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Elucidating cell regulation remains a challenging task due to the complexity of
metabolism and the difficulty of experimental measurements. Here we present a
method for prediction of cell regulation to maximize cell growth rate while
maintaining the solvent capacity of the cell. Prediction is formulated as an
optimization problem using a thermodynamic framework that can leverage
experimental data. We develop a formulation and variable initialization
procedure that allows for computing solutions of the optimization with an
interior point method. The approach is applied to photoheterotrophic growth
of Rhodospirilium rubrum using ethanol as a carbon source, which has
applications to biosynthesis of ethylene production. Growth is captured as the
rate of synthesis of amino acids into proteins, and synthesis of nucleotide
triphoshaptes into RNA and DNA. The method predicts regulation that
produces a high rate of protein and RNA synthesis while DNA synthesis is
reduced close to zero in agreement with production of DNA being turned off
for much of the cell cycle.
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1 Introduction

Biological systems can be understood as dissipative systems analogous to tornadoes and
hurricanes. Dissipative systems act by taking the most probable path to reduce the energy
difference in the environment. These most probable paths result in cyclical patterns of
material movement that act to transport the material from regions of high energy to regions
of lower energy. In tornadoes, air movement becomes correlated and cyclical in which hot air
is driven up and cool air down. Whether one considers entropy from a thermodynamic or
information standpoint, the concept is the same—the most probable path allowed by
physical constraints is taken. It is in this respect that we expect the dynamics of
biological systems act to maximize their entropy production rates to the extent possible.
In this regard, biological processes are highly constrained by physical and biological
limitations—constraints that are critical for their function. Moreover, for biological
systems, the adaptation of their dynamics to maximize their entropy production rates
occurs on the time scale of natural selection. This is to say, through natural selection their
genome structure and metabolism become updated such that they act to move to the most
probable state possible by taking the least action path. On the shorter timescale of a cell’s
lifetime, those adaptations also include complex mechansims for adapting to changing
environmental conditions. These adaptation mechanisms serve to control the dynamics in
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such a way that their ability to carry out auto-catalysis
(Hinshelwood, 1952) is preserved. Adaptation is accomplished
through regulation of metabolic reaction pathways such that
organisms remain viable in a physico-chemical sense despite
rapid or dramatic shifts in the environment.

Because regulation is at the heart of understanding biological
processes, discovery and understanding of the basis for regulation is
critical to the field of biology. Regulation may be in the form of just-
in-time regulation, graded regulation, switch-like regulation, pre-
programmed regulation such as the circadian clock system, or even
the choice to not regulate when it is too costly to alter the respective
enzyme expression but to instead constitutively turn on an activity
(Sivak and Thomson, 2014). Regulation is an important aspect of
fitness in that organisms and even individual cells must regulate
themselves so that they act as efficiently and as quickly as possible,
otherwise they are outcompeted in their environment.
Consequently, the environment over the time of evolution shapes
regulation. Those cell phenotypes that operate in the most efficient
manner in nutrient poor and dramatically shifting environments
will tend towards fixation in the population. In rich environments in
which selection pressure is not strong, dysregulation of cells can
result in uncontrolled growth, manifest as cancer in metazoans.

Regulation in biological systems has been historically uncovered
using experiments carefully designed to test hypotheses, typically
employing isotope labeling methods to track reaction fluxes. Such
meticulous but labor intensive studies have been quite successful at
uncovering metabolic regulation (Larsson-Raznikiewicz, 1967;
Newsholme and Start, 1973; Waygood and Sanwal, 1974;
Waygood et al., 1975; 1976; Aithal et al., 1985; Jitrapakdee and
Wallace, 1999; Holness and Sugden, 2003; Lehninger et al., 2005;
Hallows et al., 2012; Saha et al., 2014; Wang et al., 2014), yet we are
far from a complete understanding of regulation in even model
organisms. High-throughput methods to uncover regulation are
highly desirable, and recent work in this area has made progress
(Hackett et al., 2016; Reznik et al., 2017), but we are still a long way
from a routine method for determining regulation, either by
experiment or prediction.

In a recent study by Hackett et al. (2016), Michealis-Menten
steady-state kinetic models with regulation were used to predict
reaction fluxes and concentrations. The predictions were compared
to reaction fluxes inferred from 13C isotope experiments and
concentrations derived from mass spectrometry and NMR
measurements (Hackett et al., 2016). The correlation between
simulation-predicted fluxes and experimentally-inferred fluxes
were evaluated with and without regulation in the simulation. If
the match was better with regulation, then regulation was assumed.
The work was a tour de force in that 25 chemostat studies were used
to carefully measure both absolute and relative metabolomics data
while at the same time cover as much of the proteome as possible.

An approach used by Reznik et al. (2017), has less reliance on
multimodal experimental designs, and instead used sophisticated
informatics to develop a model of small molecule regulatory
networks from curated databases of enzymes. They integrated the
regulatory network with a metabolic model of Escherichia coli, and
distilled information on how substrates and inhibitors contribute to
metabolic flux regulation (Reznik et al., 2017).

More recently, Britton et al. (2020) have developed optimization
and reinforcement learning methods that predict which enzymes

need to be regulated to maintain metabolite concentrations at a level
such that the diffusion process within the cell remains viable. These
methods build on work by Cannon et al. (2018) that takes advantage
of a maximum path-entropy/caliber (Jaynes, 1985; Dewar, 2009;
Dixit et al., 2018) formulation of the law of mass action in order to
predict likely metabolite concentrations. The advantage of these
approaches is that minimal measurements and few experimentally-
derived parameters are required to predict regulation.

Maximum entropy methods are attractive because they use the
most likely values of the parameters needed to model a process
(Jaynes, 1985; Dewar, 2009; Dixit et al., 2018). That is, rather than a
large search through parameter space to determine the most likely
kinetic parameters, a maximum entropy formulation can provide
the solution directly, then if needed, reaction parameters can be back
calculated. Strictly speaking, these methods maximize the path
entropy of a system, meaning that they maximize the entropy
subject to the stoichiometric constraints imposed by the reactions
and the constraints due to the system boundary conditions. Without
the stoichiometric constraints, each molecular species would move
to its natural abundance determined by its standard chemical
potential. Without non-equilibrium boundary constraints, the
reactions would all go to the equilibrium state.

In the study by Britton et al. (2020), regulation was inferred only
with regard to which reactions needed to be controlled to keep
metabolites at concentrations that are not so high that they would
impede diffusion (Britton et al., 2020). As mentioned above, in an
environmental niche with finite nutrient resources for growth, for
cells to persist they must replicate in a timely and efficient manner in
order to compete with other species. Therefore in the context of
evolution we expect to see regulation in cells that maximizes growth,
and only produces those enzyme catalysts that contribute to growth
in a timely and efficient manner.

In this study, we develop an optimization approach that allows
for extension of the work by Britton et al. (2020) to be applied for
more general constraint based modeling, and demonstrate our
method for prediction of regulation that maximizes growth
pathways while still constraining metabolite levels to
physiological values. While flux balance type analyses optimize a
similar objective and may include information about regulation
(Covert et al., 2001) or even thermodynamic feasibility constraints
(Henry et al., 2007), the method we present is fundamentally
different in that we use a thermodynamic perspective to directly
infer the most likely distribution of both fluxes and metabolite
concentrations subject to given constraints.

We apply our method, that we term pathway-controlled
optimization (PCO), to the metabolism and enzymatic activities
of Rhodospirilium rubrum, a purple non-sulfur photosynthetic
bacterium that is being used as a synthetic biology organism for
the purpose of ethylene production (North et al., 2020).We compare
the regulation and reaction fluxes predicted by this new method to
the approach presented in (Britton et al., 2020) that adjust regulation
only to maintain metabolite concentrations at physiological levels.

2 Methods

We begin this section with a brief introduction to the maximum
path entropy approach developed in (Cannon et al., 2018) and
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(Britton et al., 2020). Then we present how we extend this approach
to account for regulation in cells to optimize growth.

2.1 Maximum path entropy solution without
regulation

For a set of molecular species I � {A, B, C,D} having respective
concentrations ni for each species i ∈ I , participating in a set of
reactions J � {1,−1}, with unsigned stoichiometric coefficients ]i,j
for each molecular species i and each reaction j ∈ J , the reversible
reaction is described by the chemical equation,

]A,1nA + ]B,1nB #
k1

k−1
]C,1nC + ]D,1nD. (1)

Here, k1 and k−1 are the reaction rate parameters.
Let |I | denote the size of the set I and let n ∈ R|I | be the vector

of molecular counts with elements ni. If S is the stoichiometric
matrix of elements Si,j = γi,j where γi,j are the signed stoichiometric
coefficients such that ]i,j = |γi,j|, we have according to the law of mass
action,

dn

dt
� SJ n( ) (2)

where for a given n, J(n) is the net flux of the set of forward and
reverse reactions. The chemical species occurring on the left hand
side of the equation are known as reactants and belong to the subset
IRj ⊂ I , while those on the right hand side are known as products
and belong to the subset IPj ⊂ I .

For any reversible reaction with forward and reverse reactions +
j and −j, the net flux is given by,

Jj n( ) � kj ∏
i∈IRj

n
]i,j
i − k−j ∏

i∈IR−j

n
]i,−j
i . (3)

Eq. 3 is a purely kinetic description of the reaction flux. For
elementary reactions, thermodynamic terms are introduced into
the law of mass action by a simple factorization

Jj n( ) � k−j ∏
i∈IR−j

n
]i,−j
i

kj∏i∈IRj
n
]i,j
i

k−j∏i∈IR−j
n
]i,−j
i

⎛⎝ ⎞⎠ − kj ∏
i∈IRj

n
]i,j
i

k−j∏i∈IR−j
n
]i,−j
i

kj∏i∈IRj
n
]i,j
i

⎛⎝ ⎞⎠ (4)

� k−j ∏
i∈IR−j

n
]i,−j
i Kj ∏

i

n
γi,j
i

⎛⎝ ⎞⎠ − kj ∏
i∈IRj

n
]i,j
i K−j ∏

i

n
γi,−j
i

⎛⎝ ⎞⎠, (5)

whereKj � kj
k−j is the equilibrium constant for reaction j. In Eq. 5, the

terms in parentheses are related to the thermodynamic forces on the
reaction while the terms outside the parentheses are the time-
dependent kinetic terms. Setting the latter terms to a constant
gives the Marcelin Equation (Marcelin, 1910), in which each
forward and reverse reaction occurs on the same timescale by
postulate. While this postulate is incorrect for determining the
true dynamics of the system, the Marcelin formulation of Eq. 5
does give a way to the maximum path entropy solution (Cannon
et al., 2018; Britton et al., 2020) by assuming that all reactions occur
on the same timescale and that their fluxes are proportional to the
thermodynamic forces on them. Once these fluxes and
concentrations are known from the maximum path entropy
solution, they can be used to back-calculate the rate constants

that will give the corresponding true dynamics (Cannon et al.,
2018; Britton et al., 2020).

Using the maximum path entropy solution, and representing the
thermodynamic reaction forces for each reaction j ∈ J as,

fj n( ) � Kj ∏
i∈I

n
−γi,j
i , (6)

the flux is then given by

Jj n( ) � fj n( ) − 1
fj n( ) (7)

and we can express the time dependence of each metabolite i ∈ I as
follows

dni
dt

� ∑
j∈J

γi,j fj n( ) − 1
fj n( )( ). (8)

2.2 Steady state

At the maximum path entropy configuration the system is in
a steady state, where a set of metabolites, denoted If, are
assumed to be held at fixed concentrations as boundary
conditions for the system. For the rest of the metabolites,
I v � I \If, their steady state concentration is free and their
rate of change is zero. For all i ∈ If, let �ni be the fixed
concentration of the metabolite. A steady state is defined as a
solution to the following system of equations,

dni
dt

� 0 ∀i ∈ I v,

ni � �ni ∀i ∈ If.
(9)

2.3 Controlling metabolite concentrations

Metabolite concentrations predicted using the maximum
path entropy approach without regulation will produce values
that are much too large to be physiologically
reasonable—concentrations may approach the limit of their
solubility, causing the cytoplasm to become glass-like (Parry
et al., 2014; Heimlicher et al., 2019).

That regulation is needed to control concentrations in vivo
was proposed early in the field of enzymology (Atkinson, 1969;
Atkinson, 1977). In a previously reported method to control
concentrations (Britton et al., 2020), Britton, et al. applied
regulation to reactions using a scalar valued activity
coefficient αj ∈ [0.0, 1.0] for each reaction j, that linearly
scales the reaction rate such that the time dependence of
metabolite concentration ni is given by,

dni
dt

� ∑
j∈J

γi,jJj n, αj( ), (10)

where

Jj n, αj( ) � αj fj n( ) − 1
fj n( )( ). (11)
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When αj = 1.0, the reaction is fully active and when αj = 0.0, the
activity, and hence reaction rate Jj (n, αj), is zero. Activities are
adjusted in a deterministic manner by characterizing the sensitivity
of a metabolite concentration to an enzyme activity using Metabolic
Control Analysis (MCA) (Sauro, 2018). In MCA, the concentration
control coefficient Ci,j measures the sensitivity of a concentration nj
to an activity coefficient αj,

Ci,j � z logni
z logαj

. (12)

Using this approach, metabolites whose predicted
concentrations are furthest from their experimentally observed
values, as measured by the log ratio of the predicted to observed
concentration, are reduced first. The concentration of a metabolite ni
is reduced by adjusting the activity coefficient αj that has the largest
influence on ni and all other metabolites that exceed their
experimentally observed concentrations, as determined by the
sensitivity analysis. This process is iteratively carried out until all
concentrations are at or below the experimentally observed
concentrations. Details of the approach are provided in the study
by Britton et al. (2020). In the cases discussed herein, the maximum
value of the experimentally observed metabolite concentrations are
taken to be ni = 1.0 mM for i ∈ I v and for i ∈ If the values are taken
from mass spectrometry observed concentrations for bacteria
(Bennett et al., 2009; Park et al., 2016).

2.4 Controlling metabolite concentrations
and maximizing growth

While controlling metabolite concentrations may be a primary
role of metabolic regulation, natural selection also requires that
organisms be regulated to grow fast and efficiently—using the
available energy from the environment to ensure survival and
compete with others. Here we develop a novel approach, we call
pathway-controlled optimization (PCO), whose goal is to obtain this
biological objective, and derive a formulation that allows for
tractable numerical solutions.

Let G ⊂ J be the set of reactions corresponding to production of
biomass. We formulate the steady state with maximum biomass
production as the solution of the optimization problem.

max∑
j∈G

Jj n, αj( ) (13a)

subject to :
dni
dt

� 0 ∀ i ∈ I v,
(13b)

ni � �ni ∀ i ∈ If, (13c)
0≤ ni ≤ nmax ∀ i ∈ I v, (13d)
0≤ αj ≤ 1 ∀ j ∈ J . (13e)

The objective seeks to maximize the flux through the growth
reactions G while the constraints (13b) - (13c) ensure that the steady
state (9) is satisfied. The activity coefficients and metabolite
concentrations are further restricted to physiologically
meaningful values with the constraints (13e) and (13d).

The formulation of the PCO problem is simple to express but
difficult to solve. The steady state constraints (13b) are non-linear

and non-convex presenting significant challenges to optimization.
Values for the flux, activity coefficients, and metabolite
concentrations can also vary over many orders of magnitude,
which introduces additional difficulty in employing numerical
methods to compute solutions. In this work we present a more
computationally tractable reformulation of the constraints and
present numerical solutions from an interior point solver.

2.4.1 Representing the steady state condition
To simplify solving the optimization, we reformulate the steady

state constraint (13b) to be more numerically tractable. Let
Sv ∈ R|I v |,|J | be the sub-matrix of S with the rows corresponding
to only the variable metabolites. Then at a steady state the reaction
fluxes must satisfy

SvJ n, α( ) � 0, (14)
that is J(n, α) ∈ N (Sv), where N (Sv) is the nullspace of Sv defined

N Sv( ) � x ∈ R|J | : Svx � 0{ }. (15)

We separate (14) into the identification of a vector of fluxes
y ∈ R|J | which satisfy steady state and the construction of a vector
of metabolites n ∈ R|I | which achieve those fluxes with the two
conditions,

y ∈ N Sv( ),
yj � Jj n, αj( ) ∀ j ∈ J . (16)

The expression yj = Jj (n, αj) can be made more tractable by
considering the computation of the reaction flux in terms of the log
of the metabolites. For η ∈ R|I | let

ηi � log ni( ) ∀ i ∈ I , (17)
then we have from (7) that the flux as a function of η in the
maximum path entropy formulation is given by

Jj η, αj( ) � αjKje
−〈 S( )j ,η 〉 − αj

1
Kj

e〈 S( )j,η 〉, (18)

where (S)j is the jth column of S, and 〈·, ·〉 is the standard inner
product. It follows that in terms of the log of the metabolite counts,
conditions (16) are equivalent to.

y ∈ N Sv( ), (19a)
STη � ŷ y, α( ), (19b)

ŷj y, α( ) � log
Kj

2αj
−yj +

�������
y2
j + 4α2j

√( )( ) ∀ j ∈ J . (19c)

Computation of ŷ(y, α) is prone to error. For example, in the
instance where yj is positive, rounding may result in evaluating the
log of zero. To avoid these issues we use the following equivalent
expression to (19c)

ŷj y, α( ) � log Kj( ) + sgn yj( ) log 2αj( ) − log |yj| +
�������
y2
j + 4α2j

√( )( ),
(20)

with sgn the signum function given by

sgn x( ) �
1 x> 0
0 x � 0
−1 x< 0

⎧⎪⎨⎪⎩ . (21)
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A further complication in using the steady state conditions (19)
as constraints for optimization is that the value of ŷ(y, α) can
become extremely sensitive to small changes in the flux. In particular
the partial derivative

zŷj

zyj
� 1�������

y2
j + 4α2j

√ (22)

grows unbounded as αj and yj go to zero. In this application we
consistently found solutions with αj and yj on the order of 10–9 for
some reactions while others were unregulated with values of yj on
the order of 103. These discrepancies in scale are challenging for
numerical methods.

However, it is not necessary to explicitly compute the activity
coefficients in order to characterize a steady state. Instead it is
sufficient only to identify metabolite concentrations that produce
flux values that can be reduced to a steady state. We can capture this
criteria with the conditions

|yj|≤ |Jj n, 1( )| ∀ j ∈ J ,
yjJj n, 1( )> 0, (23)

where 1 is the vector of all ones corresponding to no regulation for all
reactions. If (23) is satisfied then any reaction fluxes Jj (n, 1) with
magnitude greater than the steady state value yj can always be reduced
to satisfy equality so long as they have the same sign, which is captured
by the second condition in (23). This idea can also be captured in our
modified formulation (19) for the steady state conditions.

For metabolites η and steady state fluxes y there exists an α such
that (19) holds if the following hold

|gj − log Kj( )|≥ − log 2( ) − log |yj| +
�����
y2
j + 4

√( )( ) ∀ j ∈ J ,

log Kj( ) − gj( )yj ≥ 0 ∀ j ∈ J ,

(24)
where g = STη. This follows from (19b)-(19c), (20), and the
inequality

log 2αj( ) − log |yj| +
�������
y2
j + 4α2j

√( )≤ log 2( ) − log |yj| +
�����
y2
j + 4

√( ),
(25)

for all yj ∈ R and αj ∈ [0, 1].
Therefore we can formulate steady state conditions equivalent to

(19) without the need to explicitly specify the activity coefficients as
follows.

y ∈ N Sv( ), (26a)
g � STη, (26b)
hj � sgn yj( ) log 2( ) − log |yj| +

�����
y2
j + 4

√( )( ) ∀ j ∈ J , (26c)
|gj − log Kj( )|≥ |hj| ∀ j ∈ J , (26d)
log Kj( ) − gj( )yj ≥ 0 ∀ j ∈ J . (26e)

2.4.2 Numerical formulation of the steady state
constraints

Implementing conditions (26a) - (26e) as constraints for
numerical optimization requires further reformulation. The
constraint (26d) is non-convex, and represents an ‘or’ condition

depending on the sign of the flux for each reaction. This switching
condition makes the feasible set non-convex and therefore
challenging for optimization methods to search over. To find
solutions we use a big M relaxation of (26d) with the constraints

hj � sgn yj( ) log 2( ) − log |yj| +
�����
y2
j + 4

√( )( ) ∀ j ∈ J , (27a)
gj − log Kj( )≥ hj − ujM ∀ j ∈ J , (27b)
gj − log Kj( )≤ hj + 1 − uj( )M ∀ j ∈ J , (27c)
2uj − 1 � sgn yj( ) ∀ j ∈ J , (27d)

where M is taken to be a large constant. For each reaction the
variable uj is a “switching” term that relaxes either the constraint
(27b) or (27c) depending on the sign of yj such that only the correct
constraint is imposed for each reaction.

In several constraints we utilize the signum function of the flux
which is a discrete function, whereas the optimization method we
use here requires continuous functions of all variables for the
constraints. Therefore we approximate the signum function with

s~gn x( ) � λx

λ|x| + ϵ (28)

for scaling parameters λ and ϵ.
To implement the constraint y ∈ N (Sv) we construct a basis for

the nullspace. For m the dimension of N (Sv), let B ∈ R|J |,m be a
matrix with columns given by a basis of N (Sv). Then we have that

N Sv( ) � Bβ : β ∈ Rm{ }, (29)
and we capture the constraint y ∈ N (Sv) with the expression y = Bβ
for a β ∈ Rm.

2.4.3 Maximum growth optimization numerical
formulation

Using the steady state conditions as outlined in sections
2.4.2 and 2.4.1 we formulate the maximum growth pathway-
controlled optimization problem as

max
y,η

∑
j∈G

yj (30a)

subject to :
y � Bβ,

(30b)
g � STη, (30c)
hj � s~gn yj( ) log 2( ) − log |yj| +

�����
y2
j + 4

√( )( ) ∀ j ∈ J , (30d)
gj − log Kj( )≥ hj − uM ∀ j ∈ J , (30e)
gj − log Kj( )≤ hj + 1 − u( )M ∀ j ∈ J , (30f )
log Kj( ) − gj( )yj ≥ 0 ∀ j ∈ J , (30g)
2uj − 1 � s~gn yj( ) ∀ j ∈ J , (30h)
ηi ≤ ηmaxi

∀ i ∈ I v, (30i)
ηi � �ηi ∀ i ∈ If, (30j)

where the constraints (30b)-(30h) represent the steady state
constraint (13b). Note that the activity coefficients α for
reactions are not explicitly included, however for a solution
with optimal log metabolite counts η* and fluxes y*, the
associated activity coefficients can be recovered as
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αpj �
yp
j

Jj ηp( ) ∀ j ∈ J . (31)

It is important here to note that when (30) admits solutions they
are not necessarily unique. For instance, those reactions that do not
directly impact the objective may have a range of choices for the
fluxes and constituent metabolite values that satisfy constraints

(30b)–(30h) without changing the objective value. In particular
constraints (30e) and (30f) are not neccesairly all that restrictive.

2.4.4 Initialization for optimization
The greatest difficulty in solving (30) is in identifying the correct

sign for the fluxes. If the correct flux directions are known then the
problem simplifies considerably. Using IPOPT, a general non-linear

TABLE 1 Reactions regulated in the MCA approach in which the goal was to control concentrations. Ten out of twelve of these reactions are also regulated in the
pathway-controlled optimization approach.

Reaction JMCA JPCO αMCA αPCO

phosphoenolpyruvate + ADP = pyruvate + ATP −5.85e+02 −9.60e+02 1.25e-01 1.00e+00

NAD+ + succinate = NADH + fumarate −1.91e+03 −1.76e-08 1.17e-13 5.66e-28

acetaldehyde + NAD+ + H2O = acetate + NADH 4.32e+02 3.84e+03 1.16e-10 1.32e-11

acetate + ATP + CoA = acetyl-CoA + AMP + diphosphate 1.19e+03 4.69e+03 1.25e-01 1.00e+00

O-acetyl-L-homoserine + H2S = L-homocysteine + acetate 6.01e+01 4.15e-08 4.77e-07 3.26e-25

NH3 + L-glutamate + ATP = L-glutamine + ADP + orthophosphate 2.37e+02 6.23e-09 2.74e-10 3.98e-43

COA +2.0 AN_oxidized_ferredoxin + pyruvate = acetyl-CoA + CO2 +
2.0 A_reduced_ferredoxin

−2.83e+03 −5.07e+03 1.16e-10 1.24e-01

L-alanine + NAD+ + H2O = NH3 + pyruvate + NADH −9.76e+01 −1.60e+02 4.88e-04 4.29e-10

ATP + L-aspartate + NH3 = AMP + L-asparagine + diphosphate 6.30e+02 1.60e+02 2.44e-04 2.09e-07

sulfate + ATP = adenosine-5’-phosphosulfate + diphosphate 1.95e+02 3.20e+02 2.47e-32 2.61e-05

ADP + A_reduced_thioredoxin = dADP + AN_oxidized_thioredoxin + H2O 3.49e+02 2.34e-08 1.28e-04 2.55e-16

IMP + NAD+ + H2O = NADH + XMP 6.30e+02 2.03e+03 7.35e-40 2.87e-06

TABLE 2 Reactions regulated in the PCOmethod but not in theMCAmethod and that have significant reaction flux in the PCOmethod. Presumably these reactions
are regulated to control metabolite concentrations.

Reaction JMCA JPCO αMCA αPCO

L-glutamine + 2-oxoglutarate + NADPH = 2 L-glutamate + NADP+ 3.38e+02 −1.28e+03 1.00e+00 3.18e-17

3-phospho-D-glycerate + NAD+ + 3-phosphooxypyruvate + NADH −3.41e+00 −4.27e+02 1.00e+00 3.61e-02

3-phospho-L-serine + 2-oxoglutarate = L-glutamate + 3-phosphooxypyruvate 3.41e+00 4.27e+02 1.00e+00 2.78e-02

3-phospho-L-serine + H2O = L-serine + orthophosphate −3.41e+00 −4.27e+02 1.00e+00 1.27e-02

L-serine + L-homocysteine = L-cystathionine + H2O −3.75e+01 −1.60e+02 1.00e+00 3.07e-02

O-succinyl-L-homoserine + L-cysteine = L-cystathionine + succinate 3.75e+01 1.60e+02 1.00e+00 1.80e-02

L-homoserine + succinyl-CoA = O-succinyl-L-homoserine + CoA 3.75e+01 1.60e+02 1.00e+00 1.56e-02

L-serine + Acetyl-CoA = O-Acetyl-L-serine + CoA 1.35e+02 3.20e+02 1.00e+00 9.25e-02

(2R)-2,3-dihydroxy-3-methylbutanoate = 3-methyl-2-oxobutanoate + H2O 1.95e+02 3.20e+02 1.00e+00 3.93e-02

(2R)-2,3-dihydroxy-3-methylbutanoate + NADP+ = (S)-2-acetolactate + NADPH −1.95e+02 −3.20e+02 1.00e+00 1.38e-03

2 pyruvate = (S)-2-acetolactate + CO2 1.95e+02 3.20e+02 1.00e+00 1.30e-08

sulfate + ATP adenosine-5’-phosphosulfate + diphosphate 1.95e+02 3.20e+02 1.00e+00 5.82e-08

adenosine-5’-phosphosulfate + ATP = 3’-phosphoadenylyl-sulfate + ADP 1.95e+02 3.20e+02 1.00e+00 2.77e-06

H2S + 3 NADP+ + 3 H2O = sulfite +3 NADPH −1.95e+02 −3.20e+02 1.00e+00 8.18e-05

oxaloacetate = CO2 + pyruvate −1.66e+03 −3.15e+03 1.00e+00 1.65e-04

ATP + GMP = ADP + GDP 6.30e+02 2.03e+03 1.00e+00 8.39e-04

ATP + L-glutamine + H2O+ XMP = AMP + L-glutamate + GMP + diphosphate 6.30e+02 2.03e+03 1.00e+00 1.12e-05
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interior point solver (Wächter and Biegler, 2006), we found that the
solution and convergence of the solver was extremely sensitive to the
variable initialization, as is common for non-convex problems. In
particular, starting with fluxes close to the optimal directions was
crucial for convergence to a good solution. To initialize the variables
we solve for metabolite values that produces fluxes close to the
gradient direction of the objective. Using random or other
initialization methods we found that the solver failed to
converge, or converged to points with smaller objective values.

To compute initial variable values we first find the projection of the
gradient of the objective onto the space of steady state solutions, with

yg � PN Sv( ) ∇y ∑
j∈G

yj
⎡⎢⎢⎣ ⎤⎥⎥⎦⎛⎝ ⎞⎠ (32)

where PN (Sv) is the projection operator onto N (Sv). We then solve
the constrained linear least squares problem

min
η

sgn −yg( )◦ STη − log K( )( ) − s
∣∣∣∣∣ ∣∣∣∣∣∣∣∣∣∣ ∣∣∣∣∣2 (33a)

subject to :
sj ≥ 0, ∀ j ∈ J ,

(33b)
ηi ≤ ηmaxi

∀ i ∈ I v, (33c)
ηi � �ηi ∀ i ∈ If, (33d)

where s is a vector of positive slack variables and ◦ is the Hadamard
product. Consider that if the objective is zero at a solution ηp then
sgn (−yg) = sgn (STηp − log(K)) which implies that there exists a γ > 0
such that (ηp, γyg) is a feasible point of (30). Therefore this is a
feasible point with fluxes in the directions of yg. In practice solutions
of (33) may only be close to zero, so we choose initial fluxes yp as

yp � −ζPN Sv( ) STηp − log K( )( ) (34)
for a ζ > 0. Larger zeta values move the fluxes further from the origin
and was found to improve convergence, likely as it reduces the
number of fluxes that will switch sign early in the optimization.

2.5 Numerical solution

We solved (33) with the SciPy version 1.7.1 lsq_linear routine
using the default configuration (Virtanen et al., 2020). A solution of
(30) was then computed with IPOPT version 3.14.4 using Pyomo

(Hart et al., 2017) again using the default optimization parameters
except with tol = 1.0 × 10−7 and maximum iterations set to 10,000.

The parameters for s̃gn in constraint (30d) were λ = 1.0 × 1050

and ϵ = 1.0 × 10−50, while in constraint (30h) they were λ = 1 and ϵ =
1 × 10−50. The bigM value was set to 100, and we used ζ = 10 for the
initialization computation.

For all variable metabolites the upper bound was ηmaxi
� 13.308.

Values for the fixed metabolite concentrations, equilibrium
constants, and stochiometeric matrix are given in the
Supplementary Material. Equilibrium constants were computed
using eQuilibrator version 0.3.1 (Beber et al., 2021). Values for
the fixed metabolites were taken from mass spectrometry observed
concentrations for bacteria (Bennett et al., 2009; Park et al., 2016).

2.6 Metabolic model

The metabolic model of R. rubrum consisted of 184 reactions
and 204 metabolites including central metabolism, the Calvin cycle,
the oxidative and reductive TCA cycles, biosynthetic pathways for
all amino acids, pyrimidines and purines, the S-adenylsyl
methionine (SAM) cycles I and II, the methyl alkane reductase
pathway (North et al., 2020), sulfate assimilation, and generic RNA,
DNA and protein synthesis pathways. The model represents an
engineered species that is predicted to not need the ethylmalonyl
CoA pathway due to the inclusion of a oxaloacetate decarboxylase/
malic enzyme that converts oxaloacetate to pyruvate and CO2 and
the inactivation of phospho-glycerate mutase. Consequently, all 3-
phophoglycerate produced by the Calvin Cycle is stays within the
Calvin cycle.

Boundary conditions (fixed species concentrations) consisted of
concentrations of nutrients (ethanol, diphosphate, orthophosphate,
sulfate and ammonia), cell waste products (CO2, H2, ethylene), ATP
derivatives to set up the energy gradient due to photoheterotrophic
growth (ATP, ADP, AMP), internal redox pairs (NAD+, NADH,
NADP+, NADPH, reduced and oxidized ferredoxin, reduced and
oxidized thioredoxin), folates (N10-formyltetrahydrofolate, 5-
methyltetrahydrofolate, 5,10-methylenetetrahydrofolate, 7,8-
dihydrofolate and tetrahydrofolate), and other internal metabolites for
which scavenging pathways were not modeled (coenzyme A, (4S)-4,5-
dihydroxypentan-2,3-dione, adenine, adenosine, adenosine-3’,5’-
bisphosphate).

The standard free energy of reaction for each reaction was
calculated with eQuilibrator, version 0.3.1. The free energies for
the methyl alkane reductase pathway, the SAM cycles I & II, the
ferredoxin oxidoreductases for 2-oxoglutarate and pyruvate, DNA,
RNA and protein polymerization reactions were not available from
eQuilibrator and were estimated manually from half-reactions
reactions or overall reactions for the respective pathways. If
estimates for some individual reactions were available for these
pathways, they were adjusted accordingly, otherwise the standard
free energy change for the pathways was divided equally among the
constituent reactions. Details are included in the computational
notebook available as supplemental material.

The model was constructed from a custom R. rubrum BioCyc
database at PNNL. The draft model is available as a Jupyter
notebook along with the necessary auxillary files for running the
notebook in King and Cannon (2023).

FIGURE 1
Comparison of the cumulative distribution of the reaction fluxes
for the MCA model and the PCO model. Flux through the growth
reactions are maximized by turning reaction fluxes down but not off.
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FIGURE 2
Comparison of the fluxes through central metabolism for the MCAmodel (top) and the PCOmodel (bottom). Flux through the growth reactions are
maximized by turning reaction fluxes down but not off. The decreased flux through central metabolism in the PCO model reflects the same decrease
shown below the red line for the MCA model in Figure 1.
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3 Results

In order to place the results in the proper context, a brief overview
of the metabolism of R. rubrum, the subject of the biomass
optimization, is necessary. R. rubrum is capable of growing both
photoautotrophically, meaning that it only uses CO2 as a carbon
source, or photoheterotrophically, meaning that it can carry out
photosynthesis while simultaneously assimilating organic carbon. In
this study, we are modeling photoheterotropic growth, in which energy
is acquired through photosynthesis while carbon is mostly acquired by
uptake and assimilation of ethanol.

During photosynthesis, R. rubrum uses the Calvin cycle to
regenerate chemical precursors for the assimilation of CO2. The
Calvin cycle includes reactions shared with the non-oxidative
branch of the pentose phosphate cycle, some of which can act as
an alternate route in the Calvin Cycle. The two routes in the Calvin
cycle differ in that one route produces erythrose-4-phosphate and
the other route consumes erythrose-4-phosphate. Erythrose-4-
phosphate is a key metabolite for the synthesis of vitamin B6,
pyridoxal-5’-phosphate, an essential cofactor in amino acid, and
hence protein, synthesis. Therefore, it is important that during
growth, erythrose-4-phosphate not be entirely used as a Calvin
cycle precursor.

We define the biomass pathways to be optimized as the pathways
regarding the incorporation of amino acids into proteins and the
incorporation of nucleotide triphosphates (NTPs) into RNA and
DNA. The synthesis of amino acids and NTPs from precursors,
however, are not included in the biomass pathways. During growth,
proteins, RNA and DNA can be simultaneously synthesized, although
RNA and DNA synthesis compete for both available energy and
molecular precursors, NTPs and deoxynucleotide triphosphates
(dNTPs), respectively. R. rubrum is known to have a cell cycle in
which DNA can only be synthesized during the S phase, while RNA
is synthesized continuously throughout the cell cycle except during

mitosis. Whether DNA is synthesized depends on the redox state of the
cell, specifically, the ratio of NADP to NADPH.

3.1 Controlling concentrations

Because some metabolites have highly favorable free energies of
formation or standard chemical potentials, their concentrations can rise
to dangerously high levels if not controlled (Atkinson, 1977). The
primary role of control in a biological system must be to maintain
viability. Metabolism will not operate if the concentrations of
metabolites becomes so great that the cytoplasm becomes too
viscous for diffusion-reaction processes to occur. We previously
showed that concentrations of metabolites can be controlled by
reducing key reaction fluxes through the activities of the respective
enzymes identified by concentration control coefficients from
Metabolic Control Analysis. In this approach, described briefly in
the Methods section and in detail in reference (Britton et al., 2020),
sensitivity analyses are used to characterize the influence of an enzyme’s
activity on the concentration of any of the models metabolites. If a
metabolite concentration is too high, the enzyme with the most
influence over that metabolite is chosen to be regulated. This
process occurs until all metabolite concentrations are at
physiological levels. The approach can be implemented either as an
optimal control problem or using reinforcement learning. Analysis of
central metabolism showed that both analyses produced similar results
and identified known regulators of central metabolism.

In Table 1, we compare the regulation of enzymes that were
identified as necessary to be controlled to maintain physiological
levels of metabolites in the MCA predictions with those from the
pathway-controlled optimization (PCO) predictions. Of course, in the
PCO method, reactions are controlled both to maintain physiological
levels and to maximize flux to the growth reactions, so any amount of
regulation predicted by the PCO method may result from a

TABLE 3 Top 12 reactions from the constrained optimization that have the highest fluxes. The reaction that has the highest flux in the constrained optimization is
the growth reaction for RNA synthesis. Likewise, the reaction for protein synthesis is included in this group. Other reactions with the highest flux are all involved in
uptake and processing of the carbon source, ethanol.

Reaction JMCA JPCO Flux ratio

oxaloacetate + L-glutamate = L-aspartate + 2-oxoglutarate −7.31e+02 −2.61e+03 3.57e+00

oxaloacetate = CO2 + pyruvate −1.66e+03 −3.15e+03 1.89e+00

Amino Acids = protein 1.95e+03 3.20e+03 1.64e+00

GTP + IMP + L-aspartate = adenylo-succinate + GDP + orthophosphate −1.32e+03 −3.57e+03 2.72e+00

adenylo-succinate = AMP + fumarate −1.32e+03 −3.57e+03 2.72e+00

acetaldehyde + NAD+ + H2O = acetate + NADH 4.32e+02 3.84e+03 8.88e+00

ethanol + NAD+ = acetaldehyde + NADH 8.23e+02 4.48e+03 5.45e+00

acetate + ATP + CoA = acetyl-CoA + AMP + diphosphate 1.19e+03 4.69e+03 3.94e+00

CoA +2.0 AN_oxidized_ferredoxin + pyruvate = acetyl-CoA + CO2 +
2.0 A_reduced_ferredoxin

−2.83e+03 −5.07e+03 1.79e+00

(S)-malate = fumarate + H2O 4.89e+03 7.15e+03 1.46e+00

(S)-malate + NADP+ = NADPH + oxaloacetate −4.89e+03 −7.15e+03 1.46e+00

NTPs = RNA 1.13e+03 8.11e+03 7.20e+00
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combination of the two objectives of maximizing growth while
constraining metabolite concentrations to physiological levels.
Nevertheless, as shown in Table 1, the PCO predicted regulation of
reactions is consistent with the MCA predicted regulation of reactions.

The PCO method regulated ten out of twelve of the same
reactions as the MCA method, suggesting that the PCO method
reduced the activity of these reactions in order to maintain
physiological levels of the metabolites. However, the observation
that the flux in some of these reactions is now effectively zero may
indicate that this subset of reactions were additionally shutdown to
redirect flux to the growth reactions.

In addition, the PCO method may need to control more
reactions than the MCA method, since reaction fluxes are also
redistributed due to optimizing the growth reaction rates
(discussed below). Decreased or increased reaction flux may
result in higher reactant or product levels, respectively, such that
the increased levels need to be controlled to keep them at
physiological levels. The PCO approach regulated reactions that

are not regulated in MCA and yet have non-zero fluxes. These are
shown in Table 2. Presumably, these additional reactions need to be
regulated to maintain metabolite concentrations at physiological
levels in the new regime.

3.2 Increasing growth

In order to increase flux through the growth reactions in
accordance with the PCO objective function, additional
reactions are regulated to redirect flux to that end. The
cumulative value of all the reaction fluxes for both the MCA-
regulated reactions and the PCO-regulated reactions are shown
in Figure 1. Some reactions in the PCO model are indeed
reduced and some are increased, with the overall effect being
a large increase in absolute rates of a subset of reactions. In
general, more flux is directed to biosynthetic reactions, with the
net result being a redirection of flux away from central

TABLE 4 Reactions regulated in the PCO method but not in the MCA method and that have insignificant reaction flux in the PCO method. Presumably these
reactions are shut down to redirect mass flow to the growth reactions.

Reaction JMCA JPCO αMCA αPCO

D-sedoheptulose-7-phosphate + D-glyceraldehyde-3-phosphate = D-ribose-5-
phosphate + D-xylulose-5-phosphate

1.84e+01 −2.90e-09 1.00e+00 1.19e-10

D-sedoheptulose-1,7-bisphosphate + H2O = D-sedoheptulose-7-phosphate +
orthophosphate

1.84e+01 −2.90e-09 1.00e+00 1.24e-10

glycerone_phosphate + D-erythrose-4-phosphate = D-sedoheptulose-1,7-
bisphosphate

1.84e+01 −2.90e-09 1.00e+00 1.30e-10

2-phospho-D-glycerate = phosphoenolpyruvate + H2O −1.78e-15 2.16e-13 1.00e+00 1.30e-15

acetyl-CoA + glyoxylate + H2O = COA + (S)-malate 3.55e-15 1.56e-12 1.00e+00 6.97e-07

S-adenosyl-L-homocysteine + H2O = S-ribosyl-L-homocysteine + adenine 3.68e+00 2.09e-07 1.00e+00 5.93e-08

S-ribosyl-L-homocysteine = L-homocysteine + (4S)-4,5-dihydroxypentan-2,3-
dione

3.68e+00 2.09e-07 1.00e+00 6.05e-08

L-glutamine + L-aspartate + ATP + H2O = L-glutamate + L-asparagine +
AMP + diphosphate

−5.32e+02 −6.16e-09 5.00e-01 9.45e-32

acetyl-CoA + L-glutamate = N-acetyl-L-glutamate + COA 3.55e-15 8.28e-12 1.00e+00 6.68e-44

ATP + dTMP = ADP + dTDP 3.49e+02 2.34e-08 1.00e+00 1.62e-10

ATP + L-glutamine + UTP + H2O = ADP + CTP + L-glutamate +
orthophosphate

−2.56e-01 −5.10e-09 1.00e+00 4.12e-29

CTP + H2O = CDP + orthophosphate 3.32e-02 2.34e-08 1.00e+00 8.97e-10

CDP + A_reduced_thioredoxin = dCDP + AN_oxidized_thioredoxin + H2O 3.32e-02 2.34e-08 1.00e+00 9.26e-10

ATP + dCDP = ADP + dCTP 3.32e-02 2.34e-08 1.00e+00 9.68e-10

ATP + dTDP = ADP + dTTP 3.49e+02 2.34e-08 1.00e+00 2.06e-10

UDP + A_reduced_thioredoxin = dUDP + AN_oxidized_thioredoxin + H2O 6.97e+02 2.34 e-08 1.00e+00 8.51e-15

ATP + dUDP = ADP + dUTP 6.97e+02 2.34 e-08 1.00e+00 2.35e-14

dUTP + H2O = dUMP + diphosphate 3.49e+02 2.34e-08 1.00e+00 1.13e-10

ATP + dADP = ADP + dATP 3.49e+02 2.34e-08 1.00e+00 1.13e-11

GDP + A_reduced_thioredoxin = dGDP + AN_oxidized_thioredoxin + H2O 3.49e+02 2.34e-08 1.00e+00 4.33e-12

ATP + dGDP = ADP + dGTP 3.49e+02 2.34e-08 1.00e+00 4.80e-11

dNTPs = DNA 6.97e+02 4.68e-08 1.00e+00 4.88e-09
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metabolism in comparing the MCA-derived flux distribution to
the PCO-derived flux distribution, as indicated in the flux maps
for the two models in Figure 2.

The reactions with the highest fluxes from the PCO approach are
shown in Table 3. The reaction with the highest absolute flux in the PCO
regulated set of reactions is the RNA synthesis reaction, which increased
to 8.11 × 103, a more than 7-fold increase as compared to the MCA
regulated model for controlling only metabolite levels. Likewise, the
reaction for protein synthesis is included in this group. Both of these
reactions are part of the growth reaction set used in the objective
function. The other ten reactions with the highest flux are all
involved in uptake and processing of the carbon source, ethanol.
Much of the carbon from ethanol flows into fumarate and then into
the pathways for synthesis of the pyrimidine nucleosides, uridine
triphosphate (UTP) and cytidine triphosphate (CTP), precursors of
RNA synthesis. In contrast the purine nucleosides are readily available
from the already high levels of ATP.

Reactions that were effectively shutdown are shown in
Table 4. As can be seen at the bottom of the table, DNA
synthesis was minimized by significantly down regulating the
synthesis of dNTPs, making more NTPs available for RNA
synthesis. In addition, the alternate pathway in the Calvin
cycle that consumes erythrose-4-phosphate is shutdown (top
three reactions in Table 4), making more erythrose-4-
phosphate available for synthesis of vitamin B6, a necessary
component for production of the branched chain amino acids
tryptophan and tyrosine.

4 Discussion

4.1 Biological discussion

The PCOmethod we present here agrees with the majority of the
regulation imposed by the MCA method for maintaining solvent
capacity of the cell, which was shown previously to agree with
known points of regulation from experiments as reported in the
literature Britton et al. (2020). However, the consideration of growth
as an additional objective for regulation in our PCO approach
produced significant additional regulation in line with adjusting
flux through growth pathways. The inclusion of the consideration of
growth is likely to be crucial for a complete understanding of
regulation in cells.

While this study uses a limited model (184 reactions and
204 metabolites), that DNA synthesis was turned off, as it is
during most of the cell cycle, is interesting, and presumably was
done so in order to maximize RNA synthesis. Further evaluation
with a more complete model is needed. It is not clear if under low
NADP/NADPH conditions that DNA synthesis is likewise
maximized by reducing RNA synthesis.

Of course, it will be critical to test the results of the model against
experimental observations in order to draw firm biological conclusions.
In this regard, previous studies of the metabolic dynamics of R. rubrum
using Metabolic Flux Analysis (McCully et al., 2020), an experimental
method to derive fluxes from observations of isotope distributions, will
provide a good test of the regulation model.

If successful, the incorporation of thermodynamics into the
optimization of growth with the PCO approach developed here,

along with the ability to infer kinetic parameters from maximum
path entropy distributions, will provide a way to further explore the
relationship between natural selection and thermodynamics in detail.
Ideally, these capabilities will allow the study of the expression patterns
and activities of enzymes at various stages in the cell cycle.

4.2 Optimization discussion

One of the biggest challenges in solving the PCO problem is the
range of the variable values. For the solutions presented here both
metabolites concentrations and activity coefficients for reactions vary
overmany orders ofmagnitude. Tomake the problemmore numerically
tractable our formulation in essence seeks to do computations with
respect to the log of the variables to mitigate the large discrepancies in
scale. This is relatively straightforward with respect to the metabolite
concentrations in part because theymust be positive. However, to handle
the flux we must separate out its magnitude and sign which complicates
the formulation. It is important to note that our approach does not
strictly adhere to the requirements of the IPOPT solver, namely, that the
objective and constraints be twice continuously differentiable. In
particular, both constraint (27a) and (30h) violate this condition.

For the constraint (27a), the original expression (19c) it is derived
from is twice continuously differentiable but resulted in numerical
errors. By introducing the form (20) and using the approximation (28)
to the signum function a cusp is introduced into the first derivative at
zero and error is introduced in an interval about the origin determined
by the parameters λ and ϵ. We choose λ and ϵ to shrink this interval
such that the true derivative is closely approximated at all points
evaluated by the solver. We found this choice to produce more
accurate solutions and better convergence behavior than using twice
continuously differentiable approximations of the signum function or
other forms for (19c). It may be possible to further improve
performance by supplying the solver directly with alternative
derivative computations rather than relying on automatic
differentiation, particularly if solutions approach the origin.

The relaxed formulation (30) also uses the approximation
(28) to the signum function in the constraint (30h) specifying the
value of the ‘switching’ variable u. Here choices of λ and ϵ are
made such that the right hand side of the constraint is effectively
constant and partials with respect to the flux will evaluate to zero,
in order to hold u constant at 1 or −1 so long as the sign of the flux
remains the same. This formulation captures the problem well
when the sign on the fluxes are in the optimal direction but it is
unclear to what extent it constrains the domain reachable by the
solver from an arbitrary initial condition. We also evaluated
solutions including an explicit computation of the activity
coefficients as in (20) but found that convergence of the solver
required setting a lower bound on regulation of roughly 1 × 10−9,
and solutions had a significantly lower objective value than were
found using the implicit regulation formulation (30).

Due to the potential restrictions on the solutions that can be
obtained with our approach using the relaxed formulation (30)
we will consider methods to more thoroughly explore the
feasible set in future work including stochastic search
methods. Of course a more complete exploration of the space
of solutions can come at significant computational cost and if
other methods perform similarly to the approach we present
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here, then it may have a clear practical advantage in that the
times-to-solution will likely be much faster. Additionally, as
discussed in Section 2.4.3 solutions are not necessarily unique.
Methods to explore and characterize the set of equivalent
solutions, that is solutions that can achieve the same objective
value, will allow for a greater understanding of the flexibility that
may be possible in controlling reaction fluxes and metabolite
concentrations while achieving high growth rates.
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