of the carbon flux was also diverted to formate and later to
CO2 through the formate dehydrogenase reaction (FDH), suggesting
that this reactionwas also necessary to replenish theNAD(P)Hpool key
for methanotrophic metabolism. In a study by Awala et al. (2021) the
authors determined that genes for phosphoenol pyruvate synthase, as
well as the three components of the pyruvate dehydrogenase complex,
were upregulated in isopropanol-growing cells. Moreover, 11 out of the
32 upregulated genes belonged to enzymes of the TCA cycle.

Overall, the model iAS473 enables a systematic process to
compile available biochemical and genetic information, detect
possible errors during the annotation process of the genome
assembly, and identify knowledge gaps in the metabolism of
Methylacidiphilum species. We expect that this model will be a
useful tool for researchers to investigate the metabolism of this
novel genus.

4 Materials and methods

4.1 Sample collection

In March 2019, we took sediment and water samples of
approximately 250 mL samples from the crater-lake in “El
Chichonal”, an active volcano located in the state of Chiapas in
Mexico (17o21′N, W93 o 41′W; 1100 masl.). After the most recent
eruption started in March 1982 three small lakes were created in the
crater; by November 1982, one lake occupying an area of 14 ha
remained (Armienta et al., 2008). Temperatures in the lake vary
between 20°C and 95°C, and the pH varies between 2 and 4. The
crater lake has been the source of extremophile bacteria (Ovando-

TABLE 3 List of published M-models for methanotrophic bacteria.

Name Microorganism Class Reference

iMb5G (B1) Methylomicrobium buryatense Gammaproteobacteria de la Torre et al. (2015)

iMcBath Methylococcus capsulatus Bath Gammaproteobacteria Lieven et al. (2018)

iIA332 Methylomicrobium alcaliphilum 20 ZR Gammaproteobacteria Akberdin et al. (2018)

iMC535 Methylococcus capsulatus Bath Gammaproteobacteria Gupta et al. (2019)

No name Methylocysti hirsuta CSC1 Alphaproteobacteria Bordel et al. (2019a)

Methylocystis sp. SC2 Alphaproteobacteria

Methylocystis sp. SB2 Alphaproteobacteria

Methylocystis parvus OBBP Alphaproteobacteria Bordel et al. (2019b)

Methylocella silvestris Alphaproteobacteria Bordel et al. (2020a)

iMsOB3b Methylosinus trichosporium OB3b Alphaproteobacteria Naizabekov and Lee (2020)
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Chacon et al., 2020; Ortiz-Cortés et al., 2021; Ovando-Ovando et al.,
2023), and recently proteobacterial methanotrophs were identified
in the sediments (Rincón-Molina et al., 2019; Rincón-Molina et al.,
2020). Supplementary Table S1 contains the coordinates of the
different sites. Sediment samples were collected in sterile plastic
containers, and water samples were collected in sterile amber bottles.
Immediately after collection, the samples were stored in ice and
transported to our laboratory in Mexico City for further
genomic studies.

4.2 Culture conditions

Cultures of sediments were incubated in gastight serum bottles
of 125 mL, at a temperature of 50°C, agitation speed of 160rpm using
Ammonium Mineral Salts (AMS) medium at pH 2 with, with 10%
(v/v) of CH4 in the headspace unless otherwise specified. The
medium composition is reported in Supplementary Table S3.

4.3 Enrichment and isolation

Approximately 1.3 g of sediments from each site were mixed and
diluted with 10 mL of AMS and 10 mL of water sampled from the
lake. This mixture was incubated in 125 mL of gastight serum bottles
at a temperature of 40°C and an agitation speed of 200 rpm. The
concentration of gases in the headspace of the bottle was adjusted to
20% (v/v) of CH4 and 1% (v/v) of CO2 by removing air with a
syringe and adding the corresponding volume of each gas. This
mixture was incubated until all CH4 in the headspace was depleted.
After this, the mixture was used as the inoculum of five 1:10 serial
dilutions in 20 mL of AMS. The dilutions were incubated under the
same conditions described before, with the only difference being that
CO2 was not added to the headspace. For isolation, 2 ml of the lowest
dilution with growth were taken to start three rounds of 10–11

extinction culturing dilutions. After the third round, 2 ml of the
lowest dilution with growth were transferred to 23 mL of fresh AMS
media and incubated for 1 week before DNA extraction.

4.4 DNA extraction and sequencing

DNA was extracted from 25 mL of culture broth. The sample
was centrifuged and washed twice in Phosphate Buffer (0.2M,
pH 7.4). Then, the Qiagen DNeasy PowerSoil DNA Isolation Kit
(QIAGEN Sciences, Germantown, MD, United States) was used
following the manufacturer’s instructions. The samples were
submitted to Novogene Corporation Inc (Sacramento, CA,
United States) for library preparation and sequencing on an
Illumina NovaSeq PE150 platform.

4.5 Utilization of respirometry to determine
temperature phenotypes

Pre-grown cultures were incubated in 300 mL of AMS in a 1L
gas-tight bottle, and 120 mL of CH4 were added daily until an optical
density of 0.5 was reached. All respirometry experiments were

performed in a custom-made glass chamber (Cabello et al., 2015)
using a Clark-type polarographic dissolved oxygen (DO) probe (YSI
Incorporated, United States). A data acquisition module
(CompactDAQmx, NI, United States) was connected to a
computer for data logging every second. Before each temperature
tested (40, 45, 50, 60°C), 25 mL of pre-grown bacterial cultures were
incubated in gastight serum bottles for 15min with 10% CH4 inside a
water bath pre-adjusted to the desired temperature, with an
additional 15 min incubation with air alone it the headspace.
Maintenance O2 consumption was measured by adding 3 mL of
the acclimatized bacterial suspension to the glass chamber and
recording DO dynamics for 10 min. Subsequently, 10 µL of a
12M methanol solution were added to the chamber and the
dynamics were recorded until DO exhaustion.

4.6 Determination of optimal pH

Pre-grown cultures were incubated in 300 mL of AMS in a 1L
gas-tight bottle, and 120 mL of CH4 were added daily until the
culture reached an optical density of 0.5. In each pH tested (1.0, 1.5,
2.0, 2.5, and 3.0), 25 mL of pre-grown bacterial cultures were
incubated in gas-tight serum bottles with an initial CH4

concentration of 10% in the head space. The pH of each
experiment was adjusted with a solution of H3PO4 50% (v/v).
The concentrations of CH4, CO2, and O2 were measured every
2 h by injecting 200uL of the headspace into a GOW-MAC gas
chromatograph. All experiments were performed in triplicate. The
dry biomass weight was measured at the end of the experiment. Data
collected was used to fit a linear model and calculate the CH4 uptake
rate and CO2 production rate using the python package statsmodels
v0.14.0 (Seabold and Perktold, 2010).

4.7 Evaluation of substrate uptake rates and
growth rates calculations

We tested growth phenotypes on acetone, isopropanol, and LP-Gas.
Pre-grown cultures were incubated in 300 mL of AMS in a 1L gas-tight
bottle, and 120 mL of CH4were added daily until the culture reached an
optical density of 0.5. We used 25 mL of pre-grown bacterial cultures
with initial concentrations of 50 mM acetone, 50 mM isopropanol and
10% (v/v) LP-Gas. Each substrate was tested in triplicates. The
concentrations of O2 and CO2 were monitored for 8 h using a
GOW-MAC gas chromatograph, with an interval of 1 h 15 min
between each sample. Data collected was used to fit a linear model
and calculate the substrate uptake rate using the python package
statsmodels v0.14.0 (Seabold and Perktold, 2010). Data collected was
used to fit a linear model and calculate the CO2 production rate using
the python package statsmodels v0.14.0 (Seabold and Perktold, 2010).

4.8 Analytical methods used to createmodel
constraints

CH4, CO2, and O2 were measured in a GOW-MAC gas
chromatograph using a CTR1 column (Alltech, United States).
Helium was used as carrier gas at a flow rate of 100 mL min-1.
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The column, detector, and injector temperatures were set to 40°C,
115°C, and 50°C respectively. The detector current was set to
125 mA. Dry biomass weight was measured by vacuum filtering
25 mL of bacterial culture in pre-weighted cellulose acetate filters
(pore diameter 0.2 µm, Sartorius). Filters were dried in an oven at
60°C for 24 h and then transferred to a dehumidifying chamber until
constant weight.

To accurately constrain the biomass objective function of
iAS473 we determined the amino acids profile using a Hitachi L-
8900, an automated cation exchange chromatograph. This
commercial amino acid analyzer automatically process biomass
samples (Walker and Mills, 1995). Briefly, 4 mg of dry weight
biomass samples were hydrolyzed in HCL according to a
standard protocol for biological and physiological samples
(Rutherfurd and Gilani, 2009). The calibration curve was done
using the amino acid standard AAS 18-5 mL of sigma. This data
was used as input to adjust the biomass objective function of iAS473
(see Supplementary Table S9).

4.9 Genome assembly and annotation

Illumina adapter sequences were removed from a total of
23,920,586 paired-end reads using trimommatic (Bolger et al.,
2014). The quality of the adapter-free sequences was evaluated
using FastQC (https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/). Primary genome assembly was carried out using
the Spades-based (Prjibelski et al., 2020) assembler Unicycler v0.4.9
(Wick et al., 2017) with standard parameters. Subsequently, raw
reads were normalized to an average coverage of 75x using BBNorm
from the BBTools software suit (https://jgi.doe.gov/data-and-tools/
software-tools/bbtools/). Normalized reads were mapped to the
primary assembly and the mapped reads were re-assembled with
Mira V5rc1 (Chevreux et al., 2004) to increase contiguity (Lui et al.,
2021). Completeness of the assembly was evaluated using BUSCO
V5.2.1 (Simão et al., 2015) against the subset of verrucomicrobial
genes (2019–04–24). Ribosomal and tRNA presence was evaluated
using Infernal cmscan v1.1.4 (Nawrocki and Eddy, 2013) against the
Rfam database (Kalvari et al., 2021). The final assembly was
scaffolded using SSPACE V2.0 (Boetzer et al., 2011), and Pilon
(Walker et al., 2014) was used for gap filling of the scaffolds.
Assembly statistics were calculated using QUAST v5.0.2
(Gurevich et al., 2013). Bowtie2 and samtools were used for
alignment and sorting functions during all steps (Langmead and
Salzberg, 2012; Danecek et al., 2021). The assembly was annotated
using the online NCBI Prokaryotic Genome Annotation Pipeline
v2021-07-01 (Tatusova et al., 2016). Hydrogenases were classified
using HydDB (Søndergaard et al., 2016).

4.10 Genome-scale phylogenetic analysis

Genome assemblies available in NCBI for the
Methylacidiphilum were evaluated for completeness with
CheckM v1.2.2 (Parks et al., 2015). GET_HOMOLOGUES
(Contreras-Moreira and Vinuesa, 2013) was used to identify
orthologous gene clusters between the genome reported here
and eleven genomes with a completeness higher than 90%. Gen

clusters were used to calculate average nucleotide identity (gANI)
values to define genus and species-level affiliation (Varghese
et al., 2015; Sant’Anna et al., 2019). Our assembly had a gANI
value above 96% for every M. fumariolicum genome. Therefore,
only five genomes for M. fumariolicum were used for subsequent
analyses. Orthologous gene clusters were classified into core and
pan-genes. The core gene clusters were used as input to GET_
PHYLOMARKERS (Vinuesa et al., 2018) to estimate a
phylogenetic tree. The run_get_phylomarkers_pipeline shell
script was used on core protein sequences with default
parameters to identify proteins with optimal characteristics for
phylogenetic analysis. This script outputs concatenated
alignments of the optimal phylogenetic markers, which were
used as input to IQ-TREE v2.2.0.3 (Minh et al., 2020) for tree
estimation under the maximum likelihood criteria using
UFBoot2 (Hoang et al., 2018) with 25,000 bootstrap replicates.
Unrooted trees were estimated using automatic model selection
with ModelFinder (Kalyaanamoorthy et al., 2017) and rooted
artificially at the midpoint and they are shown in Figure 1A.

4.11 Phylogenetic tree reconstruction
of PmoA

For PmoA, reference sequence WP_009059718.1 was used as a
query for three BlastP (Camacho et al., 2009) searches against NCBI
non-redundant database (Sayers et al., 2022) using taxonomic filters
set to Verrucomicrobia, Alphaproteobacteria, and
Gammaproteobacteria. The top 100 hits to each search were
aligned using COBALT (Papadopoulos and Agarwala, 2007) with
standard parameters. Partial sequences were removed from the
alignments before using them as input to IQ-TREE v2.2.0.3
(Minh et al., 2020) for tree estimation under the maximum
likelihood criteria using UFBoot2 (Hoang et al., 2018) with
25,000 bootstrap replicates. Unrooted trees were estimated using
automatic model selection with ModelFinder (Kalyaanamoorthy
et al., 2017) and rooted artificially at midpoint. A similar
methodology was used to estimate the phylogenetic tree
presented in Supplementary Figure S2, with the difference that
the BlastP searches were limited to sequences of other
Verrucomicrobia bacteria. Sequences from the
Methylacidimicrobium genus were used as outgroup.

4.12 Metabolic reconstruction

4.12.1 Draft reconstruction
The metabolic reconstruction was generated using our semi-

automatic methodology (Tec-Campos et al., 2023). Initially, a draft-
reconstruction was generated by using GenBank files (GCF_
019429645.1) as input to PathoLogic in Pathwaytools v25.0 (Karp
et al., 2019) and MetaCyc v25.0 (Caspi et al., 2014). Additionally, we
used the model of gram negative methanotroph Methylomicrobium
buryatense 5G (B1) as a reference (de la Torre et al., 2015).
Pathologic was run with standard parameters and disabling
taxonomic pruning. Subsequently, the draft was exported to an
xml file and imported into Cobrapy (Ebrahim et al., 2013) for
manual curation.
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4.12.2 Manual gap-filling
Production of each of the precursor metabolites was tested

individually. For those metabolites which could not be produced,
reactions were gap filled manually based on supporting information
available in Metacyc and KEGG databases. To assign gene
associations to reactions without one, protein sequences reported
in the M. infernorum pathway map (Hou et al., 2008) from KEGG
(Kanehisa and Goto, 2000; Kanehisa et al., 2023) were used as
queries in a BLASTp (Camacho et al., 2009) search to the genome
assembly reported in this study. For reactions not found in KEGG,
protein sequences available in MetaCyc (Caspi et al., 2014) were
used as the query. Reactions that still lacked gene associations after
this step were removed from the model. Reactions needed to
produce all biomass precursors were manually gap-filled
following the same methodology.

4.12.3 Model standardization
Annotation cross-references were taken fromMetaCyc database

and transformed as necessary to be compliant with the identifiers.
org compact identifiers. Where possible, missing annotations were
complemented using annotations from iML1515 (Monk et al.,
2017). Missing information after this step was manually added to
the model. To ensure that the reconstruction meets community
standards with the minimum information required in the
annotation of models (MIRIAM)-compliant cross references
(Laibe and Le Novère, 2007), metabolites and reactions that
could not be annotated at least in one database other than
MetaCyc were removed from the model. Finally, metabolite and
reaction identifiers were translated into BiGG namespace (King et al.
, 2016). Metabolite formulas were taken from MetaCyc database.
Where possible, missing formulas were complemented using
information from iML1515. Missing metabolite formulas after
this step were added manually. If metabolite protonation and
charges were available in the databases, these were set to a
reference pH of 7.3 for the cytosol compartment, and pH of 2.
0 for the periplasm and extracellular compartments. Else, mol files
were downloaded from CHEBI (Degtyarenko et al., 2008) or KEGG
(Kanehisa and Goto, 2000), and protonation states were predicted
using ChemAxon (https://www.chemaxon.com) online Protonation
Calculator. Stoichiometry of transport and periplasmic reactions
were modified according to the protonation state of each metabolite.
Ultimately, the MEMOTE Suite (Lieven et al., 2020) was used for
quality analysis of the curated metabolic reconstruction. MEMOTE
evaluates the annotation consistency across databases and standards
and outputs an annotation score ranging from 0% to 100%.

4.12.4 Stoichiometric balanced cycles for accurate
redox estimation

To reduce the possibility of stoichiometrically balanced cycles,
we assigned reactions reversibility constraints based on the following
methods. First, the equilibrator-API (Noor et al., 2013; Beber et al.,
2022) was used to calculate the standard Gibbs potentials of
reactions. Gibbs potentials were used to assign directionality
constraints if the absolute value of the reaction potential was
greater than 1 kJ mol-1 and if the standard deviation was less
than 3% of the absolute value. After this, stoichiometric balanced
cycles, and erroneous energy generating cycles for 11 energy
metabolites were detected and removed using a custom

implementation of Algorithm 1 presented in (Gevorgyan et al.,
2008). Reversibility constraints for reactions were modified based
on information available in the databases.

4.12.5 Biomass objective function
The composition of the biomass reaction was reconstructed

from previous published models for Gram-negative methanotrophs
(de la Torre et al., 2015; Akberdin et al., 2018; Lieven et al., 2018).
The lipid composition was modified based on measurements from
Methylacidiphilum species (Op den Camp et al., 2009), whereas the
amino acid composition was modified from measurements fromM.
fumariolicum Pic. Furthermore, the reaction was normalized to a
biomass molecular weight of 1 mmol g-1 (Lachance et al., 2019). The
growth associated maintenance was calculated from experimental
CH4:O2 ratios assuming a P/O ratio of 2.5. The constraints for non-
growth associated maintenance were imported from the model of
Methylocystis hirsuta CSC1 (Bordel et al., 2019b).

4.13 Model simulations

All simulations were performed inCOBRApy (Ebrahim et al., 2013)
using Flux Balance Analysis (Orth et al., 2010), with Optlang (Jensen
et al., 2017) as an interface to CPLEX 20.1 (Cplex, 2009). CPLEX was
used with automatic method selection and numerical tolerance set to
1 × 10−9. The python package statsmodels v0.14.0 (Seabold and
Perktold, 2010) was used to calculate correlation parameters between
O2 uptake rates/CO2 production rates and CH4 uptake rates.

Flux sampling was performed using the uniform sampler
optGpSampler (Megchelenbrink et al., 2014) with standard
parameters and 10,000 replicates. The model was sampled
independently in 4 conditions: CH4, propane, isopropanol, and
acetone. Differential fluxes in each condition were identified by
comparing the median values using the Kolmogorov-Smirnov test
static and the log2 fold change, with CH4 as the reference condition.
The cut-offs used were 0.2 and 0.5 for the KS-value and the log2 FC,
respectively. For each of the 10,000 replicates a Mass Flow Graph
(MFG)was constructed using a custom implementation of themethods
presented in (Beguerisse-Díaz et al., 2018). MFGs were used to rank
reactions according to PageRank Centrality (Gleich, 2015). PageRank
Centrality values were calculated using the python package NetworkX
(Hagberg et al., 2008). Code used to run simulations and data analysis is
available as Jupyter-notebooks (Rule et al., 2019) in the GitHub
repository https://github.com/cristalzucsd/Methylacidiphilum_
fumariolicum (see Data Availability Statement).
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