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Introduction: Molecular communication is the transfer of information encoded
by molecular structure and activity. We examine molecular communication
within bacterial consortia as cells with diverse biosynthetic capabilities can be
assembled for enhanced function. Their coordination, both in terms of
engineered genetic circuits within individual cells as well as their population-
scale functions, is needed to ensure robust performance. We have suggested that
“electrogenetics,” the use of electronics to activate specific genetic circuits, is a
means by which electronic devices can mediate molecular communication,
ultimately enabling programmable control.

Methods: Here, we have developed a graphical network model for dynamically
assessing electronic and molecular signal propagation schemes wherein nodes
represent individual cells, and their edges represent communication channels by
which signaling molecules are transferred. We utilize graph properties such as
edge dynamics and graph topology to interrogate the signaling dynamics of
specific engineered bacterial consortia.

Results: We were able to recapitulate previous experimental systems with our
model. In addition, we found that networks with more distinct subpopulations
(high network modularity) propagated signals more slowly than randomized
networks, while strategic arrangement of subpopulations with respect to the
inducer source (an electrode) can increase signal output and outperform
otherwise homogeneous networks.

Discussion: We developed this model to better understand our previous
experimental results, but also to enable future designs wherein subpopulation
composition, genetic circuits, and spatial configurations can be varied to tune
performance. We suggest that this work may provide insight into the signaling
which occurs in synthetically assembled systems as well as native microbial
communities.
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1 Introduction

Synthetic biology has enabled the production and sensing of
biomolecules through the design, testing and implementation of
genetic circuits. In addition to guiding complex biosynthesis
processes for therapeutic and industrial applications (Mimee
et al., 2015; Jiang and Zhang, 2016; Cao et al., 2020), these
engineered systems hold potential to communicate with and
guide synthetic consortia and even native biomes (Hwang et al.,

2017). Recently, synthetic consortia have been developed for
leveraging the diversity of multi population systems in ways that
expand biosynthetic potential and increase metabolic efficiency
(Dinh et al., 2020; VanArsdale et al., 2022; Zhao et al., 2022;
Gwon et al., 2023). The interactions within these engineered
communities rely on robust cascades of molecular
communication that convey information between cells (Quan
et al., 2016; Servinsky et al., 2016). As such, system designs need
to consider not only the genetic circuits within “designer” cells, but

FIGURE 1
Systems overview. Schematic of the (A) cellular design of a Monoculture System (left) in which “Receiver” cells express LasI and GFP in response to
hydrogen peroxide induction via the oxyRS regulon, and of a Transmitter/Receiver System (right) in which the same “Receiver” cells of the Monoculture
system are repurposed as “Transmitter” cells that convey molecular information (AI-1 by the expression of lasI) to a second population also denoted
“Receiver,” but that only express GFP in response to AI-1. (B) electrogenetic experimental setup where a biased gold electrode creates hydrogen
peroxide as an initial input signal to the cellular systems, and (C) an example network model structure for the Monoculture and Transmitter/Receiver
systems, saturation of green representing GFP levels and shading around nodes representing inducer production at those nodes.
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the communication networks that tie them together (Terrell
et al., 2021).

In this study we wanted to mathematically characterize
molecular signaling that guided previously published
experimental results (VanArsdale et al., 2022) in which two cell-
based systems synthesize a model product (green fluorescent
protein, GFP) via chemical and electrical induction schemes
exploiting different signaling pathways. These are depicted in
Figure 1A. They are both based on induction by hydrogen
peroxide. The base case (chemical induction) is actuated by the
simple addition of hydrogen peroxide. Then, we had previously
developed a means for electronically inducing cells; using simple
electrodes, we altered the redox state of inducers (Tschirhart et al.,
2017; Virgile et al., 2018; Kim et al., 2019; VanArsdale et al., 2022)
and these activate genetic circuits. We refer to the genetic expression
induced by electronic input as electrogenetics (Tschirhart et al.,
2017) and have shown how one can electronically control gene
expression, cell attributes (Virgile et al., 2018; VanArsdale et al.,
2022), and even cell consortia (Tschirhart et al., 2017; Stephens et al.,
2019; Bhokisham et al., 2020; VanArsdale et al., 2022; VanArsdale
et al., 2023). In our experimental work (Figure 1A), we either added
H2O2 (chemical induction) or we biased gold electrodes (2 mm
diameter disk) immersed in the cultures with a—0.55 V vs. Ag/AgCl
reductive potential (VanArsdale et al., 2022). This voltage is
sufficient to electronically induce cells, it works by reducing
oxygen dissolved in the growth media, creating hydrogen
peroxide. Cells in the vicinity of the electrode genetically respond
to the hydrogen peroxide through an engineered oxyRS regulon that
activates a genetic circuit via the hydrogen peroxide sensitive
transcriptional promoter, OxyR (Figure 1B). OxyR endogenously
regulates oxidative stress management genes by repressing
transcription until its cysteine groups are oxidized into disulfide
bonds. The resulting conformation change stabilizes the
transcription complex, inducing downstream gene expression
(Pomposiello and Demple, 2001).

In Figure 1B, we illustrate the design of the two systems: (i) a
receiver Monoculture and (ii) a Transmitter/Receiver co-culture. In
the former case, hydrogen peroxide stimulates LasI and GFP
production (Figure 1B). GFP is the model product in both cases
and is easily measured by its fluorescence. LasI synthesizes the
quorum sensing molecule N-3-oxo-dodecanoyl-L-homoserine
lactone, which we refer to as autoinducer-1 (i.e., AI-1). Quorum
sensing signaling molecules enable a collection of cells to take on a
population-wide phenotype. In the Transmitter/Receiver system,
the same cells used in the Monoculture system are repurposed as
“transmitters,” where the hydrogen peroxide-induced quorum
sensing signal is secreted and then encountered by the “receiver”
cells and these respond by producing GFP (VanArsdale et al., 2022).
Hence, in this two-strain culture one subpopulation turns the
electronic signal into a biological signal for subsequent genetic
activation and product synthesis in the second subpopulation.
Autoinducer-1 is a very strong signaling molecule in that it
activates gene expression at nanomolar amounts (Stephens et al.,
2019). This amplifies the original signal to increase gene expression
of the desired molecular product.

In this work, we employed a graphical modeling approach which
enables a coarse grain interpretation of multicellular systems
(Barabasi, 2013), thus, allowing us to capture agent-based

intercellular interactions that fit population dynamics (Gosak
et al., 2018). In Figure 1C, we depict our model in which each
node represents a cell that possesses several weighted attributes: (i)
local substrate concentration, (ii) the local inducer molecule
concentration, and (iii) GFP expression level. The edges
connecting nodes represent a communication channel where
signaling molecules may transfer information between nodes. To
characterize the movement of these signaling molecules, we
implemented a previously developed overlay that approximates a
formal diffusion model onto the network architecture (Sayama,
2015). This dramatically reduces computational demand while
retaining dynamics of molecular communication and cellular
connectivity.

With this model, we then characterized system performance in
response to chemical and electrical induction by evaluating GFP
production in both schemes. We further explored the effects of
spatially fixed cultures (biofilms) in comparison to continuously
stirred cultures by varying the edge dynamics in our model. Edges
that are fixed reflect static cells, like would exist in a biofilm. Edges
that are continually reconnecting between nodes reflect stirred
cultures. Then, by utilizing modularity, a graph measure of a
network’s subcommunity structure (Newman and Girvan, 2004),
we related the network’s spatial organization to its signal output.
Overall, our model enables a kinetic understanding of signal
propagation and GFP production among spatially varied bacterial
populations that, in turn, exploit different signaling processes. This
provides new hypotheses regarding modes of information
transmission and their effectiveness, ultimately leading to
new designs.

2 Materials and methods

2.1 Model formalism

Network initialization was performed by generating a random
undirected G (n, m) graph (Barabasi, 2013) in which there are n total
nodes and m total edges that are randomly distributed amongst the
nodes. In this network, each node represents an individual cell and
edges represent communication channels by which signaling
molecules can be transferred between nodes. Each node Ni

possesses the following dynamic node weights: si(t), H2O2 i(t),
AI-1i(t), and GFPi(t) corresponding to the cell’s substrate,
hydrogen peroxide, autoinducer-1, and green fluorescent protein
concentrations at time t, respectively. In this graph, edges are
unweighted and undirected, meaning they do not possess
quantitative attributes, nor do they follow any directionality in
their connections, i.e., signaling molecules can flow to in either
direction between two connected nodes. In our model, time is
discrete and represented by natural numbers, evolving forward
with each iteration of the simulation as depicted in Figure 2A. At
each timestep a transition is applied in which each attribute of the
network is sequentially updated via the following modules: (i) Gene
activation, (ii) Molecular production, (iii) Signal diffusion, (iv)
Growth, and (v) Edge randomization. That is, a gene activation
module is applied, and then activated nodes carry out their
respective molecular production models, resulting in increased
molecular concentrations at these nodes. Next a signal diffusion
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module is applied, and molecular concentrations are updated based
on the calculated exchange of molecules. Lastly, a growth module is
applied to nodes with available substrate; the concentrations of
divided nodes are amended. After this, edge randomization may be
applied to stirred culture simulations, and the time is forwarded to
the next timestep. Thus, the state of the system can be described at

any point by the nodes, each with their own set of state variables
described by their weights and edges as depicted in Figure 2A.

2.1.1 Gene activation and molecular production
To capture genetic induction and subsequent molecular

production we implemented a two step mechanism at each node

FIGURE 2
Simulation process and growth fit. (A)Overview of the simulation iterations, where initial state variables and edge structure are updated via transition
statemodules at each timestep. The output length of the state variables matrix and edge list increase by j new nodes. (B)Growthmeasurements for E. coli
strain OxyR-LasI-GFP (transmitters) with various hydrogen peroxide induction concentrations (chemical addition) are plotted in green, alongside average
total nodes of 10 simulation repeats at various division probabilities (Pdiv) over time in purple. Bars represent standard deviation. (C) Average substrate
per node for Pdiv in (B), the horizontal dashed line indicates a user-specified substrate threshold, k = 1, below which a node will no longer divide. The
shaded zones indicate standard deviation of the substrate concentration across the network for each probability.

TABLE 1 Equations for gene activation and subsequent protein production for the inducers: hydrogen peroxide and AI-1.

Description Equation

Hydrogen peroxide induced gene activation probability (1) ProbH2O2(H2O2 > 0) � 1

1+e−
[H2O2 ]−8

2

(2) ProbH2O2(0) � 0

AI-1 induced gene activation probability (3) ProbAI1(AI1> 0) � 1
1+e−50([AI1]−0.25)

(4) ProbAI1(0) � 0

Hydrogen peroxide induced molecular production rate (5) RateH2O2 � 2[S]
1+e−[H2O2 ]

AI-1 induced molecular production rate (6) RateAI1 � 0.2[AI1][S]
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at every timestep. First, the probability of gene activation is a
function of inducer concentration (see Table 1; Equations 1–6).
H2O2 induced gene expression is described by a logistic curve
(Table 1; Equations 1, 2; Supplementary Figure S1A) with a
threshold of 12.5 µM. AI-1 dependent gene expression is
implemented using a steeper and linear step function (Table 1:
Equations 3, 4; Supplementary Figure S1A) reflecting the nanomolar
requirements for induction (Chun et al., 2021; VanArsdale
et al., 2022).

If a gene is activated at a node for a timestep (via probability
function based on inducer concentration), it will produce the
specified molecular product (GFP or AI-1) at a set expression
rate based on the prevailing inducer concentration and substrate
availability (Table 1: Equations 5, 6; Supplementary Figures S1B, C).
For production based on AI-1, the rate is linear while for hydrogen
peroxide it is a saturation function so that at low concentrations
there is a steep peroxide dependence and at high concentrations the
rate is saturated (Stephens et al., 2019; Terrell et al., 2021;
VanArsdale et al., 2022). These transitions occur at each timestep
prior to the diffusion and growth modules, such that molecular
production occurs with the concentrations from the previous
timestep. The discrete equations are described in Table 2.

2.1.2 Signal diffusion
Signaling between nodes occurs across edges, such that only

nodes connected by an edge may transfer H2O2 and AI-1. Signal
molecule movement across edges are defined by a discrete
approximation of diffusion derived by the following equations as
previously described by Sayama (Sayama, 2015):

dci
dt

� α∑
j∈Ni

cj − ci( ) (1)

ci t + Δt( ) − ci t( ) � α∑
j∈Ni

cj − ci( )[ ]Δt (2)

ci t + Δt( ) � ci t( ) + α ∑
j∈Ni

cj t( ) − ci t( )deg i( )[ ]Δt (3)

where ci is the concentration of signaling molecule at a given node i,
cj is the concentration at that node’s neighbor j, deg(i) is the number
of edges at node i, and α is a diffusion coefficient (See Supplementary
Table S1 for all coefficient values). In Eq. 1, diffusion is generalized
to the change in concentration at a node with respect to the
difference between its own concentration and its neighbors. This
can be discretized (Eq. 2) and solved to find that the change in
concentration at a node is determined by the difference between the
sum of its neighbors’ concentrations and the product of its own
concentration and number of edges (Eq. 3). At every timestep, the
concentration is calculated from Eq. 3 for each node and updated

prior to growth module implementation. This process applies to the
following state variables and occurs prior to the calculation of
network growth: H2O2 (t) and AI-1(t). The equations for these
variables prior to network growth can be found in Table 2.

2.1.3 Network growth
The network grows with time, depending on substrate availability

and growth probability, Pdiv. Initially, each node is assigned the same
initial substrate weight, s0. At each time step, if a node has a substrate
level above a minimum threshold, k, the node has the probability Pdiv,
that it may divide into two. Following a division event, the substrate
(Table 2), H2O2 and AI-1 node weights are divided equally between
daughter nodes at each timestep. As noted above this occurs after the
diffusion module, such that the newly calculated H2O2 and AI-1
concentrations may be divided in two upon a division event. As
depicted in Figure 2A, with each iteration the network will increase by
j nodes, determined by substrate availability at each node and Pdiv. We
note that daughter nodes maintain fluorescence (GFP) of their
parent’s. This assumption is in agreement with previous
experiments (Servinsky et al., 2016). We additionally neglect
protein degradation, again in agreement with experimental results
(Servinsky et al., 2016).

After a division event, the resulting daughter nodes share an
edge and maintain their parent’s edges, limited to a maximum of
10 neighbors. Note, as commonly defined within the field of network
science, we refer to neighbors as nodes which share an edge
(Newman et al., 2006). These 10 neighbors are randomly
sampled from the parent’s neighbors including those that have
divided at that timestep. In a case where a dividing node has
10 neighbors that also all divide at that time step, out of the
20 surrounding nodes only 10 will be randomly selected to share
an edge with each daughter.

In Figure 2B, we depict growth curves for the Escherichia coli
strain OxyR-LasI-GFP grown with various hydrogen peroxide
concentrations (VanArsdale et al., 2022). These cells are the
receivers in the Monoculture case and transmitters in the
Transmitter/Receiver case (Terrell et al., 2021) (Figure 1).
Alongside we show the total number of nodes over time for a
simulated network of with 50 initial nodes, an s0 of 20, and a k of
1 for various Pdiv. With these s0 and k values, each node can divide five
times during the growth phase, allowing us to fit the initial node count
to 50 and total possible number of nodes to 1,600 which approximates
1 node to 0.001 OD600. The Pdiv values assigned helped to ensure that
the growth phase of the network translated well to experimental
results, such that 45 timesteps represented ~1 h of cell culture. Our
simulation thus mimicked the log phase growth of the cell cultures.
We note that flexibility for fitting experiments is enabled by altering

TABLE 2 State variable dynamics equations.

Variable Equation

H2O2 H2O2 i(t+1) = H2O2 i(t) + α[∑j∈Ni
H2O2j(t) −H2O2 i(t)deg (i)]

AI-1 AI-1i(t+1) = AI1 i(t) + ProbH2O2pRateH2O2 + α[∑j∈Ni
AI1j(t) − AI1i(t)deg (i)]

s si(t+1) =
s i(t)
2 (if node i divides)

GFP GFPi(t+1) = ProbAI1pRateAI1 + GFPi(t) (AI-1 induced) or GFPi(t+1) = ProbH2O2pRateH2O2 + GFPi(t) (H2O2

induced)
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the division probability, Pdiv. Additionally, we note that as the network
grows the average substrate per node decreases over time (Figure 2C),
until reaching below the threshold value of k = 1. As described above,
below this threshold, nodes may no longer divide. The shadowed area
in Figure 2C represents the full ranges of substrate levels across the
network and for each division probability.While the substrate defined
in our model represents general nutrient availability, the trend shown
in Figure 2C emulates the decrease in glucose over time in E. coli
cultures demonstrated experimentally (Shiloach et al., 1996). That is,
while the network model formalism does not include a typical
deterministic Monod model for growth with a maximum specific
growth rate and saturation constant, the configuration here well
represents the overall culture dynamics.

2.1.4 Edge randomization
To describe the spatiotemporal effects of various modes of cell

culture such as stirred, immobilized biofilms (static), and
combinations thereof, we implemented edge randomization. In
the absence of stirring, edges which are assigned during network
initialization and at each node division, remain fixed for the
duration of a simulation. To simulate a stirred batch culture, we
randomized the edges amongst all nodes at every timestep. We
simulated two base cases with either static or randomized edges and
with or without network growth to demonstrate the effects signaling
dynamics: one case where inducers may come from a highly
concentrated source node and another case where an electrode
may generate inducers at its surface over a specific time period
(Supplementary Figure S2). As anticipated, cases that include
network growth and edge randomization resulted in faster
homogeneity of signaling molecule concentration across the
network than non-growing networks or those growing with static
edges. From these tests, we found a set of parameters that when used,
enabled reasonable agreement between our previously published
data (s0 = 20, k = 1, Pdiv = 0.015, α = 1 and an initial average of
4 edges per node).

2.1.5 Electrical hydrogen peroxide generation
To mathematically characterize the production of hydrogen

peroxide at the surface of a biased electrode as a mode of
information transmission into bacterial cells, we model the input
as a signal generated from an individual source node, then link this
source to the various nodes. In our network architecture, the
electrode is represented by a single node which produces
hydrogen peroxide at each time step that it is turned “on.” To
simulate the actual experimental conditions in which electrical
stimulus resulted in negligible growth during the time of
induction (VanArsdale et al., 2022), we set the growth probability
parameter, Pdiv, to zero when the electrode is “on” until that time
when the growth was observed to increase. We fit the hydrogen
peroxide production for an initial network size of 100 to produce
46 µM hydrogen peroxide per timestep to approximate experimental
results (Supplementary Figure S3A).

Previously reported experimental results demonstrated that
electrical induction yielded lower GFP output compared to a
chemical addition, suggesting that the spatiotemporal
heterogeneity resulting from the localized inducer production at
the electrode’s surface effects output. To recapitulate these findings
in our model we limited the number of nodes connected to the

electrode to 5% of the total network at every timepoint. In
Supplementary Figure S3B, we plotted the Monoculture response
for chemically and electrically induced simulations to demonstrate
that the limitation of electrode connectivity to the network
reproduces experimental trends, via reduced GFP production
compared to chemical induction.

2.2 Code and data availability

Graph simulations were performed in Python using NetworkX
(Hagberg et al., 2008), and modifying and implementing the
Simulation class from A First Course in Network Science
(Menczer et al., 2020). Graph generation and initialization and
graph transition states were defined and are contained in
supplemental notebooks. Visualizations were performed using
Python’s matplotlib and seaborn libraries (Hunter, 2007;
Waskom, 2021). Experimental data used for parameter fitting are
from (VanArsdale et al., 2022).

Python notebooks and simulation data are available online at
github.com/kaychun29/bio-network-simulations.

3 Results

3.1 Chemical and electrical induction of
monoculture and transmitter/
receiver systems

We first simulate the two cellular systems in response to the
chemical addition of hydrogen peroxide. We aimed to capture the
experimental results depicted in Figures 3A, B (reproduced with
permission), where identical levels of hydrogen peroxide were added
to the Monoculture system and to the Transmitter/Receiver System.
We later measured GFP expression in all cells via flow cytometry
after 3 h (VanArsdale et al., 2022). Flow cytometry provides for the
distribution of GFP among all cells in a population. Especially at
high concentrations, a chemical addition of hydrogen peroxide
should result in a homogeneous input (VanArsdale et al., 2022)
wherein there is little “noise” accompanying induction. In the
Monoculture system, increases in GFP became obvious at initial
concentrations of 12.5 uM H2O2. Further increases in H2O2 had
relatively little effect on GFP. Interestingly, for the Transmitter/
Receiver system, lower initial concentrations of H2O2 resulted in
significant GFP expression owing to the AI-1 signal propagation. In
the end, the yield of GFP for this Transmitter/Receiver system was
nearly 10-fold higher than the case with just H2O2 added to the
monoculture, even at the highest concentrations (VanArsdale
et al., 2022).

To simulate these results, we assigned each node the same initial
hydrogen peroxide weight based on the initial experimental
concentration. We set initial GFP weights randomly using a
Gaussian distribution with a mean of 500 and standard deviation
of 250. This allows for all nodes to have fluorescence background,
which fit our previously published experimental distribution for
uninduced cells, Figures 3A, B (VanArsdale et al., 2022). For the
following simulations the initial network size was 100 nodes, with an
average of four edges per node. These initial conditions enabled
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FIGURE 3
Monoculture and Transmitter/Receiver GFP distributions for chemically and electrically induced edge randomized networks. Chemically induced (A)
Monoculture and (B) Transmitter/Receiver system at 3 h hydrogen peroxide addition, reproduced with permission from VanArsdale et al. (2022). (C) The
simulated monoculture system GFP distribution at 180 timesteps is shown for an aggregate of 10 replicates, with initial hydrogen peroxide concentration
ranging from0 to 100 µM. (D) The simulated Transmitter/Receiver system’s GFP distribution across all nodes at 180 timesteps is shown for an aggregate
of 10 replicates, with initial hydrogen peroxide concentration ranging from 0 to 100 µM. Experimental flow cytometry data of the (E) Monoculture and (F)
Transmitter/Receiver system at 3 h post charge application, reproduced with permission from VanArsdale et al. (2022). GFP distributions of simulated
electrical induction for the (G)Monoculture system and (H) Transmitter/Receiver’s receiver GFP distributions across all nodes at 180 timesteps post charge
application. Distributions shown are an aggregate of 10 simulated replicates, with charge durations ranging from 0-30 timesteps.
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reproducible network propagation, while conserving computational
time. We implemented network growth and edge randomization at
each timestep to recapitulate the well-mixed growing culture,
according to the methods previously described. For the
Monoculture system, chemical induction was simulated using the
gene activation probability (ProbH2O2, Table 1: Equations 1, 2) and
the molecular production rate (RateH2O2, Table 1: Equation 5). To
model the Transmitter/Receiver system in which a two-strain co-
culture is used to amplify the initial hydrogen peroxide signal, we

partitioned the initial network into 10 percent transmitter nodes,
which function the same as the Monoculture’s receivers, and
90 percent receiver nodes which activate GFP production by AI-
1 induction. In both systems, AI-1 freely diffuses between nodes at
each timestep (Stephens et al., 2019), while in neither case does the
GFP diffuse out of the cell47. In this Transmitter/Receiver system,
GFP production is probabilistically activated (ProbAI1, Table 1;
Equations 3, 4) and produced at a rate (RateAI1, Table 1:
Equation 6) dependent on AI-1 and substrate concentration. In

FIGURE 4
Transmitter/Receiver AI-1 distributions and signal metrics of chemically and electrically induced edge randomized networks. (A) The AI-1
distribution amongst all nodes in the Transmitter/Receiver network at 180 timesteps is shown for an aggregate of 10 replicates. (B) The AI-1 distribution
amongst all of nodes in the Transmitter/Receiver network at 180 timesteps post charge application is shown for an aggregate of 10 replicates. (C, D)
Calculated median GFP from the distributions data shown in Figure 3 plotted over their initial inducer concentration (C) and charge duration (D).
(E, F)Calculated percent active nodes from the distributions data shown in Figure 3 plotted over their initial inducer concentration (E) and charge duration
(F), threshold for activation was defined at 1000 GFP.
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Figures 3C, D we plotted the simulated GFP distributions across the
entire network for both the Monoculture and Transmitter/Receiver
networks at mid-log growth (180 timesteps) as a function of initial
H2O2 level. Consistent with the experimental results, the range of
expression in the Transmitter/Receiver network reached 105, while
the Monoculture network’s maximum values were ten-fold lower.

We next simulated the electrogenetic approach wherein an
applied reducing potential on the electrode generates hydrogen
peroxide and this, in turn, stimulates the cells. Naturally, a major
difference between this mode of induction is that the hydrogen
peroxide is generated at the electrode and while the system is
mixed, the peroxide level increases with the extent of its
generation rate. The experimental results from earlier work
are shown in Figures 3E, F (reproduced with permission)
(VanArsdale et al., 2022). In the Monoculture system, small
increases in GFP were observed until the cells were exposed
to −0.55 V for 1,800 s. In the previous work, a solution exposed to
this reduction duration produced approximately 15 µM of H2O2

(VanArsdale et al., 2022). Thus, the experimental results for the
electrogenetic case were roughly equivalent to the chemical
addition of H2O2. It was interesting to see that in the case of
the Transmitter/Receiver system, a continuous increase in GFP
was observed with increased charge. This was previously
described as a result of cells near the electrode experiencing

sufficient peroxide to induce AI-1, which, in turn, is stable and
can be mixed throughout (VanArsdale et al., 2022).

To simulate electrical induction, we utilized the same model
structure as described prior for chemical induction with the
exception of initial hydrogen peroxide concentrations. For
electrical induction, initial hydrogen peroxide weights were set
to zero across the whole network and hydrogen peroxide was
produced over a designated charge duration as described in
Methods. In Figure 3G, we found the simulated GFP
distribution of the electrically induced Monoculture system
did not increase significantly until greater than 30 timesteps of
applied charge (equivalent of 30 min), aligning with experimental
results in Figure 3E. For the Transmitter/Receiver system
(Figure 3H), activation increased nearly immediately, and full
activation was attained with 30 steps of electrode charge. Our
network model, in all cases, corresponded well with the actual
data in Figures 3E, F, wherein the Monoculture distribution was
essentially unchanged until over 960 s and the Transmitter/
Receiver distribution increased across the span of 960 s to
reach full activation.

An advantage of the network approach is that one can examine
state variables that are otherwise difficult to obtain experimentally.
Also, one can more easily align results with underlying mechanisms.
In Figures 4A, B, we plotted the estimated AI-1 distributions for the

FIGURE 5
Chemical versus electrical signaling dynamics for edge randomized networks. (A) Average hydrogen peroxide, (B) Average Monoculture GFP, (C)
Average Transmitter/Receiver GFP, and (D) Average Transmitter/Receiver AI-1 concentrations over time for a 6.25 µM hydrogen peroxide induced
chemical addition (blue) and 12 step charge duration (orange) across the entire network. Error bars appear as shaded regions, representing standard
deviation of aggregated network data from 10 simulation replicates.
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Transmitter/Receiver networks. While not measured experimentally
(VanArsdale et al., 2022), these simulated values are consistent with
expectations. The AI-1 distributions suggest significant
heterogeneity within the network. We found this heterogeneity
was a result of the variance in activation and spatial distribution
of the transmitter nodes and we note this heterogeneity has been
reported in chemically induced bacterial cell cultures (Servinsky
et al., 2016). We also note that such heterogeneity is not
characterized with commonly implemented population scale
ODE models, but it can be manipulated experimentally via
quorum sensing and genetic circuit design (Zargar et al., 2015).
Our initial network model suggests that there is a level of
heterogeneity that is innate to the system and is introduced when
amplifying an initial homogenous input through a subpopulation
of cells.

Interestingly, we found that the range of GFP for both
Transmitter/Receiver systems was reflected in the AI-1
distributions in Figures 4A, B. In the chemically induced system,
the AI-1 concentrations were between 101–10 (Jiang and Zhang,
2016) for initial H2O2 concentrations above 6.25 µM.
Comparatively, for the electrically induced system the AI-1
distribution across the entire network increased incrementally
with only the highest charge duration of 30 timesteps producing
above 101 of AI-1. We further evaluated signal transmission by
assessing the median GFP and fraction of activated cells for chemical
and electrical induced systems. These serve as metrics for final signal
output. The median GFP shows that with electronic induction,
expression was generally lower than with chemical induction
(Figures 4C vs. 4D), suggesting the signal was attenuated when
the inducer was produced at a point source (the electrode node) and
needed to diffuse outward among the cells to provide induction.

When comparing the Monoculture to Transmitter/Receiver
systems, we observed the amplified response enabled by the
Transmitter/Receiver system was readily apparent; the median GFP
was above 1.4 × 104 versus 2.5 × 103 for theMonoculture (Figure 4C), an
approximate 5-fold increase, when chemically induced with 100 µM.
With electrical induction the median GFP of the Transmitter/Receiver
system reached about 8.5 × 103 at the longest charge duration (30 steps),
whereas the Monoculture system did not increase above 2.0 × 103, an
approximate 4-fold difference. In addition to median GFP we also
calculated the percent activated nodes in the network for each initial
inducer concentration (by measuring the number of nodes with GFP
above a 103 threshold). In Figure 4E, we plotted chemically induced
systems and observed that although both systems ultimately reached
100% activity, the Transmitter/Receiver system reached this peak at
lower H2O2. For the electrically induced systems, the portion of active
nodes increased incrementally and monotonically with charge
(Figure 4F). We note that the Monoculture system had a
consistently lower percentage of active nodes than the Transmitter/
Receiver system, as expected, and never reached 100% by with
30 timesteps of induction. Overall, our model simulations
corresponded well with the previous data (Figures 3A, B, E, F). Our
simulations also suggest that despite the heterogeneity or “noise” that is
introduced by amplifying the initial signal through a subset of cells
(electrode induction), the molecular amplification that was enabled by
transforming the H2O2 into a stronger secondary signalingmolecule, in
particular one that evokes a quorum sensing response, overcame that
disruption, and produced high levels of signal and activation.

In Figure 5, we explored further the dynamics of H2O2, AI-1, and
GFP for the chemically and electrically actuated cases by plotting
their average (lines) and standard deviation (shaded) across the
network over time. We chose representative cases with similar
average H2O2 concentrations. In Figure 5A, we depict the
simulated H2O2 dynamics for the chemical addition of 6.25 μM
H2O2 and for the electrical induction at 12 timesteps of applied
charge (~6 µM of hydrogen peroxide generated). The widely
distributed H2O2 level in the case of electrical induction was
expected, but the average concentration simulated was quite
similar. We note, Figure 5A depicts Transmitter/Receiver H2O2

dynamics, however Monoculture dynamics were nearly identical
suggesting the type of cellular system does not affect hydrogen
peroxide diffusion and generation. Despite the comparable average
H2O2 levels in the systems over time, the AI-1 concentration of the
Transmitter/Receiver system was nearly 2-fold higher that of the
chemical induction (Figure 5B). In general, the GFP levels produced
by both theMonoculture and Transmitter/Receiver systems (Figures
5C, D) were higher for the chemical addition relative to the
electronically induced systems. This was understandable because
the electrode produced H2O2 levels were found to be widely
dispersed, indicating that many cells likely encountered minimal
levels of inducer (Figure 5A). When comparing the Monoculture
versus Transmitter/Receiver GFP dynamics (Figure 5C vs.
Figure 5D), GFP expression in the Monoculture increased
consistently over time whereas the Transmitter/Receiver network
expression was slightly delayed initially during which time AI-1 was
produced (~50 steps corresponding to peak AI-1) and subsequently
accumulated. For both modes of induction, the Transmitter/
Receiver GFP yields were higher irrespective of a delay in
production.

Overall, we note that the large standard deviations depicted in
Figure 5 reflect substantial heterogeneity within the network. We
suggest this heterogeneity is rooted in the wide signaling molecule
distribution that can occur when cell numbers are low (early on) and
when electrodes are used to generate hydrogen peroxide. In the latter
case, this signal molecule interacts with cells in a random and
distributed manner. In the experimental system, an uninduced
cell needs to be transported near an electrode to receive H2O2.
At further distances the peroxide could be depleted so that cells far
away never experience high levels. Interestingly, our network
model seems to well characterize the extent of signal
propagation and the effects of its design structure in
determining system outcome. The tradeoffs between the delay
in responses and expression levels provide insight on system
design. They also suggest spatial heterogeneity, we explore this as
a potential design feature as follows.

3.2 Spatial design via network topology:
Graph modularity and edge dynamics’ effect
on signaling

Based on our successes in characterizing experimental data from
both the chemical addition of hydrogen peroxide and its electrode-
based generation for both the Monoculture and the Transmitter/
Receiver systems, we decided to interrogate the design space for
altered induction methodologies. Specifically, we next explored how
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the relative spatial distribution of cells (nodes) could affect the
signaling. We decided to test a case where we retain transmitter cells
directly onto the electrode. Thus, in Figure 6A, in addition to the (i) a
chemical addition and (ii) electrical induction cases previously
described, we added (iii) electrical induction of transmitter cells
that are fixed to its surface. This last network structure captures
experimental designs in which cells are either engineered to bind to
gold electrodes (Terrell et al., 2021) or that are retained in an
assembled hydrogel film (Li et al., 2020). Cells localized in this
manner could receive electronic signals (hydrogen peroxide) and
then transmit their “message” to cells outside of the film through
signal synthesis, secretion, and transport to cells occupying the
liquid proximal to the electrode and beyond (Li et al., 2020). For

affixed cells, instead of randomizing edges at time steps, we fixed
edges andmaintained them throughout. This mimics a static system,
representative of a biofilm (Li et al., 2007; Cornell et al., 2020) or a set
of cells localized on an electrode (Terrell et al., 2021).

To quantify structural variation that emerges due to growth and
edge dynamics, we used modularity (Newman and Girvan, 2004;
Newman et al., 2006; Blondel et al., 2008) as a measure of network
structure (Supplementary Figure S4A). In general, modularity
describes how well a network is partitioned into various sub-
communities (Newman et al., 2006). A single community
wherein the connections are near random is represented by a
modularity value of zero, while a network where all edges fall
within the same community would have a modularity of 1 due to

FIGURE 6
Modularity and fold change dependent on network structure. (A)Graph schematic of the three spatial configurations tested. (B)Networkmodularity
of differing node arrangements and edge dynamics at timestep 180. (C) Fold change in GFP of randomized edge networks over static edge networks for
theMonoculture and Transmitter/Receiver systems with either chemical or electrical induction at 180 timesteps post induction. (D, E) Signal transmission
metrics for Transmitter/Receiver network architectures at 180 steps post 30 steps of electrical induction, calculated from an aggregate distribution
of 10 simulation replicates. (D) Percent active nodes for varying charge duration times. (E)Median GFP across network for varying charge duration times.
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its strong community structure (Newman and Girvan, 2004). For
our calculations, we use the Louvain method to calculate the
modularity as it is computationally efficient in finding high
modularity partitions of large networks (Blondel et al., 2008).

In Figure 6B, we depict the calculated Louvain modularity at
180 timesteps for the cases above (chemical and electrode induction
for mixed cultures), as well as the new case where transmitter cells
are fixed to the electrode (initial 10 nodes) and the receiver cells are
not fixed. For the Transmitters fixed onto the electrode, dividing
nodes inherit the edges from their parent nodes without further edge
randomization. As expected, our results show that there was
increased modularity calculated in the case where some cells are
fixed (Transmitters) and some are free to move (Receivers). In
general, we found that the modularity of randomized networks was
lower than static networks (see Supplementary Figure S4B for
simulations of completely fixed systems, not shown here). This is
understandable because randomized distribution of edges among
the nodes yields an unorganized network structure. In comparison,
as static networks grow, they maintain structure.

We further ran simulations with fixed edges for different charge
durations and hydrogen peroxide concentrations as in the earlier
simulations, to examine static biofilm cultures relative to well stirred
systems. We found differences in charge duration and initial
hydrogen peroxide concentrations did not affect the modularity
as molecular concentrations that are represented by node weights do
not affect the spatial structure of the network. We then analyzed the
output (i.e., GFP level) for these simulations. To compare the output
of these static cultures we calculated the ratio of average GFP at
180 timesteps from randomized networks to the static networks. We
use this as a way to measure the benefit of cells in the traditional
well-mixed system to those in a fixed or partially fixed system
(i.e., cells fixed to an electrode propagating signals to those in
fluid nearby). In Figure 6C, we plotted these ratios for each
inducer and system type. For the new case of transmitters
fixed to an electrode, we also tested a case in which the
receivers are also fixed to emulate multilayer deposition of
cells onto an electrode as a potential design. This is more
representative to a complete biofilm. The fold change
calculated from these transmitter fixed cases were done
relative to static networks of electrically induced Transmitter/
Receiver simulations.

Here we see that for chemical addition, there was little difference
between the network structures. This results from the fact that all
nodes experience the same initial inducer concentrations. For
electrically induced systems, there was minimal effect on the
Monoculture at all charge durations. In the Transmitter/Receiver
system, we found that for 30 steps of charge there was an
approximately 3-fold increase in signal when randomizing the
network. In fixed transmitter simulations, we found a
substantially larger range for the overall system output. These
fold increases are indicative of how edge randomization generally
increases output while strategic spatial arrangement of the co-
culture with respect to inducer sources can largely amplify signal
throughput.

Finally, we assessed how topological effects leading to increased
modularity affect signaling within the network. We calculated the
percentage of cells that are active (GFP above a 103 threshold) and
the median GFP for these Transmitter/Receiver simulations with

various edge dynamics (Figures 6D, E). We observed that the static
networks had both the lowest median GFP and the fraction of active
cells (Figures 6D, E). Interestingly, our simulations suggest that
introducing transmitters that are fixed to the electrode increases the
overall activation and median GFP over completely randomized
networks, and this is irrespective of receiver conformation (fixed or
not). We suggest this is due to the faster and increased AI-1
production that is enabled by transmitter proximity to the
electrode (Supplementary Figure S4C). Randomizing the receivers
further increased estimated output. This is a consequence of
allowing the whole receiver population’s increased contact with
the transmitter population, as the AI-1 source. This was evident
as the network’s GFP distributions where increasing static network
components correlate to a wider range in GFP values
(Supplementary Figure S4D). Overall, these results reveal that
while high modularity yields increased signal heterogeneity, it
also lowered signal output compared to low modularity networks.
That said, the strategic or intentional organization of subpopulations
can drastically increase output, despite increased modularity.

4 Discussion

In this work, we developed a graphical network approach for
modeling multi-population bacterial cultures. By coarse graining the
cell-to-cell signaling interactions that are known to occur in complex
bacterial systems (Waters and Bassler, 2005) and leveraging intrinsic
network properties that attempt to simulate spatial distributions, we
have elucidated signal dynamics that would be very difficult to
ascertain using traditional deterministic population scale
multicellular modeling. The implementation of a graph-based
model allowed us to vary network structures that we had
previously implemented experimentally. We were able to
determine network parameters (probabilities of growth, molecule
production, gene activation) that when employed in the model,
accurately recapitulated the experimental observations. Then node
weights (other state variables such as inducer levels, substrate levels,
etc.) were examined to better understand the experimental results.
Perhaps more importantly, with this agreement we then tested
hypotheses regarding the spatial composition of microbial
systems. Further, by implementing various edge architectures, we
attempted to mimic various engineered and endogenous culture
structures. We mimicked stirred batch conditions common to
biomanufacturing settings via edge randomization. Static edge
conformations imitate biofilms found in nature and other
immobilized or hydrogel-assembled cell systems. Additionally, we
could easily accommodate varied edge profiles in our model so that
we could test how relative spatial structures affect communication
between different populations.

Owing to the natural tendency to think in terms of
subpopulations and quorum sensing (Servinsky et al., 2016), we
introduced the notion that network modularity would be a valuable
tool in analyzing bacterial networks when organized in the various
experimental configurations. In testing fixed spatial conformations
we found that for increased modularity, meaning more
subcommunities in the network, maximum signal throughput is
reduced and delayed for simulations with an electrode as an input
source. We suggest this is attributed to the need for the input signal
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to diffuse into each subcommunity for the secondary signal to then
be produced and diffused back out for further signaling. We suggest
this introduces an increase in noise at each step of signal
transmission due to structural constraints. That said, these
decreases in signal can be overcome by spatially orienting
transmitter nodes close to the electrode as the input signal
source. We further tested fixing all transmitter nodes to the input
signal source (the electrode) and found that regardless of whether
the receivers were fixed or randomized this restored signal in fixed
networks and resulted in higher expression than in randomized
simulations. Correspondingly, in Terrell et al. (2021), they
demonstrated that by fixing microbes to a gold electrode they
could produce AI-1 with electrochemical stimulation, and this
was shown to be quite successful in signal propagation (more so
than in VanArsdale et al. (2022), where the transmitter and receiver
populations were fully mixed in a stirred vessel). Unfortunately, in
neither case was it experimentally feasible to monitor the AI-1
diffusion and activation across the system boundaries (Terrell et al.,
2021). Here, our work may provide theoretical insight into the
signaling occurring in these types of experimental configurations
and those found in natural biofilm systems, where measurements in
real time and at small distances is difficult.

Additionally, we suggest that models such as this can be further
extended to simulate other spatial conformations of cell populations
to provide insight into how much input and signal transmission is
necessary for successful outcomes (Chun et al., 2021). These include
cases where synthetic assembled consortia of higher complexity may
be cultured together in batch or spatially fixed within gels (Luo and
Shoichet, 2004), between membranes or 3D printed niches (Duraj-
Thatte et al., 2021), or within varying ecological niches (Li et al.,
2007; Schiessl et al., 2019; Cornell et al., 2020; Ciccarese et al., 2022;
Evans et al., 2023). For example, the field of biomaterials has
implemented the spatial confinement of cells within hydrogel
structures and microcapsules for the use in generating functional
living materials and to recreate micro communities found in nature
(Dsouza et al., 2022; Molinari et al., 2022; Wang et al., 2022;
Yanamandra et al., 2022).

Data availability statement

The simulation datasets for this study can be found here - http://
github.com/kaychun29/bio-network-simulations. Further inquiries
can be made to the corresponding author - bentley@umd.edu.

Author contributions

KC: Conceptualization, Investigation, Methodology,
Writing–original draft, Writing–review and editing. EV:
Conceptualization, Writing–review and editing. EM:
Writing–review and editing. GP: Writing–review and editing.
WB: Conceptualization, Funding acquisition, Supervision,
Writing–original draft, Writing–review and editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. The authors
would like to acknowledge partial support of this work by the
National Science Foundation (MCB# 2227598, CBET# 1932963),
the Department of Energy (BER#SCW1710), the Defense Threat
Reduction Agency (HDTRA1-19-1-0021), and the Gordon and
Betty Moore Foundation (#11395). As well as the COMBINE
Fellowship (NSF Graduate Training Grant, DGE-1632976, to KC).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fsysb.2024.1291293/
full#supplementary-material

References

Barabasi, A. L. (2013). Network science. Philos. Trans. A Math. Phys. Eng. Sci. 371
(1987), 20120375. doi:10.1098/rsta.2012.0375

Bhokisham, N., VanArsdale, E., Stephens, K. T., Hauk, P., Payne, G. F., and Bentley,
W. E. (2020). A redox-based electrogenetic CRISPR system to connect with and control
biological information networks. Nat. Commun. 11 (1), 2427. doi:10.1038/s41467-020-
16249-x

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008). Fast unfolding
of communities in large networks. J. Stat. Mech. Theory Exp. 2008 (10), P10008. doi:10.
1088/1742-5468/2008/10/p10008

Cao, M., Gao, M., Suastegui, M., Mei, Y., and Shao, Z. (2020). Building microbial
factories for the production of aromatic amino acid pathway derivatives: from
commodity chemicals to plant-sourced natural products. Metab. Eng. 58, 94–132.
doi:10.1016/j.ymben.2019.08.008

Chun, K., Stephens, K., Wang, S., Tsao, C. Y., Payne, G. F., and Bentley, W. E. (2021).
Parsed synthesis of pyocyanin via co-culture enables context-dependent intercellular
redox communication. Microb. Cell Fact. 20 (1), 215. doi:10.1186/s12934-021-01703-2

Ciccarese, D., Micali, G., Borer, B., Ruan, C., Or, D., and Johnson, D. R. (2022). Rare
and localized events stabilize microbial community composition and patterns of spatial
self-organization in a fluctuating environment. ISME J. 16 (5), 1453–1463. doi:10.1038/
s41396-022-01189-9

Cornell, W. C., Zhang, Y., Bendebury, A., Hartel, A. J. W., Shepard, K. L., and
Dietrich, L. E. P. (2020). Phenazine oxidation by a distal electrode modulates biofilm
morphogenesis. Biofilm 2, 100025. doi:10.1016/j.bioflm.2020.100025

Dinh, C. V., Chen, X., and Prather, K. L. J. (2020). Development of a quorum-Sensing
based circuit for control of coculture population composition in a naringenin
production system. ACS Synth. Biol. 9 (3), 590–597. doi:10.1021/acssynbio.9b00451

Frontiers in Systems Biology frontiersin.org13

Chun et al. 10.3389/fsysb.2024.1291293

http://github.com/kaychun29/bio-network-simulations
http://github.com/kaychun29/bio-network-simulations
mailto:bentley@umd.edu
https://www.frontiersin.org/articles/10.3389/fsysb.2024.1291293/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fsysb.2024.1291293/full#supplementary-material
https://doi.org/10.1098/rsta.2012.0375
https://doi.org/10.1038/s41467-020-16249-x
https://doi.org/10.1038/s41467-020-16249-x
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.1016/j.ymben.2019.08.008
https://doi.org/10.1186/s12934-021-01703-2
https://doi.org/10.1038/s41396-022-01189-9
https://doi.org/10.1038/s41396-022-01189-9
https://doi.org/10.1016/j.bioflm.2020.100025
https://doi.org/10.1021/acssynbio.9b00451
https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2024.1291293


Dsouza, A., Constantinidou, C., Arvanitis, T. N., Haddleton, D. M., Charmet, J., and
Hand, R. A. (2022). Multifunctional composite hydrogels for bacterial capture, growth/
elimination, and sensing applications. ACS Appl. Mater Interfaces 14 (42),
47323–47344. doi:10.1021/acsami.2c08582

Duraj-Thatte, A. M., Manjula-Basavanna, A., Rutledge, J., Xia, J., Hassan, S., Sourlis,
A., et al. (2021). Programmable microbial ink for 3D printing of living materials
produced from genetically engineered protein nanofibers. Nat. Commun. 12 (1), 6600.
doi:10.1038/s41467-021-26791-x

Evans, C. R., Smiley, M. K., Thio, S. A., Wei, M., Price-Whelan, A., Min, W., et al.
(2023). Spatial heterogeneity in biofilm metabolism elicited by local control of
phenazine methylation. bioRxiv 120, e2313208120. doi:10.1073/pnas.2313208120

Gosak, M., Markovic, R., Dolensek, J., Slak Rupnik, M., Marhl, M., Stozer, A., et al.
(2018). Network science of biological systems at different scales: a review. Phys. Life Rev.
24, 118–135. doi:10.1016/j.plrev.2017.11.003

Gwon, D.-a., Seo, E., and Lee, J. W. (2023). Construction of synthetic microbial
consortium for violacein production. Biotechnol. Bioprocess Eng. 28, 1005–1014. doi:10.
1007/s12257-022-0284-5

Hagberg, A. A., Schult, D. A., and Swart, P. J. (2008). “Exploring network structure,
dynamics, and function using NetworkX,” in Proceedings of the 7th Python in Science
Conference 2008.

Hunter, J. D. (2007). MATPLOTLIB: a 2D graphics environment. Scientific
Programming.

Hwang, I. Y., Koh, E., Wong, A., March, J. C., Bentley, W. E., Lee, Y. S., et al. (2017).
Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas
aeruginosa gut infection in animal models. Nat. Commun. 8, 15028. doi:10.1038/
ncomms15028

Jiang, M., and Zhang, H. (2016). Engineering the shikimate pathway for biosynthesis
of molecules with pharmaceutical activities in E. coli. Curr. Opin. Biotechnol. 42, 1–6.
doi:10.1016/j.copbio.2016.01.016

Kim, E., Li, J., Kang, M., Kelly, D. L., Chen, S., Napolitano, A., et al. (2019). Redox is a
global biodevice information processing modality. Proc. IEEE Inst. Electr. Electron Eng.
107 (7), 1402–1424. doi:10.1109/JPROC.2019.2908582

Li, J., Attila, C., Wang, L., Wood, T. K., Valdes, J. J., and Bentley, W. E. (2007).
Quorum sensing in Escherichia coli is signaled by AI-2/LsrR: effects on small RNA and
biofilm architecture. J. Bacteriol. 189 (16), 6011–6020. doi:10.1128/JB.00014-07

Li, J., Kim, E., Gray, K. M., Conrad, C., Tsao, C. Y., Wang, S. P., et al. (2020).
Multifunctional artificial artery from direct 3D printing with built-in ferroelectricity and
tissue-matching modulus for real-time sensing and occlusion monitoring. Adv. Funct.
Mater. 30 (30), 2002868. doi:10.1002/adfm.202002868

Luo, Y., and Shoichet, M. S. (2004). A photolabile hydrogel for guided three-
dimensional cell growth and migration. Nat. Mater 3 (4), 249–253. doi:10.1038/
nmat1092

Menczer, F., Fortunato, S., and Davis, C. A. (2020). A first Course in network science.

Mimee, M., Tucker, A. C., Voigt, C. A., and Lu, T. K. (2015). Programming a human
commensal bacterium, Bacteroides thetaiotaomicron, to sense and respond to stimuli in
the murine gut microbiota. Cell Syst. 1 (1), 62–71. doi:10.1016/j.cels.2015.06.001

Molinari, S., Tesoriero, R. F., Jr., Li, D., Sridhar, S., Cai, R., Soman, J., et al. (2022). A de
novomatrix for macroscopic living materials from bacteria. Nat. Commun. 13 (1), 5544.
doi:10.1038/s41467-022-33191-2

Newman, M., Barabási, A.-L., and Watts, D. J. (2006). The Structure and dynamics of
networks. Princeton: Princeton University Press.

Newman, M. E. J., and Girvan, M. (2004). Finding and evaluating community
structure in networks. Phys. Rev. E 69, 026113. doi:10.1103/PhysRevE.69.026113

Pomposiello, P. J., and Demple, B. (2001). Redox-operated genetic switches: the SoxR
and OxyR transcription factors. Trends Biotechnol. 19, 109–114. doi:10.1016/s0167-
7799(00)01542-0

Quan, D. N., Tsao, C. Y., Wu, H. C., and Bentley, W. E. (2016). Quorum sensing
desynchronization leads to bimodality and patterned behaviors. PLoS Comput. Biol. 12
(4), e1004781. doi:10.1371/journal.pcbi.1004781

Sayama, H. (2015). “Simulating dynamics on networks,” in Introduction to the
modeling and analysis of complex systems. Open SUNY Textbooks, Milne Library

Schiessl, K. T., Hu, F., Jo, J., Nazia, S. Z., Wang, B., Price-Whelan, A., et al. (2019).
Phenazine production promotes antibiotic tolerance and metabolic heterogeneity in
Pseudomonas aeruginosa biofilms. Nat. Commun. 10 (1), 762. doi:10.1038/s41467-019-
08733-w

Servinsky, M. D., Terrell, J. L., Tsao, C. Y., Wu, H. C., Quan, D. N., Zargar, A., et al.
(2016). Directed assembly of a bacterial quorum. ISME J. 10 (1), 158–169. doi:10.1038/
ismej.2015.89

Shiloach, J., Kaufman, J., Guillard, A. S., and Fass, R. (1996). Effect of glucose
supply strategy on acetate accumulation, growth, and recombinant protein
production by Escherichia coli BL21 (lambdaDE3) and Escherichia coli JM109.
Biotechnol. Bioeng. 49, 421–428. doi:10.1002/(SICI)1097-0290(19960220)49:
4<421::AID-BIT9>3.0.CO;2-R

Stephens, K., Pozo, M., Tsao, C. Y., Hauk, P., and Bentley, W. E. (2019). Bacterial co-
culture with cell signaling translator and growth controller modules for autonomously
regulated culture composition. Nat. Commun. 10 (1), 4129. doi:10.1038/s41467-019-
12027-6

Terrell, J. L., Tschirhart, T., Jahnke, J. P., Stephens, K., Liu, Y., Dong, H., et al. (2021).
Bioelectronic control of a microbial community using surface-assembled electrogenetic
cells to route signals. Nat. Nanotechnol. 16 (6), 688–697. doi:10.1038/s41565-021-
00878-4

Tschirhart, T., Kim, E., McKay, R., Ueda, H., Wu, H. C., Pottash, A. E., et al. (2017).
Electronic control of gene expression and cell behaviour in Escherichia coli through
redox signalling. Nat. Commun. 8, 14030. doi:10.1038/ncomms14030

VanArsdale, E., Navid, A., Chu, M. J., Halvorsen, T. M., Payne, G. F., Jiao, Y., et al.
(2023). Electrogenetic signaling and information propagation for controlling microbial
consortia via programmed lysis. Biotechnol. Bioeng. 120 (5), 1366–1381. doi:10.1002/bit.
28337

VanArsdale, E., Pitzer, J., Wang, S., Stephens, K., Chen, C. Y., Payne, G. F., et al.
(2022). Electrogenetic signal transmission and propagation in coculture to guide
production of a small molecule, tyrosine. ACS Synth. Biol. 11 (2), 877–887. doi:10.
1021/acssynbio.1c00522

Virgile, C., Hauk, P., Wu, H. C., Shang, W., Tsao, C. Y., Payne, G. F., et al. (2018).
Engineering bacterial motility towards hydrogen-peroxide. PLoS One 13 (5), e0196999.
doi:10.1371/journal.pone.0196999

Wang, L., Zhang, X., Tang, C., Li, P., Zhu, R., Sun, J., et al. (2022). Engineering
consortia by polymeric microbial swarmbots. Nat. Commun. 13 (1), 3879. doi:10.1038/
s41467-022-31467-1

Waskom, M. (2021). seaborn: statistical data visualization. J. Open Source Softw. 6
(60), 3021. doi:10.21105/joss.03021

Waters, C. M., and Bassler, B. L. (2005). Quorum sensing: cell-to-cell communication
in bacteria. Annu. Rev. Cell Dev. Biol. 21, 319–346. doi:10.1146/annurev.cellbio.21.
012704.131001

Yanamandra, A. K., Bhusari, S., del Campo, A., Sankaran, S., and Qu, B. (2023). In
vitro evaluation of immune responses to bacterial hydrogels for the development of
living therapeutic materials. Biomaterials Advances, 153, 213554. doi:10.1016/j.bioadv.
2023.213554

Zargar, A., Quan, D. N., Emamian, M., Tsao, C. Y., Wu, H. C., Virgile, C. R., et al.
(2015). Rational design of ’controller cells’ to manipulate protein and phenotype
expression. Metab. Eng. 30, 61–68. doi:10.1016/j.ymben.2015.04.001

Zhao, S., Li, F., Yang, F., Ma, Q., Liu, L., Huang, Z., et al. (2022). Microbial production
of valuable chemicals by modular co-culture strategy.World J. Microbiol. Biotechnol. 39
(1), 6. doi:10.1007/s11274-022-03447-6

Frontiers in Systems Biology frontiersin.org14

Chun et al. 10.3389/fsysb.2024.1291293

https://doi.org/10.1021/acsami.2c08582
https://doi.org/10.1038/s41467-021-26791-x
https://doi.org/10.1073/pnas.2313208120
https://doi.org/10.1016/j.plrev.2017.11.003
https://doi.org/10.1007/s12257-022-0284-5
https://doi.org/10.1007/s12257-022-0284-5
https://doi.org/10.1038/ncomms15028
https://doi.org/10.1038/ncomms15028
https://doi.org/10.1016/j.copbio.2016.01.016
https://doi.org/10.1109/JPROC.2019.2908582
https://doi.org/10.1128/JB.00014-07
https://doi.org/10.1002/adfm.202002868
https://doi.org/10.1038/nmat1092
https://doi.org/10.1038/nmat1092
https://doi.org/10.1016/j.cels.2015.06.001
https://doi.org/10.1038/s41467-022-33191-2
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1016/s0167-7799(00)01542-0
https://doi.org/10.1016/s0167-7799(00)01542-0
https://doi.org/10.1371/journal.pcbi.1004781
https://doi.org/10.1038/s41467-019-08733-w
https://doi.org/10.1038/s41467-019-08733-w
https://doi.org/10.1038/ismej.2015.89
https://doi.org/10.1038/ismej.2015.89
https://doi.org/10.1002/(SICI)1097-0290(19960220)49:4<421::AID-BIT9>3.0.CO;2-R
https://doi.org/10.1002/(SICI)1097-0290(19960220)49:4<421::AID-BIT9>3.0.CO;2-R
https://doi.org/10.1038/s41467-019-12027-6
https://doi.org/10.1038/s41467-019-12027-6
https://doi.org/10.1038/s41565-021-00878-4
https://doi.org/10.1038/s41565-021-00878-4
https://doi.org/10.1038/ncomms14030
https://doi.org/10.1002/bit.28337
https://doi.org/10.1002/bit.28337
https://doi.org/10.1021/acssynbio.1c00522
https://doi.org/10.1021/acssynbio.1c00522
https://doi.org/10.1371/journal.pone.0196999
https://doi.org/10.1038/s41467-022-31467-1
https://doi.org/10.1038/s41467-022-31467-1
https://doi.org/10.21105/joss.03021
https://doi.org/10.1146/annurev.cellbio.21.012704.131001
https://doi.org/10.1146/annurev.cellbio.21.012704.131001
https://doi.org/10.1016/j.bioadv.2023.213554
https://doi.org/10.1016/j.bioadv.2023.213554
https://doi.org/10.1016/j.ymben.2015.04.001
https://doi.org/10.1007/s11274-022-03447-6
https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2024.1291293

	Assessing electrogenetic activation via a network model of biological signal propagation
	1 Introduction
	2 Materials and methods
	2.1 Model formalism
	2.1.1 Gene activation and molecular production
	2.1.2 Signal diffusion
	2.1.3 Network growth
	2.1.4 Edge randomization
	2.1.5 Electrical hydrogen peroxide generation

	2.2 Code and data availability

	3 Results
	3.1 Chemical and electrical induction of monoculture and transmitter/receiver systems
	3.2 Spatial design via network topology: Graph modularity and edge dynamics’ effect on signaling

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


