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The emergence of SARS-CoV-2 variants during the COVID-19 pandemic caused
frequent global outbreaks that confounded public health efforts across many
jurisdictions, highlighting the need for better understanding and prediction of
viral evolution. Predictivemodels have been shown to support disease prevention
efforts, such as with the seasonal influenza vaccine, but they require abundant
data. For emerging viruses of concern, such models should ideally function with
relatively sparse data typically encountered at the early stages of a viral outbreak.
Conventional discrete approaches have proven difficult to develop due to the
spurious and reversible nature of amino acid mutations and the overwhelming
number of possible protein sequences adding computational complexity. We
hypothesized that these challenges could be addressed by encoding discrete
protein sequences into continuous numbers, effectively reducing the data size
while enhancing the resolution of evolutionarily relevant differences. To this end,
we developed a viral protein evolution prediction model (VPRE), which reduces
amino acid sequences into continuous numbers by using an artificial neural
network called a variational autoencoder (VAE) andmodels their most statistically
likely evolutionary trajectories over time using Gaussian process (GP) regression.
To demonstrate VPRE, we used a small amount of early SARS-CoV-2 spike
protein sequences. We show that the VAE can be trained on a synthetic
dataset based on this data. To recapitulate evolution along a phylogenetic
path, we used only 104 spike protein sequences and trained the GP
regression with the numerical variables to project evolution up to 5 months
into the future. Our predictions contained novel variants and the most frequent
prediction mapped primarily to a sequence that differed by only a single amino
acid from themost reported spike protein within the prediction timeframe. Novel
variants in the spike receptor binding domain (RBD) were capable of binding
human angiotensin-converting enzyme 2 (ACE2) in silico, with comparable or
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better binding than previously resolved RBD-ACE2 complexes. Together, these
results indicate the utility and tractability of combining deep learning and regression
to model viral protein evolution with relatively sparse datasets, toward developing
more effective medical interventions.
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deep learning, regression, protein evolution, SARS-CoV-2, spike protein, small data,
predictive model

Introduction

Viruses are responsible for millions of deaths and at least a third
of all known infectious disease mortalities annually (Lozano et al.,
2012; Marston et al., 2014; World Health Organization, 2022). The
ability of a virus to infect its host is dependent on a “lock-and-key”
mechanism, whereby glycoproteins decorating the viral surface
interact with receptors on the host cell to induce a fusion event
that results in entry of the viral particle (Choppin and Scheid, 1980;
Davey et al., 2011). The specificity of the viral surface glycoprotein to
a host cell receptor is known as its tropism and is considered one of
the most crucial factors for new and persisting viral diseases
(Majumdar and Jana, 2023).

Surface glycoproteins undergo strong selective pressure to
maintain or shift their tropism, often leading to increased
infectivity rates (Baranowski et al., 2001; Duffy et al., 2008). For
example, the SARS-CoV-2 spike protein enables entry into human
cells through binding of the angiotensin-converting enzyme 2
(ACE2) receptor (Kim et al., 2020; Ou et al., 2020; Zhang et al.,
2020; Oudit et al., 2023). Over the course of the COVID-19
pandemic, thousands of variants have evolved (Koyama et al.,
2020), and several were responsible for devastating outbreaks,
such as the Omicron variant, which alone has 15 novel
mutations in its spike protein receptor binding domain (RBD)
that increased its virulence (Lupala et al., 2022; Oudit et al.,
2023). The importance of the spike protein for host cell entry
made it a logical target candidate for vaccines (Le et al., 2020).
Therefore, it is evident that understanding the evolution of viral
surface glycoproteins is imperative for establishing effective and
preventative medical interventions for viral diseases. Moreover, the
rate at which medicines can be produced is vital to saving lives and
safeguarding immunity (Gao et al., 2023).

Predicting viral protein evolution has long stood as a grand
challenge in biology. Previous efforts have typically been carried
out using computational models that aimed to simulate general
mechanisms of natural evolution, such as genetic drift (McCall,
2005; Huddleston et al., 2020). For example, the arrival of new
influenza strains each year has encouraged the development of
various models (e.g., Steinbrück et al., 2014; Łuksza and Lässig,
2014), which are useful in the development of annual flu vaccines
(Morris et al., 2018). However, these models are ineffective at
dealing with the highly dimensional factors of viral evolution and
also have difficulty with incorporating uncertainty and
stochasticity (Petrova and Russell, 2018; Perofsky and Nelson,
2020). Newer methods, particularly those involving machine
learning, tend to extrapolate patterns from recorded
evolutionary events, rather than impose theorized patterns of
natural processes (Lee et al., 2016; Hie et al., 2021). Many of these

methods implement deep learning, which is a subfield of machine
learning that uses neural networks to learn from large amounts of
data (Eraslan et al., 2019; Li et al., 2019). Deep learning has
already been used to model viral evolution in a discrete context
(Crossman, 2020; Sawmya et al., 2020; Younis, 2021; Han et al.,
2023). However, such models are typically trained on vast
amounts of data that are not available during early stages of a
viral outbreak and tend to be impeded by the overwhelming
dimensionality of protein sequence space (Pocrnic et al., 2016).
Protein sequence space explodes combinatorially with each
predicted amino acid, and there is no apparent forward notion
of change from one amino acid to the next, further highlighting
the importance of reducing the dimensionality issue in
viral evolution.

To tackle the issues of data scarcity and dimensionality, neural
networks called variational autoencoders (VAEs) have been
implemented to reduce multidimensional data down to numerical
values that still capture biologically relevant features (Pocrnic et al.,
2016). VAEs can compress protein sequences into continuous latent
space, which is a continuum of numerical values where similar
values are located closely together. By learning to represent protein
sequences as continuous numerical coordinates, VAEs have been
used to capture biological information such as sequence mutations,
novel cancer biomarkers, and protein family fitness landscapes
(Riesselman et al., 2018; Ding et al., 2019; Simidjievski et al.,
2019). Reducing protein sequences into lower-dimensional
numerical encodings allows them to be further analyzed for
evolutionary patterns that are otherwise difficult to detect, and
substantially reduces the data size (Way and Greene, 2018).
However, VAEs have not yet been integrated in a model for
predicting protein evolution.

To find the trajectory of protein sequence evolution over time,
Gaussian process (GP) regressions are highly effective as
probabilistic models and have been widely implemented
(Rasmussen and Williams, 2008; Das et al., 2018). GPs are a
Bayesian learning technique that construct probability models of
previously observed data, which they can make inferences from
(Rasmussen and Williams, 2008). GPs have been used to model
various protein properties (e.g., ligand-binding affinity or enzyme
activity) with high accuracy (Romero et al., 2013). Regression
modeling and time-series forecasting are common applications of
GPs. For time-series regression, a GP can fit functions to a given set
of data and time points and generate regression functions with
associated probability distributions that allow for modeling of
temporal trends (Cheng et al., 2019). GPs present an advantage
over discrete models because their predictions are continuous,
providing more granularity (Romero et al., 2013). The ability of
GPs to quantify uncertainty helps to determine the validity of the
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outputs and utilizing them to model temporal trends also makes
fewer assumptions on the shape of data distribution (Roberts et al.,
2013; Romero et al., 2013), thus providing a more reliable model.
Previous studies have shown the utility of GPs and/or latent spaces
to study phylogenetic relationships, model protein stability, design
proteins, and in inferring chemical species involved in biochemical
interaction networks (Gao et al., 2008; Jones and Moriarty, 2013;
Greener et al., 2018; Riesselman et al., 2018; Ding et al., 2019).
However, the use of GPs and latent spaces for predicting unseen
evolution on labeled timelines has not been employed.

Here, we integrate a VAE and GP regression to create a
synergistic framework for viral protein evolution prediction
(VPRE) that requires a relatively small amount of input data to
function (Figure 1). VPRE models protein evolution as a continuum
of numerical coordinates, rather than as a discrete timeline of amino
acid sequences. After compressing viral proteins with the VAE to
create a biologically relevant latent space (Figures 1A, B), the GP
projects the most statistically likely chronological trajectories of
protein evolution (Figures 1C, D). To demonstrate VPRE, we used a
small amount of early pandemic SARS-CoV-2 spike protein
sequence data. We found that we could robustly train the VAE
on a synthetic spike protein dataset generated from an early
collection of real-time variants. As a proof-of-concept, we made
predictions one, two, and five months into the future using only
104 sequences from Australia. VPRE predicted 17 variants, six of
which were putative spike proteins that closely resemble the
composition of spike proteins that appeared in real time,
differing by only zero to three amino acids depending on the
sequence. The most frequent prediction five months into the
future was only one amino acid different from the most frequent
spike protein in real world data. VPRE was also able to output novel
variants it had not seen in the dataset. Novel variants in the receptor
binding domain (RBD) were capable of binding human ACE2 in
silico with docking scores similar to or greater than previously
resolved crystal structures. Together, these results indicate the

utility and tractability of combining deep learning and regression
to model viral protein evolution with relatively sparse datasets.

Results

Capturing spike protein variation and
training the variational autoencoder

We set out to build VPRE from an early pandemic dataset to
demonstrate its utility at that stage. The World Health Organization
declared the COVID-19 viral disease a pandemic in March 2020.
Our dataset included 9534 SARS-CoV-2 spike protein sequences
collected internationally during the early months of the pandemic,
between 25 January and 30 June 2020 (Supplementary Figure S1), or
approximately 2 months before the pandemic was declared and
approximately 3 months after. An initial obstacle when training
the VAE was that the limited diversity in our relatively small dataset
made it difficult for the neural network to identify patterns due to
class imbalance (Supplementary Figures S1A, B). Across all
sequences, the average mutation frequency per amino acid
variant was 1.5 × 10−4 (Supplementary Figures S1C, D). As
expected, we found that the spike protein is quite conserved,
especially in its RBD, where mean variant frequency per amino
acid was 6 × 10−5 (Supplementary Figure S1C). To improve the VAE
training, we simulated 20,000 spike proteins with an amplified but
equal chance of mutation at any of the mutation sites seen in the
original protein sequences, while the conserved regions were
maintained (Figure 2A). Consequently, most variant frequencies
at each position rose to approximately 0.3 or 0.5, given that there
were many amino acid positions with two or three variants. This
approach increased the VAE’s ability to encode and decode rare
variants in the dataset, which ensured that low-frequency variants
were represented in the GP input and could be decoded accurately if
predicted (Figures 2B–E).

FIGURE 1
A predictive model for viral protein evolution. (A) Step 1: Profile and diversity analysis of SARS-CoV-2 spike protein sequences for neural network
training. The diversity profile is used to generate a synthetic dataset of 20,000 spike protein sequences to train the variational autoencoder. (B) Step 2:
Each sequence in the dataset is encoded into three continuous numerical variables (i.e., coordinates) in continuous latent space. (C) Step 3: The Gaussian
process regression charts the best statistical fit of the coordinates over time, and projects future coordinates in a given prediction timeframe. (D)
Step 4: Projected coordinates are decoded into putative sequences resulting from SARS-CoV-2 evolution.
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We trained the VAE for 41 epochs, determined by an early
stopping function, where a single epoch included one round of
encoding and decoding. This was followed by the calculation of a
difference score between the input and output sequences, which
represented the loss or error of the model (Figure 2C;
Supplementary Figure S2). As a simple means to verify whether
the sequence encodings output by the VAE accurately captured
differences in the spike protein sequences, we compared the
Euclidean distances between the numerical latent coordinates to
the Levenshtein distances between the amino acid sequences
(Figure 2D). A Euclidean distance is the length of a line segment
between two data points in geometric space, while a Levenshtein
distance is a metric for measuring the number of differences between
two strings (Levenshtein, 1966). The two variables were strongly
correlated (r = 0.79), suggesting that sequences became increasingly
different as their distance in latent space increased, and that
variation within amino acid sequences was well-captured in the
VAE-encoded numerical coordinates.

Encoding spike proteins in continuous latent
space using the variational autoencoder

After training the VAE on 20,000 simulated sequences, we
encoded 7,620 spike protein sequences collected before 30 May
2020, into three latent dimensions, or numerical coordinates
(Figures 2B, E). The continuous latent space representation
created by our sequence encodings separated into two major
populations: one proximal to the sequences collected near
December 2019, and the other proximal to those from May
2020 (Figure 2E). We used the remaining 1914 sequences from
the dataset collected after 30 May 2020, to validate the latent space
generated by the first sequence encodings. As expected, the
validation data appeared in the latent space within the
population of sequences proximal to May 2020. This suggests
that the VAE could learn a latent variable model and the
parameters of the probability distribution modeling
the input data.

FIGURE 2
Variational autoencoder architecture and training. (A) Variant frequency at each amino acid position on spike proteins in the NCBI GenBank dataset
(purple) and the simulated dataset (green). NTD, N-terminal domain; RBD, receptor binding domain; S2, S2 subunit. (B) Illustration of the variational
autoencoder (VAE) architecture. Three latent dimensions, or coordinates, were set for VAE-translated variables. (C) VAE training loss curves. The dashed
line indicates the number of epochs used in training the final model. (D) Correlation of Levenshtein distances of each sequence pair in the NCBI
dataset and Euclidean distances of the corresponding latent representations from the VAE. The black dotted line is the fitted line. The significance
threshold was adjusted by Bonferroni correction. n = 7,620. (E) Overview of latent representations of the viral spike protein sequences. Sequences
collected prior to 30 May 2020, are grouped as a training dataset, and are represented by circles (n = 7,620). Sequences collected after 30 May 2020, are
grouped into a validation dataset, and are represented by triangles (n = 1,914).

Frontiers in Systems Biology frontiersin.org04

King et al. 10.3389/fsysb.2024.1284668

https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2024.1284668


Predicting evolutionary trajectories of spike
proteins using Gaussian process regression

To forecast novel predictions, we input each coordinate of the
encoded sequences from the VAE into individual GPs. Each GP
performed a regression analysis on the VAE coordinates to find the
best fitting functions to the data points in chronological order. After
this training period, the functions were projected into the future to
predict the sequences of the most statistically likely spike proteins
that might evolve based on previous evolutionary patterns. Because
GP predictions are continuous coordinates and amino acid
sequences are discrete, multiple coordinate triplets can represent
the same amino acid sequence. As a result, a frequency index can be
calculated for each predicted sequence, which we used to estimate
their likelihood.

As a proof-of-concept, we tested the ability of GPs to predict
spike protein evolution on a very small dataset, by training on
sequences from Australia collected prior to 30 May 2020 (n = 104),
and projecting the trajectories of 1,000 sequences one, two, and
Five months into the future (Figure 3; Supplementary Figure S3A).
We chose Australia with the assumption that it would allow us to
simulate an isolated and simplified phylogenetic pathway for
SARS-_CoV-2 spike proteins, under the hypothesis that Australia

as an island continent was more isolated and therefore, less subject
to external factors contributing to variant emergence. Moreover,
within the entire dataset Australia had the most sufficient spike
protein data available for our analysis when compared to other
island nations. Within the training period, the functions of all three
coordinates tightly fitted with the training sequences (Figure 3
magnified boxes). In the first two months of predictions, the
range of coordinate values expanded, but then stabilized
throughout the five month prediction period. This can also be
seen in the frequency distributions for each coordinate and their
respective prediction periods, where the predicted values for each
coordinate generally followed a normal distribution, and months
two and five appeared to have similar value distributions. Clear
clustering of the training data points is seen in coordinates 1 and 2,
suggesting the presence of two dominant spike protein sequences
within the Australian dataset.

Variant predictions closely represent real-
time evolution

The VAE decoded the 1,000 coordinate triplets predicted by the
GP at the end of five months into 17 amino acid sequences
(Figure 4A). Following a seed and extend BLAST search, we
found that the top two predictions were existing spike proteins
and the other 15 were novel sequences. All 17 predictions contained
a total of 53 mutations, with each appearing between one and seven
times depending on the position (Figure 4B). The majority of
mutations were substitutions (77.4%) and occurred in the
S1 subunit (75.5%) (Figure 4C). By calculating the frequency of
mutations proportional to spike domain size, we could measure
whether each domain appeared to have a similar mutation rate per
amino acid (Figure 4D). Interestingly, we found that the mutation
rate varied between domains, and the signal peptide had a
particularly high mutation rate compared to others, further
indicating that biologically relevant information was captured in
VPRE’s predictions. We summarized the changes in the predicted
proteins compared to the original strain from Wuhan (QHU36824)
in Supplementary Table S1.

We next focused on characterizing the top three predictions, Seq
A, B, and C, with Seq A being the top prediction followed by Seq B
and C (Supplementary Table S2). Compared to the last sequence at
the training cutoff date of 30 May 2020 (hereafter referred to as “Seq
053020”), all top three predictions contained variants S477N. Seq A
and C contained D614G, and Seq C contained additional variants
L5F, V483A, and A845D (Supplementary Table S3). The three most
frequent mutations across all three sequences were S477N, D614G,
and V483A, which appear in the receptor binding motif (RBM),
subdomain 1 and 2 (SD1/2), and RBM, respectively (Figures 4B, E).
It was reported in previous studies that S477N can change antibody
accessibility (Harvey et al., 2021) and D614G increases infectivity
(Korber et al., 2020).While Seq C had novel variants L5F and A845D
that did not have much functional characterization in deep
mutational scanning, V483A is likely to impact antigenicity
(Harvey et al., 2021).

To benchmark the functionality of VPRE, we compared the top
three predictions to the sequences collected in Australia one month
after the training data cutoff date of 30 May 2020 (n = 81, Figure 4F;

FIGURE 3
Spike protein evolution projected up to five months into the
future by the Gaussian process. Trajectories of latent representations
of sequences analyzed by theGaussian process (GP) for each encoded
coordinate (purple lines; n = 1,000 predictions), with the training
coordinates overlaid on the training period (green dots; n = 104). After
training the GP on sequences up until 30 May 2020, predictions were
made one month (dark pink dotted line), two months (semi-dark pink
dotted line), and five months (light-pink dotted line) into the future.
The corresponding frequency distributions of each prediction period
are shown on the right.
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Supplementary Figure S3A). The top prediction comprised over 70%
of the validation dataset, while the second- and third-most probable
predictions were identical to less than 25% and 5% of the validation
sequences, respectively. When comparing the top prediction to our
GP training sequences (n = 104), around 55% were identical to our
top prediction (Figure 4G). These data suggest that our GP worked
as expected even when trained on a small dataset, given that it
predicted the most dominant sequence it was trained on, which was
also the most dominant sequence present in Australia during the
prediction period. The top two predictions being identical to existing
spike proteins in Australia also suggests that the VAE could
reproduce accurate spike protein sequences.

To compare the three most frequent predictions against more
data and evolutionary time, we retrieved 8,407 additional Australian
spike protein sequences collected between the training cut-off date
of 30 May 2020, and 30 November 2020 (the five month prediction
period) (Figure 4H; Supplementary Figure S3B). Over 85% of the
newly retrieved sequences differed from our most frequent
prediction by only one amino acid (N477S), and over 90% of
these nearest neighbors were identical to each other. The most
common nearest neighbors of the second- and third-most frequent
predictions differed by only two amino acids from the predictions.
When tracing the frequency patterns of the top prediction and its
nearest neighbor in our Australian dataset between January and

FIGURE 4
Spike protein variant predictions closely represent real-time evolution in the prediction timeframe. (A) Predicted amino acid sequences decoded
from three Gaussian process (GP) regressions performed on coordinates 0, 1, and 2. The frequency of predictions is ordered from highest to lowest from
A toQ. (B) Frequencies of predictedmutations in the spike protein. CH, central helix; CD, connector domain; CT, cytoplasmic tail; FP, fusion peptide; HR1,
heptad repeat region 1; HR2, heptad repeat region 2; NTD, N-terminal domain; RBD, receptor binding domain; RBM, receptor binding motif; S1,
S1 subunit; S2, S2 subunit; SD1/2, subdomain 1 and subdomain 2; SP, signal peptide, TMD, transmembrane domain. (C) Percentages (in brackets) of
predicted variants categorized by type of mutation, spike protein subunit, and spike protein domain. (D) Predictedmutations per amino acid of each spike
protein domain. (E) The top three variant predictions mapped onto the crystal structure of a trimeric prefusion spike protein ectodomain. Only one of the
three protomers is highlighted. PDB: 6XR8 (Cai et al., 2020). (F) Number of amino acid differences between the top three predictions and validation
sequences collected in Australia up to 1 month after 30 May 2020 (n = 81). (G) Number of amino acid differences between the most frequent prediction
(Seq A) and theGP training sequences (n= 104) and validation sequences (n= 81). (H)Number of amino acid differences between the threemost frequent
GP predictions and Australian sequences collected within the five month prediction period (between May 30 and 30 November 2020). Arrowheads
indicate the sequences’ nearest neighbors. (I) Monthly frequency of Seq A and its nearest neighbor across the entire Australian spike protein dataset.
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November 2020, we found that the top prediction was the most
prevalent spike protein up until May (Figure 4I). After May, the top
prediction’s nearest neighbor became the most prevalent spike
protein in Australia, emerging in April, reaching a frequency of
around 90% by July and outcompeting our predicted sequence.
Taken together, the GP’s top prediction was off by only a single
amino acid when extrapolating the most dominant spike protein five
months into the future.

Novel variants produced by VPRE bind
ACE2 in silico

To investigate whether the model produced amino acid variants
that were not seen in the training dataset, we compared the
17 predicted sequences against all training sequences (Figure 5A;
Supplementary Table S4). We found 11 novel amino acid
substitutions and four deletions across all spike protein domains
except for the furin cleavage sequence, central helix, connector

domain, transmembrane domain, and cytoplasmic tail (Figures
5B, C). Interestingly, there were three predicted amino acid
variants at conserved regions within the training data (Figure 5A).

To understand the functional significance of the predicted
variants, we turned to published deep mutational scanning
studies. Deletion of amino acid at position 145 is present in Seq
E, G, H, and P, and is found to abolish neutralizing antibody 4A8
binding (Figures 5A, C; McCarthy et al., 2021). Moreover, there are
eight positions predicted to mutate to any amino acid. Two of them,
position 483 (in Seq L) and position 687 (in Seq F), are likely to
impact antigenicity (Harvey et al., 2021) and can lead to possible
antibody-escape (Dadonaite et al., 2023), respectively. These results
not only indicate that the model was able to produce sequences other
than those that it was trained on, but it also shows these novel
predictions are biologically meaningful.

Next, we sought to measure the fitness of variants produced by
VPRE by testing their binding ability to human ACE2. The spike
protein RBD interacts with ACE2 when exposed in the “up” position
(Figure 5D; Yan et al., 2021). For this reason, we decided to model

FIGURE 5
Novel spike protein variants bind ACE2 in silico. (A) Unique variant positions produced by the variational autoencoder that were unseen in the
training dataset, indicated by purple lollipops. Arrowheads indicate conserved positions in the training dataset. Asterisks represent any amino acid, dashes
represent deletions. CH, central helix; CD, connector domain; CT, cytoplasmic tail; FP, fusion peptide; HR1, heptad repeat region 1; HR2, heptad repeat
region 2; NTD, N-terminal domain; RBD, receptor binding domain; RBM, receptor binding motif; S1, S1 subunit; S2, S2 subunit; SD1/2, subdomain
1 and subdomain 2; SP, signal peptide, TMD, transmembrane domain. (B) Percentages (in brackets) of novel predicted variants categorized by type of
mutation, spike protein subunit, and spike protein domain. (C) The novel variant predictions mapped onto the crystal structure of a single prefusion spike
protein protomer in the “up” conformation. PDB: 6VYB (Walls et al., 2020). (D) Crystal structure of a trimeric prefusion spike protein with a single RBD in
the “up” conformation. PDB: 6VSB (Wrapp et al., 2020). (E) Crystal structure of a spike RBD binding human ACE2 compared to the AlphaFold2 prediction
of the same sequence. PDB: 6VW1 (Shang et al., 2020). (F) The two novel variants in the RBD mapped on the crystal structure in (E), with the RBM
highlighted below. (G) pDockQ scores of AlphaFold2-predicted RBD-ACE2 binding models (n = 5 models each). In each box, x = mean, middle line =
median, lower hinge = 25th percentile of the data, upper hinge = 75th percentile of the data, whiskers = 1.5 * interquartile range. Pink dotted line
represents the mean pDockQ score of 6VW1.
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RBD-ACE2 complexes. Two sequences, Seq P and Seq L contained
novel variants in their RBD, which were 369P and 408I (Seq P), and
483* (Seq L), where “*” represents any amino acid. Given that VPRE
considered any amino acid possible at position 483, we extracted
only the novel amino acids at that position (see Supplementary
Table S5). In total, we could model 16 novel predicted variants
within the spike protein RBD and perform a binding analysis with
ACE2. The binding analysis consisted of modeling the multimeric
structure of the RBD-ACE2 complex using AlphaFold2-multimer
(Evans et al., 2021) and calculating a predicted DockQ (pDockQ)
score based on the contacts found in the structure (see Methods for
details; Bryant et al., 2022; Lim et al., 2023). DockQ is a widely used
protein-protein docking quality metric on a scale of 0–1, where
acceptable models give a score greater than 0.23 (Basu and Wallner,
2016). Scores above ~0.5 are considered medium quality, and above
~0.8 are considered high quality. More recently, DockQ scoring has
been adapted to measure the accuracy of AlphaFold2-predicted
multimers (Bryant et al., 2022). Using the pDockQ scoring
system, we compared ACE2 binding of the 16 novel RBD
variants with AlphaFold2 models of a randomly scrambled RBD
sequence (Scramble), the Wuhan reference sequence QHU36824, a
previously resolved crystal structure of the RBD-ACE2 complex
(6VW1, Shang et al., 2020), and Seq 053020 (Figures 5E–G;
Supplementary Figure S4). As expected, the Scramble complex
scored 0 on average, due to AlphaFold2 being unable to fold any
coherent structure from the sequence (Supplementary Figures S5,
S6). All other structures had mean pDockQ scores between ~0.6 and
0.7, with nine out of 16 novel variants having mean scores greater
than 6VW1. In general, all complexes scored similarly, with the
exceptions of Scramble and 483C. Together, these data suggest that
novel variants produced by VPRE are likely fit mutations capable of
binding ACE2.

Discussion

Amajor bottleneck in modeling and predicting viral evolution in
real time is the amount of data available, especially in the early stages
of a pandemic when sequencing data is relatively sparse. This was
evident in the COVID-19 pandemic, which prompted us to build a
predictive model with the aim of extracting as much information as
possible from limited data. VPRE integrates a VAE and GP
regression to predict the mutational trajectory of viral proteins
with a small amount of data. The VAE encodes protein
sequences as continuous numbers, and the GP regression fits the
latent numerical representations over time, which allows the model
to continue charting changes in variants into the future. Finally, the
VAE decodes the predicted numbers back to protein sequences.
With this approach, we analyzed the first seven months of available
SARS-CoV-2 sequences and showed that VPRE can learn from
limited data and make biologically meaningful predictions.

We applied VPRE to model variants in Australia from
December 2019 to May 2020 and predict variants that will be
present in June, July, and October 2020, or one month, two
months, and five months into the future, respectively. We first
focused on the top three predictions in our five month prediction
window, Seq A, B, C (naming follows the order of likelihood of
occurring). Compared to the last protein sequence in May 2020, all

top three predictions contained S477N. Seq A and C contained
D614G, and Seq C contained additional variants L5F, V483A, and
A845D. The variants S477N and D614 were seen in the data that was
collected during and one month after the training period. Although
they were not novel variants, this finding suggests that no variants
rose to dominance within a one month timeframe, corresponding
with the evolutionary trends we observed in Australia over this
period. Several other studies have examined the functional
differences of numerous spike protein variants. For substitutions
at position 477, structural studies suggest a change in antibody
accessibility, and S477N could lead to escape of mAb neutralization
(Harvey et al., 2021), and the substitution S477I is among the
forecasted variants that REGN10933 (casirivimab) targets (Maher
et al., 2022). In addition, our model predicted a variant V483A.
Interestingly, the variant V483I circulated in the UK (Harvey et al.,
2021), and the variant V483F is forecasted and targeted by LY-
CoV555 (bamlanivimab) (Maher et al., 2022), suggesting position
483 may be important for antigenicity. Moreover, there are variants
with low frequencies in our predictions, at positions 368, 798, and
1,185, where no mutations were seen in the training dataset.
Although structural and mutational screening studies thus far
have not indicated these positions as important for viral fitness,
their presence in our predictions still suggests that VPRE is not
overfitted to the training dataset and shows that VPRE can make
predictions beyond what it has seen before. Overall, VPRE’s
performance is sensible in both biological and computational
perspectives and is promising given the small amount of
training data.

A main advantage of VPRE is that it models evolution in a
continuous space rather than with discrete protein sequences.
Predicting mutational trajectories with VPRE is essentially a two-
step process where the VAE encodes sequences and the GP models
evolution. In both steps, there are advantages in using continuous
numbers. First, our results suggest that the VAE was able to capture
the complexity of proteins by reducing amino acid sequences
of >1,000 characters (i.e., dimensions) into only three continuous
numerical values. This transformation from discrete amino acids to
continuous numbers provides richer biological information for
modeling. For instance, VPRE can account for different
mutations at the same position by encoding them as different
numbers, whereas traditional methods of calculating a Hamming
or editing distance between two sequences do not distinguish the
nature of the mutations (Pinheiro et al., 2012). Additionally, a
mutation may impact more than one coordinate in our method
and therefore we can also model its effect in a larger context. Second,
mutations are spurious and reversible, which makes it difficult to
perceive a forward notion of change, and as such they could be better
modeled using a continuous approach. In the GP portion of the
model, we saw that the numerical values vary greatly when we
project the regression into the future, capturing the spurious nature
of mutations. We also saw that despite the spread of the numerical
values, they largely map back to the same sequence, indicating that
some of the variability is not enough to lead to actual changes. This
variability is intriguing and future efforts should investigate it
further regarding viral fitness.

It should be noted that VPRE is prone to bias intrinsic to the
training dataset, which could be challenging especially for data
under a short time series. To increase our VAE’s ability to detect
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variants, we synthesized a dataset of 20,000 spike protein sequences
with equally amplified mutation frequencies. Amplifying the
mutational variation might have introduced unnatural features in
spike proteins or biased the network’s ability to model variants
better than conserved amino acids. We expect the performance of
the model to improve with continual learning. As more data
becomes available, the VAE can be continuously trained and thus
improve on its ability to encode sequences. VPRE also had no direct
measure of antigenic shift or fitness other than the extent of these
characteristics captured in the spike protein sequences over time. By
performing a docking analysis, we were able to interpret the fitness
of VPRE’s predictions in silico, but further experiments are
necessary to validate the function of the predicted variants,
especially at the scale of the whole spike protein trimer.

In addition, VPRE can be easily adapted to model other proteins.
For instance, a VAE and GP was used to infer the evolutionary
landscape within protein families such as fibronectin type III
domain, cytochrome P450, and staphylococcal nuclease (Ding
et al., 2019). A VAE was also used on luciferase-like
oxidoreductases to generate functional variants (Hawkins-Hooker
et al., 2021). Further efforts are warranted to apply the VPRE
framework to learn evolutionary information from other types of
proteins. When there is data spanning a longer timeframe, we can
apply the model on representative sequences of a week or longer to
increase the robustness of the model as well as predict further into
the future.

VPRE was designed to tackle the problem of in silico protein
evolution using small data, with the added benefits of reducing
the data size and potentially enhancing the amount of
information that can be extracted from sequences. We
envision that a computational model such as VPRE might be
paired with in vitro efforts in laboratories and medical settings for
the best prediction outcomes. For example, VPRE-predicted
spike protein RBDs could be expressed in a yeast surface
display system to assay ACE2 binding ability (Starr et al.,
2020) or whole spike mutants could be displayed on
mammalian cell surfaces (Javanmardi et al., 2021) or
pseudoviruses (Nie et al., 2020; Dadonaite et al., 2023) and
tested for antibody evasion using blood serum samples from
vaccinated individuals. Overall, VPRE opens further
investigation into evolutionary models that seek to improve
epidemiological efforts and public health intervention systems,
towards mitigating the harmful mutational dynamics of diseases.

Materials and methods

Data acquisition and construction

The VPRE training dataset consisted of 9534 SARS-CoV-2 spike
protein sequences from around the world at varying time points
throughout the pandemic (Supplementary File S1). These were
downloaded along with their corresponding metadata from NCBI
Genbank on 13 August 2020. The five month VPRE validation
dataset from Australia consisted of 8,488 spike protein sequences,
which were downloaded on 15 January 2021. Incomplete sequences
containing gaps (dashes and asterisks) and sequences with ambiguous
amino acids (null, B, Z, X) were removed to ensure high quality data.

A training set of 20,000 semi-random mutated spike protein
sequences was generated algorithmically by ensuring equal
representation in the dataset of any amino acid substitution
that occurred at least one time in the spike protein dataset
(Supplementary File S2). The algorithm started with the
consensus sequence of our analyzed sequences, and went
through each position stepwise, presenting with equal
likelihood any point mutation observed in the data. This was
repeated until 20,000 unique sequences had been created, with
the effect of amplifying the presence of infrequent point
mutations so that they could be more accurately decoded from
predictions made by the GP. No change was made to the analyzed
dataset, which remained as sequenced, and only underwent a
multiple alignment prior to processing by the GP. The training
dataset maintained all the same conserved regions as the
real-world data.

Encoding and decoding amino acid
sequences with the variational autoencoder

As a preprocessing step, training set sequences were aligned by
progressive alignment via the Multialign function in the MATLAB
bioinformatic toolbox (Mathworks, 2021). The aligned sequences
were padded with asterisk (*) characters to maximal length and one-
hot encoded in order to yield binary matrix representations of the
SARS-CoV-2 spike protein sequences that could be input into our
deep learning model.

The VAE consisted of an encoder and decoder network, where
the encoder compressed the sequence data (one-hot encoded amino
acid sequences) to its latent embedding and the decoder
decompressed the sequence data from its latent embedding. The
VAE was implemented in Keras (version 2.4.0) (Chollet, 2015) using
a TensorFlow backend (version 1.4.0) (Abadi et al., 2016). In the
encoder, the number of latent dimensions was set to three to allow
for easier visualization, and thus each sequence was compressed to
three numerical coordinates. The latent space distribution was
defined with a latent mean and logarithmic variance. Both were
calculated with Keras Dense with one-hot encoded training and with
an input dimension of three. A standard sampling layer and a Dense
layer were created in the encoder. The sampling layer randomly
sampled data from latent space following a normal distribution with
a mean of zero and a standard deviation of one. The Dense layer
mapped the sampled data points to the latent distribution. The
decoder was constructed using the encoded data as input and the last
layer of the autoencoder as output.

The VAE model was compiled with an Adam optimizer and
custom-built loss function. The loss function was the sum of a
reconstruction term and a regularization term (expressed as the
Kullback-Leibler divergence between the distribution returned by
the encoder and a standard normal distribution):

Loss � reconstruction loss + KLdivergence regularization term,

Loss � BinaryCrossEntropy x, x̂( ) + −1
2

1 + log σ2
z − μ2z − σ2

z( ),
where x represents the input data, x̂ represents the reconstructed
data, σ2z represents the variance of the latent distribution, and μz
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represents the mean of the latent distribution. The reconstruction
loss served as a measure of the efficacy of the encoder-decoder, as it
represented the difference between the reconstructed (decoded)
sequences and the input sequences (calculated using binary
cross-entropy). Over training, the reconstruction loss was
ultimately minimized. The regularization term helped in learning
well-formed latent spaces and reducing overfitting during the
training process (Phan et al., 2020). An early stopping function
was also applied with a patience parameter of two in order to stop
training once the validation loss metric had stopped improving for
two consecutive epochs, thus avoiding overfitting.

Modeling the trajectory of spike protein
evolution with Gaussian process regressions

AGP was used tomodel temporal trajectories of each coordinate of
Australian sequences encoded by the VAE. After removing duplicated
sequences from each day to simplify the model, 185 sequences were
obtained (Supplementary File S3). Data from sequences that were
collected up to 31 May 2020 (n = 104) were used as a training
dataset for the GP, and the rest from June 1 to June 30 (n = 81)
were used for validation.

The PyMC3 package (version 3.11) (Salvatier et al., 2016) was
used to construct the GPmodel. To model a temporal axis in the GP,
an array was constructed to represent the number of days since the
first sequence collection in Australia. The other axis in the GP
consisted of the coordinate values from the VAE.

The GP was defined as Y ~ GP(K(x, x′), µ(x)), adapted from
Eric Ma’s Flu Forecaster (https://github.com/ericmjl/flu-sequence-
predictor/blob/master/flu-forecaster.ipynb) with a GP latent
variable implementation sample (Salvatier et al., 2016).

First, the covariance function was defined as an exponentiated
quadratic function. The exponentiated quadratic kernel is a popular
kernel used in GP modeling, thus it was chosen as a starting
point for modeling the data. Because the VAE coordinates were
modeled individually, an input dimension of 1 was used for the
exponentiated quadratic kernel. The GP model was computed
as follows:

K x, x′( ) � es x( ) ×
x − x′( )2
2l2

( )
es x( ) ~ Uniform −10, 5( )
l ~ Uniform 0, 30( )

µ x( ) ~ 0

The Uniform function in PyMC3 was used to construct the
exponent and Theano was used to construct the exponentiation,
followed by a deterministic transformation by using the
Deterministic function from PyMC3 (Al-Rfou et al., 2016;
Salvatier et al., 2016).

Second, a Student’s T log-likelihood distribution was defined to
model uncertainties in the covariance function and the input data,
adapted from a PyMC3 tutorial (https://docs.pymc.io/notebooks/
GP-Latent.html):

df ~ Gamma 2, 1( ),where df � degrees of freedom

1
lam

~ HalfCauchy 0, 5( ),where lam is a scale parameter

Lastly, the covariance and the mean function were assembled in a
Latent GP model. The Exponentiated Quadratic covariance function
and the time array were defined for a Latent GP. A Uniform log-
likelihood distributionwas applied to describe length-scale, as well as a
HalfCauchy distribution and a Gamma distribution to define the
uncertainty in the covariance function and to model the noise. The
VAE coordinates were input as observed prior.

Extrapolating the trajectory of Gaussian
process models

To extrapolate the trajectories the GP predicted, a new time
array was set from 0 to 120 + x, where 120 was the number of
training days and x represented the number of days into the future to
predict. The variable x was chosen as x = 30, 60, and 150 to predict
one, two, and 5 months into the future. The new time array was
applied on the GP and a conditional distribution of the predicted
functions was obtained with the new input time values using the
conditional function. 1,000 samples were drawn from the GP
posterior for each of the three VAE coordinates and merged into
1,000 triplets to represent the predicted numerical representations of
spike proteins. The triplets were decoded by the decoder of the VAE
to obtain predicted spike proteins. The likelihood of each sequence
existing in the predicted timeframe was estimated based on the
fraction of the 1000 GP predictions that translated exactly to the
sequence. Additional packages used in the pipeline include numpy
(version 1.19.5) (Harris et al., 2020), SciPy (version 1.4.1) (Virtanen
et al., 2020), and pandas (version 1.1.5) (McKinney, 2010).

Modeling protein structures and in silico
protein binding analysis

All protein structures and mutations were visualized using
UCSF ChimeraX (version 1.5) (Pettersen et al., 2021). Labels
were added to structures in Adobe Illustrator (version 26.5).

To analyze the fitness of novel mutants in VPRE-predicted spike
proteins, we predicted the structures of spike RBDs in complex with
human ACE2 using AlphaFold2-multimer (Evans et al., 2021; Jumper
et al., 2021). AlphaFold2-multimer was run using Colabfold (version
1.5.2-patch) with High-RAM A100 GPUs (Mirdita et al., 2022). For
every case, five models were run with three recycles each. The
Colabfold pipeline generated all multiple sequence alignments
(MSAs) and template inputs and used the paired and unpaired
MSAs from MMseqs2 (Steinegger and Söding, 2017). To score
protein interactions, we used a Python 3 Colabfold binding
analysis script (Lim et al., 2023; https://zenodo.org/record/8223143)
which finds residue contacts by iterating through each residue of a
protein chain and determines its position and confidence relative to
the residues in other chains.We set the threshold for a binding contact
as a pair of residues that have an average predicted local distance
difference threshold (pLDDT) score greater than 50, a minimum
predicted alignment error (PAE) of less than 15 angstroms, and a
maximum distance of two non-hydrogen atoms as eight angstroms.
For each interaction, a predicted DockQ (pDockQ) value was
calculated by the empirically derived formula (Bryant et al., 2022)
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made from the docking quality metric DockQ (Basu and
Wallner, 2016):

pDockQ � 0.724
1 + e−0.052 x−152.611( ) + 0.018

where x � average interface pLDDT × log10 number of interface contacts( )
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