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Treatment with combinations of drugs carries great promise for personalized
therapy for a variety of diseases. We have previously shown that synergistic
combinations of cancer signaling inhibitors can be identified based on a logical
framework, by manual model definition. We now demonstrate how automated
adjustments of model topology and logic equations both can greatly reduce the
workload traditionally associated with logical model optimization. Our
methodology allows the exploration of larger model ensembles that all obey a
set of observations, while being less restrained for parts of the model where
parameterization is not guided by biological data. We benchmark the synergy
prediction performance of our logical models in a dataset of 153 targeted drug
combinations. We show that well-performing manual models faithfully represent
measured biomarker data and that their performance can be outmatched by
automated parameterization using a genetic algorithm. Whereas the predictive
performance of a curated model is strongly affected by simulated curation errors,
data-guided deletion of a small subset of regulatory model edges can significantly
improve prediction quality. With correct topology we find evidence of some
tolerance to simulated errors in the biomarker calibration data, yet
performance decreases with reduced data quality. Moreover, we show that
predictive logical models are valuable for proposing mechanisms underpinning
observed synergies. With our framework we predict the synergy of joint inhibition
of PI3K and TAK1, and further substantiate this prediction with observations in
cancer cell cultures and in xenograft experiments.
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Introduction

Combining several specific and targeted drugs in one therapy to
fight disease increases chances of treatment success (Hanahan and
Weinberg, 2011). Drug combinations that together act in synergy
are especially attractive because they allow for pushing treatment
effects beyond those obtainable by each drug alone (Al-Lazikani
et al., 2012), with drug dosages that can be well below levels where
individual drugs begin to cause adverse effects. In addition,
synergistic drug combinations may have reduced side-effects by
improved selectivity in a specific biological context, for instance by
tailoring therapy to individual patients (Eduati et al., 2017; Eduati
et al., 2020), and by allowing targeting of only certain cell types in an
organism (Lehár et al., 2009). Lastly, searching for new combination
therapies has the additional benefit that already approved drugs can
act beneficially in novel combinations, and thus even allow
bypassing initial drug development phases.

While the development of rational drug combination treatment
has become a major priority due to hopes of increased treatment
potency, a grand challenge remains in dealing with their
identification in the vast space of potential drug combinations.
Currently, more than two hundred drugs have been approved by
the FDA to treat cancer (https://www.cancer.gov/about-cancer/
treatment/drugs). The testing of drugs in all combinations with
other drugs in a panel needs assays in numbers that increase
exponentially with increasing drug numbers. Even a modestly
sized drug panel of 150 drugs corresponds to over
10,000 pairwise drug combinations. Testing high numbers of
drug combinations in high throughput screens on cell lines or
other patient-specific model systems is costly and at some point
prohibitively expensive and cumbersome. Therefore, help is needed
from in silico drug effect simulations to produce high quality
predictions that can guide drug combination screens or therapy
choices for testing in cell lines or patients. In silico simulations may
help identify those combinations that are unlikely to produce
synergies, which can be of significant help to reduce the large
experimental search space that otherwise would need to be
covered in exhaustive screens. As many drug synergies can be
seen as emergent properties arising from molecular causality
networks, analytical frameworks from computational systems
biology seem to be well suited to the task.

Several mathematical frameworks have already been tested to
mechanistically model drug combination effects, including
continuous, discrete, and hybrid modeling approaches. Published
approaches generally depend on molecular causalities downloaded
from prior knowledge databases, extracted from large-scale data, or
obtained by a combination of the two. Based on a dataset capturing
proteomic responses of 14 targeted drugs, Miller et al. used ordinary
differential equations to study mechanisms of synergy between
inhibitors of CDK4 and IGF1R, revealing that the mechanisms
rely on the activity of AKT (Miller et al., 2013). Nelander et al.
explored ODE models derived from observations on phospho-
proteins and cell cycle markers following 21 pairwise applications
of targeted drugs, with the aim to use best-performing pairs for
design of new combination therapies (Nelander et al., 2008). In a
semi-qualitative modeling approach, Klinger et al. used a
perturbation dataset for MAPK, PI3K and NF-κB signaling to
inform a model showing that combined inactivation of MEK and

EGFR could inactivate endpoints of RAS, ERK and AKT signaling
(Klinger et al., 2013). Jin et al. explored enhanced Petri nets to
describe molecular processes for the synergy of an EGFR inhibitor
(gefitinib) with chemotherapy (docetaxel) and identified KRT8 as a
candidate gene to explain the synergy (Jin et al., 2011). Saez-
Rodriguez et al. have explored logic models configured by
perturbation data to identify novel drug synergy mechanisms and
combinations (Saez-Rodriguez et al., 2009; Tognetti et al., 2021).
However, all of these approaches rely on extensive and costly
combinatorial drug perturbation data, be it transcriptomic,
proteomic, viability etc., for describing mechanisms of synergy,
and therefore they require large investments in data production
and do not provide a scalable solution for testing of the large drug
combination space.

In order to reduce dependence on a priori perturbation
experiments, attempts have been made to predict drug synergies
from data obtained in a marginal experimental search space, rather
than the full combinatorial space. Fröhlich et al. used ODE models
informed by transcriptomic and viability data to predict drug
combination responses, finding that highly accurate predictions
could be produced for those drugs for which they had viability
response data (Fröhlich et al., 2018). In the DREAM7 - NCI-
DREAM, Drug Sensitivity and Drug Synergy Challenges (Bansal
et al., 2014; Goswami et al., 2015; Sun et al., 2015) (NCI-DREAM),
pairwise drug responses were predicted from response data obtained
for each drug alone. The best performing teams in the NCI-DREAM
challenge obtained a probabilistic concordance (PC) index of 0.61,
on a scale ranging from 0.9 (perfect prediction) to 0.1 (perfect
opposite prediction). Although this is better than random (PC index
of 0.5), it clearly illustrates that obtaining accurate synergy
predictions is far from trivial, due to a variety of reasons that
will be discussed in this paper. In the more recent AstraZeneca-
Sanger Drug Combination Prediction DREAM Challenge (Menden
et al., 2019) (AZ-DREAM), one of the aims was to develop and
demonstrate drug combination response predictability independent
of extensive perturbation data. The development of such powerful
prediction approaches has the advantage of being relevant not only
to preclinical drug screens, but also to bed-side applications. Drug
perturbation data clearly will not be trivial to obtain for individual
patients, unless patient-derived experimental assays that mimic
patient responses can be developed (e.g., xenografts, explants
etc.). Sobering results from the AZ-DREAM challenge showed
that most teams had balanced accuracies of 0.5–0.6, with the best
performing team obtaining a balanced accuracy of only 0.69.

With the availability of training data, machine learning
algorithms have also been explored to predict drug synergies
(Gayvert et al., 2017; Preuer et al., 2017; Tang et al., 2019).
However, major limitations of such approaches include the lack
of mechanistic insight (Yu et al., 2018), and dependence on high
quantities of training data. Despite some increase in their
availability, such large scale datasets are still largely missing, in
part due to great experimental complexity and high economic cost.
Efficient in silico therapy based on patient-specific models should
ultimately be integrated into the clinical decision process. In this
study, we investigate the performance of logical modeling in
predicting drug responses of cancer cell lines. In order to reduce
the dependency on large training datasets, we explore the use of cell
lines measurements of biomolecules obtained at a single time point:
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at steady state proliferation. To reduce data dependency and to
improve mechanistic insights, these measurements are combined
with prior knowledge to construct logical model ensembles to
simulate drug combination effects. Logical model building is
known to require meticulous involvement of curators and
bioinformaticians, with substantial commitment to manual
tinkering of models before the behavior of one model matches
that of its experimental counterpart. We have previously published
logical models of cancer cell lines, named CASCADE 1.0,
CASCADE 2.0 and CASCADE 3.0, which demonstrate the
potential of logical modeling for the prediction of drug synergies
(Flobak et al., 2015; Niederdorfer et al., 2020; Tsirvouli et al., 2020).
However, the curation effort required to assemble a cancer signaling
network and the dedicated interactive efforts needed to optimally
modify logical rule definitions becomes a clear obstacle when
constructing larger models.

If patient-specific logical models are to be used routinely, it is
preferable that such logical models can be automatically constructed
for any cell line or patient-derived cell culture, and for any repertoire
of targeted drugs (Dorier et al., 2016; Gjerga et al., 2020). We
therefore set out to automate processes required to calibrate a
logical model from a set of molecular causative statements, i.e., a
prior knowledge network (Dorier et al., 2016; Gjerga et al., 2020). A
software pipeline developed to that end would have to 1) assemble a
network topology from structured data obtained from prior
knowledge databases, 2) interpret baseline cancer cell line
biomarker data into a signaling entity activity score, 3) calibrate
generic logical models, created from prior knowledge data, by
modifying logic equations to match the observed activity scores,
and 4) predict phenotypic consequences of combinatorial
interventions to the simulated model behavior. Our software
solution for realizing points 3 and 4 is available at https://github.
com/druglogics. We use a genetic algorithm to automatically
parameterize a set of logic equations representing cancer growth-
promoting signaling in the AGS gastric adenocarcinoma cell line.
We demonstrate our approach by reproducing results from a
previous manual effort and next test its utility with a larger
model that was benchmarked against a dataset from a drug effect
screen of 153 drug combinations. Experiments that simulate
different levels of curation quality and biomarker data quality
indicate the need for a reliable PKN, while still allowing for
model improvement by network link pruning and parameter
optimization.

Methods

Boolean modeling and attractor
computation

Boolean models rely on the formalism initially proposed by
Stuart Kauffman (Kauffman, 1969) and René Thomas (Thomas,
1973), and are based on the Boolean operators AND, OR and NOT
for computing the activity states of variables (nodes). Their
approach first defines a regulatory graph consisting of nodes
representing signaling entities (model components), and signed
and directed edges representing regulatory interactions that
connect signaling entities. The activities of all model components

are then associated with the Boolean values “True” and “False,”
represented by 1 and 0, corresponding to activity and inactivity,
respectively. This dichotomy of activity levels can be interpreted as
activity being above or below a “threshold”: a component is “active”
when its activity level is sufficiently high to influence a target
component’s activity level. In model simulations, specific model
components can be defined as “output nodes,” whose activity values
serve as a proxy for a phenotype of interest. This allows us to
compute an overall “growth” value in our simulations, by integrating
all activity values of model output nodes, and scaling this sum to
[0,1]. For example, if the anti-survival model output nodes CASP8,
CASP9 and FOXO3 are inactive and the pro-survival model output
nodes MYC, CCND1 and TCF7 are active, the global output
“growth” is 1. Inhibitory effects of a drug are simulated by fixing
the drug target to an activity level of 0, i.e., simulating a block in
signaling activity of the drug target node.

The ability of a logical model to represent biological reality and,
in consequence, reliably predict the result of perturbations by drugs
that specifically target model nodes, requires an optimization of both
the logical rules (parametrization) and the regulatory topology. The
effect of both optimizations on drug simulations needs an efficient
process to identify model attractors. Model attractors represent
asymptotic behavior of the system, from which it cannot escape,
either as fixed points, or as complex attractors involving cycles of
iterative activated/inactivated nodes. We identified fixed points
using the bioLQM software, which, among others, provides a fast
algorithm for finding such stable states and other complex attractors
(Naldi, 2018). Due to the large number of simulations required for
the “Randomizing regulatory edges of the curated model reduces
predictiveness” Results section, we used a modified version of the
algorithm BNReduction (Veliz-Cuba et al., 2014), which allows the
identification of single stable state phenotypes that are most
prevalent with our self-contained CASCADE topologies.

Model calibration by parameterization
optimization

A genetic algorithm is applied to automate model
parameterization, as follows:

The input for model calibration consists of:

• Interactions: signed and directed binary interactions (SIF
format (Shannon et al., 2003)).

• Steady state: Boolean vector containing states of nodes in
interactions, where nodes that should be active are assigned
the value 1, and nodes that should be inactive are assigned the
value 0. For nodes whose state cannot be determined a dash
(−) can optionally be used to explicitly declare that the node
state is undetermined. This steady state vector will be used for
evaluating the correctness of a model’s stable state.

Acknowledging that there are multiple optimal
parameterization solutions possible, the output of an automated
model calibration is an ensemble of models each with a stable state
optimized to match the input steady state.

To run the parameter configuration, interactions are first
assembled to logic equations, based on a default equation
(Mendoza and Xenarios, 2006) relating a node with its
regulators, for instance:
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Target *� Aor B or C( ) and not D or E or F( )
where activating regulators A, B and C of a target are combined with
logic “or” operators, and inhibitory regulators D, E and F are
combined with “and not” operators to determine the state of the
target node in the next time step. The operator “and not,” which
directs the integration of activating and inactivating regulators, is
referred to as the link-operator (Zobolas et al., 2022). The topology is
“self-contained,” meaning that any regulator is itself regulated by
one or more components from within the network topology,
effectively meaning there are no “user-controlled” inputs to the
network through e.g., hormone receptors.

Next, a genetic algorithm is used to iteratively refine the
parameterization to produce a logical model with a stable state
matching the specified input steady state. First, an initial generation
of models is formulated, where a large number of mutations to the
parameterization is introduced: randomly selected equations are
mutated from “and not” to “or not”, or vice versa. Hence, the two
possible equations for the example above would be:

Target *� Aor B or C( ) and not D or E or F( )
Or

Target *� Aor B or C( ) or not D or E or F( )
For each model a fitness score is computed: each matching

Boolean value between the vector of a stable state and the steady
state improves the fitness score, which is scaled to the range [0,1]. A
fitness score of 1 is achieved when all states match the given steady
states of specific nodes within the model. Models without a stable
state, i.e., models that only have complex attractors, are assigned a
fitness of zero. The fitness score for models with n stable states,
assuming that the steady state vector (ss) and the stable states (fix)
have m nodes in common, is as follows:

fitness � ∑
n

i�1

∑m
j�1I sifix j( ) � sss j( )[ ]( )/m

n

where s(j) ∈ 0, 1{ } denotes the state of the j node, n is the number of
fixed points (stable states), i is the fixed point index and
I: X → 0, 1{ } the indicator function. Thus, models with multiple
stable states are penalized.

The stable state vector used to compute fitness in the reported
experiments was based on manual annotation of signaling activities
in AGS cancer cells (Flobak et al., 2015).

For each generation, a user-defined number of models were
selected for populating the next-generation of models. For our
simulations three models were selected, specifically the ones that
achieved the highest fitness scores in each generation, to populate a
next-generation of 20 models. First, crossover was performed, where
each selectedmodel would exchange logic equations with other selected
models (including itself, thus also enabling asexual reproduction). Then
a number of mutations were introduced as described above. For our
simulations 3 mutations were introduced. Before a stable state was
obtained, the number of mutations introduced per generation was
increased by a user-defined factor. The large number of mutations in
the initial phase ensured that a large variation in parameterization could
be explored. For our simulations we chose this multiplication factor to
be 1000 (i.e., introducing a total of 3000mutations), effectively ensuring
that the initial generations were randomly sampled from all possible

model configurations (a total of 2n models, where n is the number of
equations with a link-operator). The genetic algorithm’s evolutionary
process kept the best 3 models with the higher fitness scores. Evolution
was halted upon reaching a user-specified threshold fitness of 0.99,
which was compared with the minimum fitness among the top
3 models. In case this fitness could not be reached, evolution was
halted when a user-definedmaximum number of generations had been
spanned. For our simulations we allowed for a maximum of
20 generations. The model evolution process was repeated 50 times
(user-defined value) resulting in a total of 3 × 50 = 150 models at the
end of the genetic algorithm optimization.

Model calibration by topology optimization
In order to introduce variations to the topology, the genetic

algorithm modified a whitelist and a blacklist of regulators of the
prior knowledge network, while always preserving at least one
regulator for each target, so as to not break the self-contained
property of the network. Based on the same formula as shown above,

Target *� Aor B or C( ) and not D or E or F( )
this means that the genetic algorithm takes out some subset of the
regulators A, B, C, D, E or F (blacklisting). After a regulator has been
eliminated, the genetic algorithm is also allowed to bring back
regulators originally defined in the PKN (whitelisting). For our
simulations, we introduced 50 such topology mutations during the
initialization phase and when models with stable states were found,
we reduced this number to 10, so as to not severely reduce the
number of PKN edges.

Model simulation and synergy prediction
After repeating evolution a specified number of times, model

ensembles were analyzed in a third step of the software pipeline, as
follows:

The input to model simulation and synergy prediction
consists of:

• An ensemble of logical models
• A drug panel: List of drugs and their target node(s) in the
model

• Perturbations: the single and drug pair combinations to be
analyzed.

• Model output nodes with weighted score to evaluate global
output (i.e., ‘growth’)

The output from model simulation and synergy prediction:

• Drug synergy predictions from ensembles of models

For each model, all specified perturbations were simulated. For
each perturbation, the drug panel was consulted to fix the state of the
associated node(s) to the value 0. A node state could in principle also
be fixed to the value 1 for a drug that activates a signaling entity, but
this feature was not used here as all drugs inhibit nodes in the model,
thereby representing inhibition of their target in a cell. After
simulating a perturbation, the global output parameter “growth”
was computed by integrating the weighted score derived from the
states of model output nodes. The output nodes RSK_f, CCND1 and
MYC contributed to cell proliferation with a positive weight of

Frontiers in Systems Biology frontiersin.org04

Flobak et al. 10.3389/fsysb.2023.1252961

https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2023.1252961


1 while CASP8, CASP9 and FOXO3 contributed to cell death with a
negative weight of −1. For example, if two output nodes A (weight 1)
and B (weight −1) were found to have the states A = 1, B = 1 for a
perturbation, the global output would result in Astate×Aweight +
Bstate×Bweight = 1 × 1 + 1×(-1) = 0. This value was then scaled
from 0 to 1 based on the theoretical minimum and theoretical
maximum “growth,” for this example, the range [−1,1], the global
output would be 0.5 (which could be interpreted to represent a
cytostatic cell state). The scaled global output (“growth”) was then
used to compute synergies (see below).

All steps of the software pipeline were implemented in the
OpenJDK Java v1.8 language and run on Linux 4.15.0–122-
generic/Ubuntu 18.04.4 LTS. The different pipeline modules can
be accessed at https://github.com/druglogics. The main package
used for the simulations was druglogics-synergy v1.2.1 (https://
github.com/druglogics/druglogics-synergy/). It takes ~1 h to
calculate the drug synergy predictions using the default
configuration options and the CASCADE 2.0 topology. Changing
the attractor calculation to the modified BNReduction script can
result up to 90% less computation time. Software documentation
(including installation and various configuration documentation) is
available online at https://druglogics.github.io/druglogics-doc/. A
detailed tutorial was made as an introduction guide to the
software pipeline (https://druglogics.github.io/synergy-tutorial/).
For an extensive documentation of the methods used in this
work, see https://github.com/druglogics/ags-paper.

In silico definition of synergy
Synergy is defined as an additional effect beyond what is

expected from a reference model of drug combination
responses. Both for in silico simulations and in vitro
experiments an observed combination effect can be formally
defined as the effect E observed for two drugs a and b, where
E(a,b) is the observed effect in a combination experiment, A(a,b) is
the drug combination effect expected from each individual drug’s
properties as based on a reference model for combination
responses, and S(a,b) denotes any difference between the
observed and the expected drug combination effect, such that
E(a,b) = A(a,b) + S(a,b) (Li et al., 2018). In the case of excess effects
observed for a combination, S(a,b) is positive and synergy is called,
and conversely for attenuated effects, S(a,b) is negative and
antagonism is called. Finally, for drug combinations where
E(a,b) equals A(a,b), the drug combination effect can fully be
anticipated by each drug response independently, and neither
synergy nor antagonism is called.

In model simulations the expected drug combination response is
defined as the product of the two global output “growth” values for
each single drug, similarly to the Bliss independence (Bliss, 1939)
synergy metric used in lab experiments: when a combinatorial
perturbation in simulations is found to predict a lower growth
than expected, i.e., growth(a,b) < growth(a) * growth(b), the
combinatorial perturbation response is declared synergistic.

Gold standard synergies

Our previously published dataset of targeted drug combinations
(Flobak et al., 2019) was used to benchmark the algorithms. The

drugs included comprised the inhibitors 5Z-7-oxozeaenol (5Z),
AKTi-1,2 (AK), BIRB0796 (BI), CT99021 (CT), PD0325901
(PD), PI103 (PI), PKF118-310 (PK), JNK Inhibitor XVI (JN), BI-
D1870 (D1), BI605906 (BIX02514) (60), Ruxolitinib (INCB18424)
(SB), SB-505124 (RU), D4476 (D4), KU-55933 (KU), 10058-F4 (F4),
Stattic (ST), GSK2334470 (G2), GSK-429286 (G4), P 505-15 (P5).
For the drug synergy calling in the 153 combinations drug screen,
three curators were asked to evaluate growth curves and decide on
which showed interesting combination effects that could have
warranted further investigations. A consensus list was then used
to identify a threshold for drug synergy assessment using the
software Cimbinator (Flobak et al., 2017) and configured to
compute synergies per the Bliss metric. The analysis identified six
drug synergies (AK-BI, PI-D1, BI-D1, PI-G2, PD-PI, 5Z-PI). Note
that two drug synergies in the drug screen performed in 2015 were
not captured by this analysis, probably relating to the different
readouts used in the drug screen performed in 2019 (xCELLigence
and CellTiter Glo, respectively).

Normalization

Normalization of synergy predictions for drugs a and b was
performed by computing the exponential fold change for the ratio of
output from models calibrated to steady state biomarker data (x) to
output from models calibrated to a random yet proliferative
phenotype (y):

synergy � exp( growthx a, b( ) − growthx a( )*growthx b( )( )
−(growthy a, b( ) − growthy a( )*growthy b( )))

Our random proliferative phenotype corresponds to a cell with
all anti-survival signals inactivated, and at least one pro-survival signal
active. All references in themain text to “Calibrated”model performance
refer to normalized synergy predictions as explained above.

Mouse xenograft experiments

40 female Balb/c mice 4–5 weeks old (Taconic) were inoculated
with two million AGS cells subcutaneously in the right dorsal flank.
Cells were mixed with Matrigel to improve probability of
successfully establishing a xenograft model: in a small pilot (n =
3) we observed that none of three mice injected with cells in medium
(DMEM) developed tumors, while two of three mice injected with
cells in medium and Matrigel developed tumors. 100 μL of cell
suspension in HAM’S F12 medium (Invitrogen, Carlsbad, CA) with
10% fetal calf serum (FCS; Euroclone, Devon, UK), and 10 U/mL
penicillin-streptomycin (Invitrogen) was mixed with 100 µL of ECM
Gel from Engelbreth-Holm-Swarm murine sarcoma (Sigma-
Aldrich). After 4 weeks, minuscule but palpable tumors had
formed in 30 mice, which were randomized to four groups and
subjected to treatment: 1) 5Z-7-oxozeaenol (3 mg/kg/d), 2) PI103
(5 mg/kg/d), 3) 5Z-7-oxozeaenol (3 mg/kg/d) + PI103 (5 mg/kg/d),
4) vehicle. Randomization ensured that average tumor volume was
similar in the four groups. Weights of mice ranged from 14.9 to
20.0 g at onset of treatment, with average weight 17.66 g and
standard deviation of 1.06 g. All mice received the same dose of
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drugs, and the dose was adjusted for a body weight one standard
deviation below average, i.e. 16.6 g. Drugs were diluted in medium
with 40% DMSO for a total injection volume of 250 µL and injected
intraperitoneally three times per week for a total of seven injections.
Maximum (a) and minimum (b) tumor diameters were measured
twice weekly with a caliper, and the volume V of the tumor was
estimated from the formula V = 0.5 a × b2.

Results

For reliable simulation of drug responses of cancer cell lines,
computational models must adequately represent the regulatory
network (topology) underlying cell fate decisions, meaning that
high quality molecular causal relationship data must exist and be
converted to regulatory graphs. In addition, the activity states of
molecular regulatory components must be measured, demanding
high quality biomarker data. From the regulatory graph the response

of components to upstream source nodes and influence on
downstream target nodes needs to be specified in the form of
logical rules and calibrated so as to accurately represent the
biological decision mechanisms of these cells in a Boolean
framework. Finally, good benchmarking data must exist to
evaluate the performance of the model, e.g., for our purposes in
the form of drug synergy data, see Figure 1A.

Design of an automated model
parameterization module

Previously we have shown the feasibility of logical model
predictions of drug synergies (Flobak et al., 2015) using the
cancer cell line AGS, chosen due to known deregulations of
several core cell survival signaling pathways. A Prior Knowledge
Network (PKN) was curated to represent these signaling pathways,
and converted to a set of mathematical rules formulated in Boolean

FIGURE 1
(A) Overview of the drug synergy prediction platform. Cancer cells are analyzed for biomarkers used to define logical models that can be used to
predict drug synergies. Model predictions are tested by benchmarking against high throughput drug screens. (B) A genetic algorithm optimizes logical
models to cancer cells. A prior knowledge signaling topology representing molecular causal interactions is taken as input to define logical models with
predefined rules as initial logic equations. A genetic algorithm will iteratively randomly choose logical rules by mutating the AND/OR configuration,
thereby re-parameterizing a logical model until a model shows a maximum compliance with steady state signaling observations (biomarkers). This
procedure is performed in parallel for hundreds of models until an optimized ensemble of models is available for drug synergy prediction.
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FIGURE 2
(A) The CASCADE 1.0 prior knowledge network. 75 signaling nodes with signed and directed regulatory influences annotated (activating interactions
in green, inhibiting interactions in red). All signaling components receive input from other signaling components from within the network, and ultimately
influence the two phenotypic output nodes Antisurvival and Prosurvival. (B) Evolution of fitness of calibrated models. Overall fitness is plotted as a
function of generation, with average fitness and standard deviation indicated. The data for this figure was produced by running the genetic algorithm
for 1,000 times (evolutions), with 20 generations per evolution and 20models per generation. We observe that the average fitness and standard deviation
follow a sigmoidal increase and stabilize after 10–15 generations. The persistence of the standard deviation across generations including those late in the
evolution shows that new models still explore variations to the model parametrization while selection keeps the fitness score of the trained models at a
constant plateau. (C) Predictive performance of ensembles of logical models. ROC curves are in the left panel, and PR curves are in the right panel.
Random model predictions were generated by collecting predictions from ensembles of models trained to a random yet proliferative phenotype.

(Continued )
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logic. This model, available from https://github.com/druglogics/
cascade as CASCADE 1.0 (Figure 2A), consists of 75 nodes
representing cancer signaling entities and 149 edges representing
regulatory interactions, and it could predict five synergies of which
four were experimentally confirmed (Flobak et al., 2015). Since our
model is based on prior knowledge, amenable to interpretation by
molecular biologists, the model also can be used for inspection as to
which signaling pathways are important for particular drug response
observations, e.g., we have suggested that FOXO signaling was
crucial to the drug synergy effect of joint PI3K and MEK
inhibition (Flobak et al., 2015). Whereas for many of the logical
rules the definition of the logical operators (AND, OR, NOT) was
more or less evident from literature and database knowledge,
analysis of Boolean model attractors indicated that some logical
rules needed further manual optimization in a stepwise manner so
that ultimately the model stable state behavior matched the observed
pattern of signaling entities at steady state in proliferating AGS cells.
We now report on how we automated and generalized these steps
required to parameterize an in silico model of a cancer cell line, by
employing a genetic algorithm for deriving logical rules from prior
knowledge and steady state signaling observations, see Figure 1B.
From a curated network topology a set of standardized logic
equations are obtained by defining one logic equation for each
model target node, with model source nodes as operands (Mendoza
and Xenarios, 2006). For example, if protein T is activated by
proteins A and B, while protein C inhibits protein T, the equation
could read as T = (A OR B) AND NOT C. Subsequently, the
parameterization (choices of logic operators) is optimized by a
genetic algorithm, specifically modifying the AND NOT/OR NOT
parameter. This translates to adjusting the balance of influence from
activating and inhibiting regulators; if the operator is OR NOT then
either activation or absence of inhibition is required for activation of
the target (more permissive), while if the operator is AND NOT then
both activation and absence of inhibition is required (less permissive).
The genetic algorithm iteratively modifies the parameterization of a
small subset of the equations, and selects best performing models for
defining a new generation of candidate models. Best performing
models are chosen based on their ability to reproduce known
baseline cell signaling states, as far as the available cell line data
allows it. Evaluating fitness from a match with baseline observations
also means that our models are defined independently of perturbation
data. Our software solution for automatic parameterization is
available at http://github.com/druglogics/.

Automated logical rule definitions perform
on par with manually curated rules

To compare results from our manually constructed logical rules
with automated rule definitions, our software translates the graph, as

encoded in a SIF file format, to a set of 75 logic equations in a
standardized format (Mendoza and Xenarios, 2006). Logic
equations are then optimized using a genetic algorithm in a
process where the fitness of each model is calculated by
comparing the matches of its stable state nodes with observed
activities of signaling entities for proliferating cancer cells. For
the AGS cells, this process comprised 20 generations, in which
each generation received mutations to a small subset of logic
equations iteratively, with 20 models per generation tested for
fitness. In order to adequately cover the space of local optima,
the evolutionary process was repeated 50 times and the three best
performing models from each evolution were retained, which
resulted in an ensemble of 150 models. A theoretical maximal
fitness of one would be reached if all nodes have a state
matching the observed activity state of the corresponding protein.
As can be seen in Figure 2B, the population average fitness of each
generation increases exponentially before plateauing at a fitness
close to the theoretical maximal fitness, per Holland’s Schema
Theorem (Holland, 1992), indicating that the theoretical models
can be parameterized so as to be compliant with experimentally
observed signaling states. While a genetic algorithm cannot
guarantee a global optimum, our results clearly indicate that we
quickly achieve convergence to a local optimum.

Whereas these model ensembles provide the testing ground for
the in silico drug effect simulations, it is to be expected that certain
motifs of the network topology itself will create “blind spots” causing
some synergies to escape prediction. For example, if two directly
sequential signaling nodes are targeted by two different drugs, while
no other influences from other signaling entities are allowed by the
topology, then these two drugs cannot be predicted to act
synergistically in our logical modeling framework. To remedy
such situations, extensions to the prior knowledge network are
necessary, or conversion to non-discrete modeling. On the other
hand, if two drug targets are active and are the only (activating)
source nodes of a joint downstream target node, with their joint
effect on the target governed by an OR logic operator, this may
constitute a synergy that is highly likely to stand out in an analysis,
since the OR operator would cause either drug alone to not affect a
joint downstream node. Between these two extremes, the topology
will have varying ability to produce a particular synergy prediction
for a given combination perturbation. In order to correct for
topology-intrinsic propensities for predicting some synergies we
next employed a normalization strategy where synergy predictions
for an automatically parameterized model ensemble are normalized
to a randomly parameterized model, meaning amodel ensemble that
covers many different selections of OR and AND operators,
irrespective of any particular stable state. This means that in our
further analyses we used the fold change of the predicted synergy
score of a test model against a randomly, yet proliferative,
parameterized model (see Methods).

FIGURE 2 (Continued)
Calibrated predictions were generated by model ensembles, trained to steady state data, and normalized to the random model predictions (see
Methods for more details). The genetic algorithm modified the balance of influence between positive and negative regulators of a target node, while
topology features (edges, nodes) were not modified. Both ROC and PR curves show very good performance across all model sets for the calibrated
models, similar to results from Flobak et al. (2015). Comparison of AUC performance between “Calibrated” and “Random” model predictions using
10,000 bootstrap resamples, revealed no statistically significant difference for ROC (p-value = 0.173) but slightly significant difference for the PR
performance (p-value = 0.014).
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We first tested our software pipeline by considering predictions
frommodel ensembles for simulating the 21 drug combinations that
were analyzed previously (Flobak et al., 2015). Synergies were
defined as a predicted “growth” output for two drugs together
being lower than the product of each individual drug’s “growth,”

analogous to the Bliss synergy metric (Bliss, 1939) used in cell
culture lab experiments (see Methods). Among 21 drug pairs,
15 were predicted to act synergistically by this definition,
exhibiting a range of synergy strengths, and quantified
performance of these models was surprisingly high: by selecting
different thresholds for synergy predictions a receiver-operating
characteristic (ROC) curve (sensitivity vs. 1-specificity) shows a
ROC area-under-curve (AUC) of 0.97 and a precision-recall (PR)
AUC of 0.91, see Figure 2C. The analysis shows that the top six
predictions comprise all four experimentally validated synergies.
Notably, the automatically parameterized models produced no false
negatives. This effectively means that we could in principle have
reduced our full drug screen to only test 29% percent of the
combinations (6 out of 21), had we guided our experiments by
model simulations, which is comparable to the performance in our
manually parameterized model (Flobak et al., 2015).

Automated model optimization as a solution
for larger model topologies

The benefits of automatic parameterization becomemore apparent
in calibration of models with larger topologies. We demonstrate this
with the CASCADE 2.0 model, which is a manually curated cancer
signaling topology comprising 144 nodes and 367 edges. CASCADE
2.0 includes pathways with TGF-beta, JAK-STAT, and Rho GTPases,
as well as extensions of pathways already present in CASCADE 1.0, to
enable simulation of a larger set of drug combinations (Niederdorfer
et al., 2020). Starting with this large curated model, we analyzed in
more detail the effects of automated model training while randomly
mutating logical rule configurations and network connectivity, and
assessed the results against the biological regulatory mechanisms that
were affected. We varied three aspects in the training protocol, each

FIGURE 3
Model performance. Predictive performance of calibrated and randommodels based on the CASCADE 2.0 topology was tested against data from a
corresponding drug screen (Flobak et al., 2019). Calibrated predictions were generated bymodel ensembles, trained to steady state data, and normalized
to the random model predictions. Randommodel predictions were generated by collecting predictions from ensembles of models trained to a random
yet proliferative phenotype. Models have logical rulemutations only and Bliss Independencewas used to assess themodel performance. The dashed
diagonal (A) and horizontal (B) lines represent the performance of a random drug synergy classifier. We observe that correctly calibrated models perform
substantially better than randommodels as indicated by a p-value of 0.007 for testing the null hypothesis of no difference in ROC AUCs, and a p-value of
0.18 for the PR AUC (based on 10000 bootstrap resamples).

FIGURE 4
PR AUC performance dependence on fitness. Each model
ensemble, displayed as one dot in the scatterplot, was trained to a
partially incorrect steady state signaling profile derived from the
biological phenotype of the AGS cell line (Flobak et al., 2015). A
total of 205 training profiles were created, each one used to generate
one model ensemble consisting of 60 models. The x-axis reports the
average fitness of each model ensemble as evaluated to the curated
steady state. The colorbar reports the percentage of steady state
nodes whose binary value was flipped to train each model ensemble.
Because of the non-normality of the data, the Kendall rank-based
correlation (Kendall, 1948) test is used to derive the proposed
association.
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time assessing the effect on the performance of the models for correct
synergy prediction:

- Optimizing logical rules against partially incorrect
calibration data

- Optimizing the regulatory network by stepwise, random
removal/inclusion of edges

- Checking the effect of random rewiring of the regulatory
network

For each of these model alteration strategies, we not only looked
for overall fitness but also in more detail at the represented biological
mechanisms that were affected, to judge whether improved or
reduced simulation performance could be reconciled with
involvement of proteins of regulatory interactions in the context
of cancer. The hypothesis was that, while taking the overall value of
curated prior knowledge as a given, the relevance of individual
regulatory interactions and the precise mathematical representation

of their regulatory effects in specific cancer environments might be
difficult to infer from papers and therefore could be algorithmically
improved. The effects of the network connectivity and rule
mutations were judged in model ensembles and compared with
observed synergies. For each model able to reach a stable state,
mutations introduced to logic equations could also be reviewed to
assess mutual dependencies between edges (or subsets of edges) and
corresponding rules. This allowed us to identify parameters and
edges that appeared to be essentially fixed and thereby of
fundamental importance for model performance.

We compared simulation results from automatically trained
ensembles of 450 models to drug synergies in a new drug screen
of the AGS cancer cell line comprising 153 combinations of
18 targeted drugs (Flobak et al., 2019). Model training was
performed as described in Methods - Model calibration by
parameterisation optimization. We found that, in contrast to the
CASCADE 1.0 predictions, normalization of topology-intrinsic
prediction propensities was critical to the predictive performance

FIGURE 5
Effects of variations introduced in the CASCADE 2.0 prior knowledge graph. Panel (A) shows the effect of reassigning source nodes in causal
interactions, Panel (B) shows the effect of randomly reassigning target nodes in causal interactions, Panel (C) shows the effect of randomly inverting
activation/inhibition annotation, and Panel (D) shows the result for all types of modifications introduced simultaneously. Each box plot shows a graded
response for the predictive performance from complete modifications (left) to less substantial modifications (right). Each dot represents a different
model ensemble generated from the associated topology, calibrated to the AGS steady state, and normalized to a random yet proliferative profile. The
“Curated” group refers tomodel ensembles bootstrapped from a pool of models generated using our optimization algorithm from the original CASCADE
2.0 topology. See Supplementary Material Supplementary Figure S4 for a similar analysis with precision-recall as performancemetric, and Supplementary
Figures S5, S6 for the same analysis done on the CASCADE 1.0 topology.
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(see Supplementary Figures S1, S2 and Methods - Normalization).
We find that models obtained by automated optimization, as
described above, could predict drug synergies with a ROC AUC
of 0.69 and a PR AUC of 0.18, clearly outperforming random model
predictions (see Figure 3). This means that our drug screen could
have been reduced from blindly testing all 153 combinations to only
the screening of 35 combinations, which would increase the synergy
prevalence of tested combinations from 4% (6 of 153) to 11% (4 of
35). We would dismiss 117 drug combinations but at the expense of
missing two observed synergies.

Topology and calibration data needs to be
correct

From here on we focus on the CASCADE 2.0 topology, for
additional analyses see Supplementary Material, which has similar

experiments with the CASCADE 1.0 topology, underpinning
conclusions analogous to those drawn here.

Impact of data quality on model performance
Since our models are derived from prior knowledge and

calibrated based on sample-specific measurements (calibration
data), modifications to both the prior knowledge and data must
be expected to affect the predictive performance of the models. We
first checked how the quality of the calibration data affected model
predictions. The performance of models trained to partially
incorrect calibration data was expressed as PR AUC and, when
plotted against the fitness of these models against the fully correct
calibration data, we observe that higher PR AUC correlates with
higher fitness of models, indicating that calibration of models indeed
improved synergy predictions for our dataset (see Figure 4).
However, even models trained to highly incorrect data, with
roughly 50% of calibration data flipped (meaning a true fitness

FIGURE 6
Combined stable states and parameterization heatmaps. A total of 4500 Boolean models were used for this analysis. Only the CASCADE 2.0 target
nodes that have a link-operator in their respective Boolean equation are shown. The 52 link-operator nodes have been assigned to 3 clusters with
K-means using the stable states matrix data. The link-operator data heatmap has the same row order as the stable states heatmap. Steady state data
(Calibration, where possible activity states are inhibited (red) and active (green)), COSMIC classification of tumor suppressor genes (TSG) and
oncogenes, pathway association (Pathway), annotation of nodes which were used as drug targets in the model simulation (Drug Targets, denoted by
purple bars), in-degree connectivity (Target connectivity), out-degree connectivity (Source connectivity) and percent agreement between
parameterization and stable state annotations (Agreement) are indicated below the heatmaps.
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around 0.5), perform better than a random classifier (PR AUC 0.04),
indicating that model topology alone already carries information
that can be leveraged to predict drug synergies. Note that due to the
stochasticity of model calibration, the model ensemble average
fitness never reached the extreme fitnesses below ~0.3.

Randomizing regulatory edges of the curated
model reduces predictiveness

As the quality of the calibration data does impact model
performance, but not obviate it even if these data are highly
incorrect, we next explored the value of the quality of the curated
regulatory graph topology. We generated a series of models with
various degrees of “scrambled” topologies with modified causal
interactions in the regulatory graph (of the type: source - effect -
target), by randomly exchanging a particular “source” in a causal
interaction with the source of another interaction and investigated the

performance of models with these incorrect regulatory interactions.
Similarly, we investigated the impact of randomly reassigning target
nodes, as well as the impact of inverting signed effects, i.e., from
inhibition to activation, and vice versa. Note that we will later explore
the effect of missing prior knowledge (simple deletions), while here we
present results for incorrect prior knowledge. The results (Figure 5)
show that even low levels of randomization in the curated knowledge
significantly reduce the predictive power of the models, quickly
approaching random performance. Overall, we conclude that both
calibration data and prior knowledge quality are important to
correctly predict drug synergies, and that errors can be detrimental.

Model ensemble heterogeneity and mechanistic
insight

To appreciate the heterogeneity amongst models in model
ensembles obtained through the parameter optimization, we studied
both attractor and parameterization heterogeneity against model
fitness, in subsets of these ensembles selected for specific features
(model sub-ensembles). In the heatmap grouped by K-means
clustering (Figure 6), calibrated models to a relatively large extent
obey the calibration data, with states of steady state nodes mostly
identical to the data to which they were trained (the subset of nodes
(24 of 144) that were specified in the calibration data). Model stable
state vectors (rows in Figure 6) have notable areas of homogeneity, as
judged by large stretches of nodes (indicated on the X-axis) that are
either all activated (green) or inhibited (red) in all models, but in other
areas (e.g., the upper-middle panel of the heatmap) the heterogeneity
and discrepancies with calibration data is quite substantial. This
heterogeneity was much more widespread in the parameterization
space. For some nodes there is high correlation between their
parameterization (link operator AND-NOT vs. OR-NOT) and
stable state (Inactive or Active, respectively), but for many the
correlation is surprisingly low (see Agreement panel in Figure 6).
These observations indicate that a) a limited set of training nodes was
sufficient to provide homogeneity in parts of the attractor space, and b)
large heterogeneity in the parameterization space still can be compliant
with homogeneity in the attractor space (see in particular the large
green (active) area of the stable-state heatmap). In other words: there
are many logical rule configurations that yield models properly

FIGURE 7
Box-plot of stable state protein activities. The stable statemodels
yield activity values for all proteins and these activities are displayed for
oncogene and tumor suppressor gene proteins. Proteins from
oncogenes (left) tend to be designated as active, while proteins
from tumor suppressor genes (TSG, right) tend to be designated
inactive.

FIGURE 8
Comparison of predictive performance of model sub-ensembles. The model set with ERK active scores better than the models with ERK inactive,
both for ROC (A) and PR (B).
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representing biological observations compliant with calibration data.
This underpins the decision to use model ensembles rather than single
models, since these ensembles cover a larger set of parameterizations
(behavior) that are all compliant with the input data.

The analysis of node states and parameterization allows us to
investigate mechanisms underlying observed behavior and to look for
biological explanations for some of the observations. As shown in
Figure 6, indicated by panel “COSMIC,” the models allow the
prediction of activity of several proteins implicated in cancer.
Figure 7 shows the analysis of their activity state, and it appears
that proteins from genes annotated as oncogenes in COSMIC tend to
be active, while proteins from genes annotated as tumor suppressor
genes (TSG) tend to be inactive, in overall steady states. This is
biologically plausible and attests to the capability of our mechanistic
model to generate hypotheses about the underlyingmolecular biology.

The training of the models to biomarker data never results in the
absolute maximum fitness (1), and the stable state analysis (Figure 6)
shows that three data points are most often violated: JNK signaling
(JNK_f), ERK signaling (ERK_f) and p38 signaling (MAPK14), all
members of the MAPK pathway (see Figure 6, stable state panel,
black rectangles). These network nodes are all clustered in the highly
heterogeneous section in the steady state heatmap. In the manual
curation of the CASCADE 1.0 topology (Flobak et al., 2015) it was
noted that reports on the activity of ERK in AGS cells varied
frequently, with only slightly more than half of the publications
reporting ERK to be active. We found that the predictive
performance of model versions with ERK being active was
significantly higher than the sub-ensemble where ERK is inactive
(see Figure 8), suggesting that from a functional point of view ERK
should be considered active in AGS cells.

Rule and edge optimization identifies key
regulatory mechanisms

Traditionally, logical model definitions start out with a prior
knowledge graph, after which a most optimal parameterization is

sought based on experimental evidence and model behavior. We
asked which was most influential to accurately predict synergies:
alterations to the topology or to the parameterization, in the
evolution to maximum fitness. We configured the genetic
algorithm to modify edges in the topology (see Methods -
Model calibration by topology optimization), by either
removing or subsequently restoring edges from the initial prior
knowledge network (as long as no signaling component lost all its
source inputs), or to modify the parameterization of logical rules
(see Methods—Model calibration by parameterisation
optimization). We found that modifications of the edges and
the parameterization both resulted in substantially improved
prediction performance, significantly better than a random
classifier. In particular, the performance (as evaluated by
precision-recall) was very high for topology-mutated models,
even outperforming models trained by parameterization
optimization. While ROC AUC was consistently high, around
0.8 (Supplementary Figure S7), the PR curve showed clear
dependency by displaying very high positive predictive values
at very conservative sensitivity thresholds, meaning that a
predicted drug synergy is highly likely to represent an actual
synergy, see Figure 9. Note that there is a major difference between
missing data and incorrect data: as was previously demonstrated
(Figure 5), model predictive performance suffered severely from
including incorrect prior knowledge, while model predictive
performance can improve by omitting putatively correct prior
knowledge.

Looking at the topology modifications, we hypothesized that
deletion of certain edges could be favored by the genetic algorithm,
to obtain maximum fitness. Every node in CASCADE 2.0 is
annotated to a specific pathway (Niederdorfer et al., 2020),
allowing us to assign all edges to a specific pathway, if both
source and target node belong to the same pathway, or to
crosstalk for edges that link nodes from different pathways, see
Figure 10. We observed that certain edge groups are always
preserved (the left-most cluster), while other edges are very likely
to be removed (cluster on the right). Interestingly, a majority of these
removed edges belong to the TGF-beta pathway, in particular
representing inhibitory effects of the protein SKI and other
inhibitors of SMADs. In the model, SKI itself is inhibited by
active AKT signaling, and thus removal of inhibitory edges from
SKI allows restricting the activity of some of the SMAD proteins in
the model, in particular to SMAD1, SMAD3 and SMAD4, which
tend to be inactivated in the topology mutated models. It is evident
from Figure 10 that crosstalk is largely preserved during model
optimization, potentially relating not only to sparse knowledge of
crosstalk in the prior knowledge network, but also to the biological
importance of signaling that is not confined to what was more or less
arbitrarily viewed as pathways.

Validation of synergy predictions in vivo

In order to test the translational relevance of our drug synergy
prediction platform we performed in vivo validation for one of the
proposed novel drug synergies. The synergies of TAK1 inhibition
combined with PI3K inhibition, already identified in our previous
logical modeling work, had not been reported earlier and thus

FIGURE 9
Model performance after parameter and topology modifications.
Mutating parameterization (left) and topology (right) both tend to
improve synergy prediction performance, as evaluated by precision-
recall AUC. Models with topology modifications perform better
than models with parameterization modifications.
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represent novel synergies of potential interest in future cancer
therapy. The robustness of this synergy is evident as we detect
the same synergy of combined TAK1 and PI3K inhibition in our
framework that integrates automated model parameterization.

In order to test reproducibility across different high throughput
drug screen readouts we subjected AGS cancer cells to combined
TAK1 and PI3K inhibition and monitored the response both by
ATP content measurement (viability) and by microscopy

(confluence), see Figure 11. For both readouts there is a region of
synergistic response to drugs applied at medium doses as indicated by
the drug concentration gradients. We subcutaneously injected AGS
gastric adenocarcinoma xenograft tumors in Balb/c mice to test the
synergy of combined inhibition of TAK1 (5Z-7-oxozeaenol) and PI3K
(PI103) in vivo. The xenograft tumors (n = 30) were randomized to
four groups: control, PI103, (5Z)-7-oxozeaenol and a combination
group which received both PI103 and (5Z)-7- oxozeaenol, see

FIGURE 10
Heatmap of steady state models with topology mutations. Each column represents an interaction (with a source and target node), each row
represents one model, all rows jointly represent the ensemble. Annotations for the interactions include the biological pathway (Pathway), whether the
source, target, none or both nodes are drug targets in themodel simulations (Drug Target), the number of edges directed towards the target node (Target
In-degree) and the number of edges that originate from the source node (Source Out-degree). Five clusters, guided by K-means clustering, stand
out: the first cluster from the left represents edges that cannot be removed because nodes would lose regulations. The second cluster from left
represents nodes that are likely to be preserved, themiddle cluster represents edges that are often preserved, the fourth cluster from left represents edges
that are often discarded, and the last cluster, right, represents edges that are almost always discarded in the evolution to maximum fitness.

FIGURE 11
Synergy of the drugs targeting TAK1 (5Z) and PI3K (PI) confirmed in viability (A) and confluency (B) screens.
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Figure 12A. At the end of the experiment the combination group
displayed significant changes (Wilcoxon rank-sum test) in relative
tumor size compared to either single-treatment group (Figures 12B,
C).We observed a similar reduced proliferative capacity for tumors in
mice treated jointly with TAK1 and PI3K inhibitors, as indicated by
tumor proliferation marker Ki67 (Figure 12D). The clear difference
between the significant tumor growth inhibitory effect of the
combination and the non-significant activity of individual agents
strongly indicates a synergistic anti-tumor effect of the two agents.
A concern for drug synergies is that possible side-effects might also
be expressed in synergistic ways. We therefore chose doses to be at
the lower end of effective concentrations, compared to previously
published in vivo use of the inhibitors (Donev et al., 2011;
Bhattacharya et al., 2012; Singh et al., 2012; Fan et al., 2013).
Despite low dosage the inhibitors together reduced tumor growth,
without signs of pain or weight loss.

Discussion

Our results show that a curated prior knowledge network with
an initial set of logical rules can be automatically parameterized by a

genetic algorithm, using a fitness score reflecting how well the global
stable state of a model matches the experimentally determined local
states of signaling components of a cell line in its native growing
state. We showed that the predictive performance from an
automatically parameterized ensemble of models was on par with
our original, curated CASCADE 1.0 model. We next used our
parameterization software to calibrate the larger CASCADE
2.0 network topology. With larger topologies, benefits of
automation become more apparent, and can be used to enable
simulation for larger numbers of drugs and numbers of cell lines.

Finding drug synergies among the vast set of possible
combinations of drugs calls for new approaches. To rationally
reduce the prohibitively large experimental search space, we
found that our approach can be highly useful to identify sets of
drugs that are unlikely to display synergy and that could be omitted
from testing. Even tackling the combinatorial complexity for
standardized cancer models is already challenging, as exemplified
by the AZ-DREAM Challenge (Menden et al., 2019), where pairwise
combinations of 118 drugs (6903 possible drug-drug combinations)
are tested against a panel of 85 cell lines. If all combinations are
screened in 6 × 6 matrices this corresponds to over 200,000 384-well
plates for four technical replicates, clearly indicating that a trial-and-

FIGURE 12
(Continued).
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error approach is not economic for drug synergy discovery. Whereas
most approaches for drug synergy predictions rely on perturbation
data for training a classifier (Yang et al., 2015; Preuer et al., 2017;
Fröhlich et al., 2018; Ianevski et al., 2019; Tognetti et al., 2021), our

approach works well with calibration data obtained from an
unperturbed system, which greatly reduces the cost of data
acquisition and opens possibilities for clinical applications in
which such data is less easily available.

FIGURE 12
(Continued). (A) Xenograft experimental design. Cancer cells were injected subcutaneously in mice and allowed to grow until a visible tumor could
be identified, after which the mice were randomized into four groups. Mice were then treated with single drugs and the combination for 19 days after
which the experiment was stopped and tumor sizes evaluated. (B) Testing of drug synergy in amouse xenograft model. Tumor volumes determined at the
end of the study were compared with tumor volumes at treatment onset. Tumors inmice receiving both inhibitors 5Z-7-oxozeaenol 3 mg/kg/d (5Z)
and PI103 5 mg/kg/d (PI) show a smaller increase in size compared to either of the groups receiving only single inhibitors, and the control group. The
combination effect was statistically significantly different from either single drug therapy as evaluated by Mann-Whitney U tests with corresponding
p-values shown above the boxplots. Similar results were obtained using t-tests with a chosen significance level of p = 0.05. (C) Average tumor volume for
the four groups of mice with standard error of the mean (SEM) indicated by the error bars. The group receiving both inhibitors (5Z + PI) displays a more
inhibited tumor growth than either of the groups receiving each single inhibitor and the control group. (D) Ki67 proliferation index (count of Ki67 positive
cells) reduced upon joint combination of TAK1 and PI3K inhibition.
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Assessing the performance of drug synergy predictions is met
with several challenges. First, targeted drugs, as those employed
here (‘small molecule’ inhibitors), can affect a number of other
targets in addition to their intended target, known as ‘off-target’
effects (Klaeger et al., 2017). Since our simulation is based on
canonical drug targets annotated for each drug, any information
missing about off-target effects must be expected to impact
simulations. In addition, drug synergy is an elusive concept
itself, with different mathematical reference models producing
different synergy scores (Vlot et al., 2019). Finally, high
throughput drug screens, as employed here, typically reports drug
responses based on measured residual ATP content after drug
exposure, which is known not to capture all growth-reducing drug
responses (Gautam et al., 2016; Bae et al., 2020; Folkesson et al., 2020).
Despite these limitations, which must be expected to reduce the
performance of any drug synergy prediction approach, our logical
simulation-based in silico pre-selection approach performs immensely
better than a blinded screen that would assay the same numbers of
candidates: at a sensitivity of 50%, roughly 35%-40% of a pre-selected
set of predicted synergies will be observed in follow-up drug synergy
experiments in a drug screen, where only 4% of drug combinations
acted synergistically overall.

Our choice of a logical framework for computational
simulations comes both with some benefits and limitations.
Logic equations are very quick to evaluate, with high
simulation speed enabling extensive simulations even on
regular desktop computers. However, logic equations as
employed here only allow two activity states for model
components: active and inactive, and the inference of these
activity states from measurements of e.g., RNA expression or
DNA mutations is not trivial, and typically involves manual
interpretation (Niederdorfer et al., 2020). Moreover, only two
interaction strengths between components are allowed: full
interaction or no interaction. These limitations still to a large
extent meet the demands and possibilities offered by experiments
with present day laboratory techniques. Our implementation of
logical model simulations only computes stable states, thereby
discarding potential complex attractors of models that would
require asynchronous simulation for full characterization. Palli
et al. chose to characterize model behavior by synchronous
updating, which can allow identification of some complex
attractors, but at the risk of identifying also artificial attractors
(Palli et al., 2019). Our choice of focusing on stable states was
motivated by considering the computational efficiency, as
computation of complex attractors in addition to stable states
would severely tax our simulations. One possible avenue for future
research will be to account for also complex attractors, either by
approximations as offered by e.g., trap space analysis, or by a full
characterization of model behavior. Other solutions could include
sampling stochastically a part of the model behavior space, as
done by Béal et al. (2019) for personalization of logical models by
the implementation of Monte-Carlo kinetic algorithms, also
allowing to infer network transition probabilities. Park et al.
(2020) computed the behavior of models during one
simulation consisting of multiple time steps. Here, partial node
inhibition was approximated by setting the drug target node
inactive in a fraction of simulation steps corresponding to the
fraction of target inhibition.

We observed that our approach is somewhat sensitive to errors
in the calibration data, and even more sensitive to errors in the prior
knowledge, indicating that curation quality is paramount to our
modeling approach. This demands for adequate causal statement
curation protocols and standards that feed into high quality general
and cancer signaling databases, a demand that is materializing (Tü
et al., 2016; Cristobal Monraz Gomez et al., 2019; Licata et al., 2020;
Touré et al., 2020; Touré et al., 2021).

Interestingly, we found that deleting a small fraction of the
regulatory links from the prior knowledge network can be very
powerful in optimizing models for drug synergy predictions,
whereas randomly rearranging regulatory links is very
detrimental to model performance. Logical model construction
can be performed by curating data resources or the literature, or
by relying on high quality curated databases like Signor (Licata
et al., 2020), SignaLink (Csabai et al., 2022) or IntAct (Orchard
et al., 2014). If quality of these resources, or the ad hoc curation of
literature, would not be of high standard, this would significantly
limit the performance of the resulting model. On the other hand,
calling a prior knowledge network complete is essentially a
judgment call, as all models are limited. This demonstrates
that, while lacking in completeness, high quality curation can
produce models that can predict drug synergies. Furthermore,
whereas the inclusion of a regulatory link ideally needs evidence
from observations about the functional relevance of such a link in
the cell that is modeled, our observations about ERK activity
highlight the variability of experimental data concerning such
observations. It is therefore not unreasonable to accept that an
optimization algorithm can choose to dismiss regulatory links for
the benefit of improved model performance. The increasing
availability of high quality curated molecular causal interaction
data opens a perspective toward fully automated model building,
where algorithmic topology optimization can fine tune a model to
perform adequately, for any target node requirements and cell
type for which baseline biomarker data is available. A welcome
feature of automatically parameterized logical models is their
innate ability to suggest mechanisms underpinning a particular
observation. Such model-driven hypotheses can lay foundations
for targeted follow-up experiments that provide observations for
directed model revisions, resulting in a model with higher
validity.

It has been suggested that network topology alone already
explains drug synergy (Cokol et al., 2011; Jaeger et al., 2017), and
that parameterization to a lesser extent defines or refines synergy
predictions (Yin et al., 2014). Experimentally it has been observed
that drug synergies tend to vary between cell lines, with the most
frequently observed synergistic drug pair only effective in about half
of the cell lines analyzed (Axelrod et al., 2013; Amzallag et al., 2019).
In our analysis we observed that drug synergy predictions depend
both on the specific parameterization of a given topology and on the
topology itself. When we put our manually defined topology to the
test, drug synergy predictions are more accurate for models
optimized to represent cell-specific baseline biomarkers in their
local states, compared to unconstrained local states. One may
speculate that the interactions relevant to describe drug
combination effects represent a subset of all potential (general)
interactions, and that this subset varies from cell line to cell line.
From a completeness perspective, given the limited knowledge of
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molecular biology today, any model representation will be a major
simplification of reality, yet some of these models work.

Summary

Boolean models representing cell fate signaling can be used to
predict drug combination responses. However, identifying exact
logical operators for computer models that are based on prior
knowledge can be challenging. We here present a computational
pipeline that can automatically configure ensembles of Boolean
models compliant with prior knowledge and observed baseline
activity data.

We find that algorithmic-guided deletion of regulatory edges
leads to increased predictive performance, while incorrect prior
knowledge can drastically decrease it. Moreover, with correct prior
knowledge, our models show tolerance to incorrect activity data.
Overall, our simulations demonstrate that prior topological
knowledge is the most important factor for the construction of
accurate predictive models capable of providing mechanistic
biological insights.

We benchmark our software pipeline against a dataset reporting
on responses to 153 drug combinations, showing that we can
effectively enrich the prevalence of synergies from 4% in an un-
guided drug screen to 11% in a set of model-guided predicted
synergies. Considering the many limiting factors that hamper the
development of effective rational combinatorial cancer therapies,
including the lack of prior knowledge, incorrect activity assessments,
drug target promiscuity, and the absence of consensus for drug
synergy quantification, our pipeline can contribute to the
improvement of personalized cancer treatment.
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