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Introduction: Chemical reaction networks (CRNs) are powerful tools for
describing the complex nature of cancer’s onset, progression, and therapy. The
main reason for their effectiveness is in the fact that these networks can be rather
naturally encoded as a dynamical system whose asymptotic solution mimics the
proteins' concentration profile at equilibrium.

Methods and Results: This paper relies on a complex CRN previously designed for
modeling colorectal cells in their G1-S transition phase and presents a
mathematical method to investigate global and local effects triggered on the
network by partial and complete mutations occurring mainly in its mitogen-
activated protein kinase (MAPK) pathway. Further, this same approach allowed
the in-silico modeling and dosage of a multi-target therapeutic intervention that
utilizes MAPK as its molecular target.

Discussion: Overall the results shown in this paper demonstrate how the
proposed approach can be exploited as a tool for the in-silico comparison and
evaluation of different targeted therapies. Future effort will be devoted to refine
the model so to incorporate more biologically sound partial mutations and drug
combinations.
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1 Introduction

For many years, the primary sources of anti-cancer intervention just consisted in
chemiotherapy, where specific drugs are used to kill cancer cells, and surgery. However,
surgery is not always feasible, while the broad-spectrum of chemioterapy drugs, which attack
indiscriminately cancer and fast-growing healthy cells, often results in high toxicity
(Lowenthal and Eaton, 1996). To overcome this low specificity of chemiotherapy, novel
biology-based approaches have been introduced in routine cancer therapies. In particular,
following the advances of human genome sequencing, in the last 20 years an increasing
number of molecular targeted drugs have been introduced. This kind of therapeutic
intervention aims at slowing down cancer progression and metastasis by targeting
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specific molecules somehow involved in the genetic alterations that
underlie cancer onset (Lee et al., 2018; Bedard et al., 2020; Zhong
et al., 2021). Additionally, synergies of multiple targeted drugs
combined in a single therapy have been investigated to reduce
resistance to single-agent therapies (Jin et al., 2023). Identifying
novel molecular targets and optimizing dosage and combination of
the corresponding drugs remains a challenging problem, where the
number of possible therapies to be tested vastly exceeds clinical
resources, in terms of both financial and time resources. In this
scenario, systems biology models could play a crucial role in
identifying the most promising candidates for clinical trials and
in elucidating the molecular mechanisms underlying targeted drugs
synergies (Chen et al., 2015; Rocca and Kholodenko, 2021).

At a worldwide level, colorectal cancer (CRC) is the third most
frequent cancer in male population and the second one among
women (Biller and Schrag, 2021; Sung et al., 2021; Xi and Xu, 2021).
Screening programs have contributed in reducing the incidence of
later-onset cases while an alarming increase in early-onset cases and
in corresponding CRC-related mortality among younger people
have been observed (Saad El Din et al., 2020; Sinicrope, 2022;
Wu and Lui, 2022). At a molecular level CRCs are highly
heterogeneous pathologies with differences across age groups. It
has been estimated that five to ten tumor-specific driver mutations
usually concur in individual cancers and that the most frequent
alterations in CRC pertain to TP53, APC, KRAS, PTEN, SMAD4,
PIK3CA, BRAF, and AKT (Tortolina et al., 2015; Tariq and Ghias,
2016; Anderson et al., 2019). Among these genes, KRAS, APC,
SMAD4, and TP53 belong to four different pathways, namely
MAPK, WNT, TGFβ, and TP53, each one acting at a different
functional stage of cell development, ranging from stem cell renewal
to cell growth, division and apoptosis (Armaghany et al., 2012). The
first targeted therapies for CRCs, namely cetuximab (Jonker et al.,
2007), which inhibits the epidermal growth factor receptor (EGFR),
and bevacizumab (Los et al., 2007; Rosen et al., 2017), against the
vascular endothelial growth factor A (VEGF-A), were approved by
the Food and Drug Administration (FDA) in 2004. Since then,
various pathways have been proved to offer ideal sites for targeted
therapies, and an increasing number of novel agents have been
developed (for a comprehensive review we refer to Tiwari et al.
(2018); Xie et al. (2020), and references therein). However, to date
only a few CRC-related pathways have been successfully inferred
due to the complex signaling network that makes it hard to
completely inhibit specific biological interactions. As a
consequence, many proposed therapies have not passed the
preclinical status or the phase I trial, highlighting the need for
systems biology models capable of guiding the choice of which drugs
to test so as to avoid waste of resources.

It is clear that a mathematical model aiming at capturing the
complex nature of CRC onset, progression, and therapy cannot
consider altered and targeted proteins and corresponding
pathways in isolation but must integrate them within proper
chemical reaction networks (CRNs) (Tortolina et al., 2015). An
extensive CRN for CRC has been recently introduced for
modelling signal transduction during the G1-S transition
phase in colorectal cells (Tortolina et al., 2015; Castagnino
et al., 2016). Such a CRN, henceforth denoted as CR-CRN,
comprises 10 different pathways, including all four previously
mentioned ones, for a total of 419 proteins interacting in

850 chemical reactions. Following standard mathematical
procedures based on the law of mass action (Feinberg, 1987;
Chellaboina et al., 2009; Yu and Craciun, 2018), the CR-CRN has
been mapped into a system of 419 autonomous ordinary
differential equations (ODEs) whose solutions describe the
behaviour of protein concentrations, which evolve in time
until the network reaches an equilibrium (Ingalls, 2013;
Sommariva et al., 2021a). It has been conjectured that the CR-
CRN satisfies the so called global stability condition (Sommariva
et al., 2021a), meaning that a globally asymptotically stable state
exists (that is also an equilibrium of the system) once fixed the
initial values of the protein concentrations or, more precisely,
once fixed the total moiety within the conservation laws of the
dynamical system (Shinar et al., 2009; De Martino et al., 2014). By
exploiting these properties, Sommariva et al. (2021a) proposed a
formal mathematical model to incorporate in the system various,
possibly concurrent genetic alterations resulting in a loss or gain
of function (L/GoF) of some of the proteins in the network. From
a mathematical viewpoint both LoF and GoF mutations are
modelled as projection operators acting on the initial
concentrations and the stoichiometric matrix of the system,
respectively, while the function composition of these operators
mimics the action of multiple concurrent mutations.

A rich plethora of information can be derived from the analysis
of the solutions of the dynamical systems associated to the original
CR-CRN and to its mutated forms. For example, feedback effects
naturally emerge by comparing the time-courses of the individual
protein concentrations or by studying the corresponding time-
varying reaction fluxes (Sommariva et al., 2021b). More
importantly, local and global effects induced on the network by
LoF and GoF mutations can be quantified by computing the relative
difference between the protein concentrations at the equilibrium
point of the original CR-CRN and that at the equilibrium of the
network obtained by applying the proper projection operator(s)
(Sommariva et al., 2021a). Additionally, analysis of the sensitivity of
protein concentrations at equilibrium with respect to the values of
the kinetic parameters of the dynamical model may help in
identifying the specific reaction or subnetwork mostly affected by
each genetic alteration (Biddau et al., 2023).

The proposed model has been used to simulate the functional
alterations induced on the CR-CRN by some of the mutations
more commonly found in CRC, including the GoF of genes PI3K,
KRAS, and BRAF, and the LoF of genes PTEN, AKT, and TGFβRII
(Sommariva et al., 2021a; Sommariva et al., 2021b; Biddau et al.,
2023), and a first attempt in modelling the action of Dabrafenib, a
drug targeting BRAF, has been performed by Sommariva et al.
(2021b). The obtained results have been extensively compared
with results previously published in literature. However, in all
those studies only mutations resulting in a complete LoF or in the
highest possible value of GoF of the corresponding protein have
been considered. In the present paper we applied the proposed
CR-CRN in two novel scenarios: (i) the simulation of global and
local effects of different genetic mutations resulting in different
levels of alteration of the functional activity of the corresponding
proteins; (ii) the in silico modelling and dosage of a multi-agent
targeted therapy. Toward this end, we focused on mutations
and drugs involving proteins directly or indirectly related
to the mitogen-activated protein kinase (MAPK), whose
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overexpression plays an important role in CRC-progression
(Fang and Richardson, 2005; Horst et al., 2012; Baharudin
et al., 2017; Stefani et al., 2021). More specifically, we
quantified the global effects induced on the whole CR-CRN
and the local effects induced on the molecules of MAPK by
the LoF of PTEN, various levels of GoF of KRAS, and their
combination. Finally we investigated the synergies between
Dabrafenib and Trametinib, a combination therapy that has
demonstrated good results both in terms of progression free
survival and response rate (Xie et al., 2020).

2 Materials and methods

The equilibrium concentration of the chemical species in both
physiological and diseased conditions is interpreted as an
asymptotically stable state of the dynamical system

_x t( ) � Sv x t( ), k( )
x 0( ) � x0,

{ (1)

which is obtained by applying the mass action kinetics to the
network represented in the molecular interaction map (see, for
example, Kohn, 1999; Pommier et al., 2004; Krogan et al., 2015;
Kondratova et al., 2018; Broyde et al., 2021). In Equation 1, x(t) �
(x1(t), . . . , xn(t))T is the vector whose components are the
concentrations of the n proteins contained in the network; k �
(k1, . . . , kr)T is the vector whose components are the rate constants
of the r chemical reactions; S is the stoichiometric matrix; v is the
vector of reaction fluxes; and x0 is the auxiliary initial condition.

The first objective of an analysis of the cancer signalling network
performed by means of the dynamical system (1) is the
characterization of the equilibrium states of the network as the
asymptotic behaviour of the solution x = x(t). The main conceptual
issue in this respect is that system (1) does not necessarily have a
unique equilibrium solution (Feinberg, 1987; Conradi and Flockerzi,
2012; Conradi and Mincheva, 2014; Yu and Craciun, 2018). In order
to identify formal assumptions that imply this uniqueness the
following process should be considered:

1. Given a solution x = x(t) of (1), a set of p semi-positive
conservation vectors satisfying p conservation laws can be
identified, which belongs to the kernel of the transpose of the
stoichiometric matrix S. The transposed forms of the
conservation vectors are used to generate the conservation
matrix N.

2. The conservation matrix is said weakly elemented if it contains at
least one square submatrix equal to the identity matrix of order p.
If this holds, the solution vector x and the conservation matrix N
can be re-ordered in such a way that the identity matrix acts on
the first p elements of the re-ordered solution vector.

3. IfN is weakly elemented, for each initial condition x0 it is possible
to construct p hyperplanes in Rn, each one defined by the
corresponding conservation law. The stoichiometric
compatibility class of x0 is the intersection of the hyperplanes.

4. As said, in general there is no guarantee that the asymptotic
solution of (1) is the same for any x0 ∈ Rn. However, it is possible
to formulate a conjecture stating that the asymptotic solution is
unique for all initial conditions belonging to the same

stoichiometric compatibility class. More precisely, a dynamical
system and the corresponding CRN are said to satisfy the global
stability condition if such conjecture holds true, i.e. if for every
stoichiometric compatibility class there exists a unique globally
asymptotically stable equilibrium solution xe.

In order to make a globally stable CRN supportive for the
construction of an in silico model of a colorectal cancer cell,
three computational issues should be addressed. First, the
dynamical system can be modified in order to implement the
presence of single DNA mutations and to compute their impact
on the resulting proteomic profile. For example, a LoF mutation,
which results in the reduction or even the cancellation of the
function of a specific protein, is implemented by projecting the
initial concentration values describing the physiological cell onto a
new initial state in which the concentrations of the mutated protein
and the corresponding compounds are set to zero. On the other
hand, a GoF mutation, which enhances the expression of a specific
protein, is implemented by setting equal to zero the rate constants
corresponding to reactions of de-activation for that protein
(Sommariva et al., 2021b).

The second issue is concerned with the numerical computation
of the (unique) asymptotic solution of (1). Of course, this can be
done by applying a numerical method for the solution of the
Ordinary Differential Equations (ODEs) contained in the
Cauchy’s problem. However, the dynamical computation of this
high-dimensional system is numerically demanding and can be
effectively replaced by numerical optimization. In fact, it can be
shown that the stationary solution of the Cauchy problem can be
determined by an algebraic system, which, in turn, is equivalent to a
non-linear root-finding problem. Therefore, in this second
approach, iterative schemes can be applied to directly compute
the equilibrium state, without the need to approximate the
solution of the Cauchy’s problem at each time point. In all
simulations presented here, the steady states of the considered
CRNs have been computed through a recently developed
algorithm called NLPC (non linearly projected combined)
method (Berra et al., 2022). NLPC is a constrained root-finding
method that combines the Newton approach and the gradient
descent direction so that convergence results can be analytically
proven. Furthermore, in a large set of simulations NLPC has shown
both higher accuracy and higher speed than the classical approach
based on the integration of the ODEs system.

Finally, it is important to observe that, on the one hand, system
(1) is made of a high number of equations, kinetic parameters, and
unknown concentrations; but, on the other hand, that just a smaller
subset of such equations is representative of chemical reactions that
are actually affected by the cancer somatic mutations. Sensitivity
analysis is the technical tool that allows the quantitative assessment
of the impact of the kinetic parameters’ uncertainty on the CRN
equilibrium state. In its local version, sensitivity analysis is an
indicator of the impact that a specific mutation has on the
expression of the corresponding protein, and, even more
importantly, it is able to identify the sub-networks that are
mostly affected by the mutation (Biddau et al., 2023).

Notation. Following the current HUGO Gene Nomenclature
Committee (HGNC) guidelines, in this paper we denote gene names
in italic, while we used non-italicised gene symbols for the
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corresponding proteins (Bruford et al., 2020). Some exceptions due
to different commonly used nomenclatures are proteins K-Ras1 and
B-Raf 2. Additionally, throughout the paper, expressions such as
GoF of KRAS (LoF of PTEN) denote a mutation of gene KRAS
(PTEN) resulting in the gain (loss) of function of the protein K-Ras
(PTEN) it encodes.

3 Results

The mathematical model described in Sommariva et al. (2021a)
has been applied by Sommariva et al. (2021b) to compute
modifications in the equilibrium concentrations of the CRC
network induced by mutations in a few genes that are rather
common in CRC cancerogenesis. In the present paper we
focused on a quantitative analysis of the impact of mutations in
KRAS, a widely expressed GTP/GDP-binding protein, whose
mutated version is found in more than 30% of CRCs.
Specifically, in this section we

• Computed the impact of complete and partial mutations of KRAS
on the global proteomic profile of the CRC network.

• Compared the modifications induced by themutated KRAS on the
equilibrium with respect to the ones induced by PTEN, a dual
protein/lipid phosphatase that triggers the PI3K/PTEN/AKT
signalling pathway.

• Investigated to what extent a mutated KRAS impacts on the
expression of specific proteins in MAPK.

• Studied both local and global effects of the combination of
mutations in KRAS and PTEN.

Then, in section 3.3, the MAPK pathway will be studied as a
molecular target for two inhibitors of B-Raf and MEK, respectively.

3.1 Global effects induced by mutations in
colorectal cancer

Mutations of KRAS are very common in CRC and belong to the
pathway of the main sequence K-Ras/B-Raf/MEK/ERK. In
particular, a GoF of KRAS is realized by a modification of the
stoichiometric matrix in (1), which, from a chemical viewpoint,
corresponds to removing from the CRN all reactions involved in the
de-activation of that protein. A complete list of these reactions can
be found in Supplementary Appendix S2. An analysis of global
effects of the GoF of KRAS on the proteomic profile of a colorectal
cancer cell has been studied by Sommariva et al. (2021b) via the
computation of

δi � ~xe
i − xe

i

xe
i

, (2)

where ~xe
i and xe

i are the mutated and the physiological
equilibrium, respectively. Since δi and the difference ~xe

i − xe
i

have the same sign, the concentration of the i − th protein in
the mutated network is either increased if δi > 0 or reduced if δi <
0. In particular, a value of δi equal to −1 means that the function
of the i − protein is completely stopped. In more general terms,
the value of δi quantifies the relative change of the protein
concentration, normalized by its value in the physiological
network, and thus enables identifying which proteins are more
sensitive to the considered mutation. Finally, it is worth noticing
that, when defining δi as in Equation 2, we exploited that at the
physiological equilibrium all the species in the CR-CRN have a
non null concentration. Different metrics should be introduced
in scenarios where some of the involved complexes tend to zero.

Using this same technique, here we studied the consequence of
partial GoF mutations of KRAS, i.e., of a common proportional
reduction of the values of the rates of those reactions that model the
inhibition of the active forms of K-Ras. Precisely, in the top panel of
Figure 1 the three profiles correspond to values of the rates set to 0%,
30%, and 60% of the corresponding physiological values, while the
second panel from the top shows how the whole network is affected
by a complete mutation of KRAS. In the third panel we compared
this latter profile with the one associated to another frequent
mutation in CRC, i.e., the LoF of PTEN, which belongs to the
distinct PI3K/PTEN/AKT pathway. Finally, in the bottom panel we
studied the effect of the combination of the two mutations on the
CRN global equilibrium. From a computational point of view, this
last simulation has been carried out by modifying the CR-CRN so as
to account for both mutations simultaneously and then by
computing the steady state of the obtained modified network.
Indeed, in a previous work (Sommariva et al., 2021a) we have
shown that this approach produces the same equilibrium point
that would have been obtained if we had included the two mutations
sequentially, regardless of their order. This is because our model
does not currently take into account e.g. selection mechanisms
induced by the external environment.

The results of Figure 1 show that the whole network is affected
by the mutations of KRAS, PTEN, and their combination; that, in
particular, significant changes in concentrationmay involve proteins
far from the mutated ones in the graph of the CRN; and that the
global equilibrium profile changes smoothly with respect to a
smooth variation of the reactions’ rate. Further, on the one hand,
the higher impact of the GoF of KRAS, which is visible by comparing
the second, third, and fourth panels, is possibly related to the fact
that this protein is upstream in the global network. On the other
hand, the same three panels seem to show that no intuitive
superposition principle applies to the profile associated to the
combination of mutations. This is probably a consequence of the
fact that the effects of the combination follow from the solution of a
combined non-linear problem with appropriate initial conditions.
Further, the profile of δi in panel (A) implies a growing difference
from the physiological equilibrium, as the values of the mutated
coefficients tend to zero, that is, as the mutation is intensified.

With reference to global results concerning the mutation of
KRAS, Table 1 shows the list of the 10 molecular species exhibiting
the highest variations between physiological and mutated
equilibrium values. With the only exception of CDC25C, all of
them belong to the mitogen-activated protein kinase (MAPK)
signalling pathway, consisting of the main sequence K-Ras/B-Raf/
MEK/ERK, while Pase3 is a phosphatase acting on phosphorylated

1 https://www.uniprot.org/uniprotkb/P01116/entry.

2 https://www.uniprot.org/uniprotkb/P15056/entry.
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ERK proteins. This result, ultimately obtained from the simulation
of the mutation of KRAS, agrees with well known aspects of the
physiology of the MAPK signaling pathway. Essentially, the
activated form of K-Ras is responsible for the transduction of

signals, received at the cell surface, to the inside of the cell; this
operation is crucial for cell proliferation, growth and differentiation
(Morkel et al., 2015; Pappalardo et al., 2016; Porru et al., 2018; Guo
et al., 2020; Lavoie et al., 2020). Under the GoF mutation the
molecules of K-Ras persist in their active form, which implies an
aberrant activation of downstream effectors as B-Raf, MEK, ERK,
and leads to a malignant behaviour of the cell. Thus the whole
signaling transduction pathway MAPK is uncontrollably triggered
by the alteration of KRAS and may lead to out of control cell
proliferation. The protein ERK exhibits the maximum difference
between mutated and physiological equilibrium values; further, its
active (doubly phosphorylated) form p-p-ERK, which occupies the
third place in the list of Table 1, is a well known “master regulator of
cell behaviour, life and fate” (Lavoie et al., 2020), being deeply
involved in cellular responses as cell proliferation, survival, growth,
metabolism, migration and differentiation (Guo et al., 2020; Lavoie
et al., 2020; Sugiura et al., 2021). This makes the MAPK path a very
natural target of drugs which contrast the negative effects of the
mutation of KRAS. In particular, the response of active ERK to the
delivery of drugs has received special attention (Pappalardo et al.,
2016; Santini et al., 2019; Lavoie et al., 2020; Hamis et al., 2021).
Finally, we observe that the high value of the relative difference δi of
the protein p-p-ERK is due to the smallness of the related
physiological equilibrium value.

As a final comment concerning Figure 1 and Table 1, we
remark that all these global results follow from the simulated

FIGURE 1
Global effects induced on theCR-CRNby theGoF of KRAS (A,B), the LoF of PTEN (C), and their combination (D). The effects on each protein, i= 1, . . .,
n, of the CR-CRN is quantified by the relative difference δi between the concentrations at equilibrium of the physiological and the mutated networks. (A):
results for three mutations corresponding to different levels of GoF of KRAS, obtained by setting the rate constants of the reactions inhibiting the active
form of K-Ras to 0%, 30%, and 60%of their physiological values. (B,C): global effects of the complete GoF of KRAS and LoF of PTEN, respectively. (D):
global effects induced by the combination of the two complete mutations.

TABLE 1 Proteins showing the most significant variation in concentration
(reported in decreasing order) when the network is affected by the complete
GoF of KRAS. Such a change is quantified by the difference between the
concentration values at equilibrium in the physiological status and after the
mutation (second column), and by the value of the corresponding δi (third
column).

i-th protein |~xei − xei | δi

ERK 179.31 −0.93

MEK 128.35 −0.77

p-p-ERK 91.95 5365.73

K-Ras_GDP 82.39 −0.98

K-Ras_GTP 69.69 118.38

Pase3 67.31 −0.71

p-p-MEK 62.84 76.78

p-p-ERK_Pase3 41.94 1550.88

p-MEK 37.47 3.21

CDC25C 36.96 −1.00
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behaviour of the equilibrium solutions of a system of ODEs.
Relevant knowledge from cell biology and biochemistry has been
applied in the formulation of the basic physiological model of the
network and in the description of mutations (Tortolina et al.,
2015). Explicit information on the biological consequences
induced by mutations and drugs can be recovered by expert
users when looking at the local scale, i.e., focusing on the changes
induced on the concentration of specific proteins. As an
illustrative example, in the next section we present a study
conducted on the effect induced by the GoF of KRAS on the
proteins of the pathway MAPK.

3.2 Local effects induced by mutations in
colorectal cancer

An analysis of local effects of mutations may lead to a more
direct connection with the physiology of the signaling network. A
few items have already been examined in Sommariva et al. (2021b),
mainly focused on the study of the effects of various single-gene
mutations on the concentration values of TP53. Here we present a
further set of complementary results on the MAPK pathway.

Figure 2 is devoted to a quantitative analysis of the changes of
the MAPK cascade induced by mutations. We have dedicated a
panel to each of the molecular species K-Ras, B-Raf, MEK, ERK, and
to the corresponding active forms K-Ras−GTP, p-B-Raf, p-p-MEK,
p-p-ERK. The histograms inside each panel provide the
concentration values at equilibrium in the following conditions:
physiological (purple), mutated by GoF of KRAS (blue), mutated by
LoF of PTEN (green), combination of the last two (yellow). Note that

the range of the y-axis depends on the panel. The consequences of
the mutations outlined by the histograms agree with a number of
remarks on the physiology of the MAPK cascade that are scattered
over the literature (Morkel et al., 2015; Santini et al., 2019; Guo et al.,
2020; Lavoie et al., 2020).

For example, the first two columns of each panel compare
physiological equilibria (purple) with those mutated by the GoF
ofKRAS (blue). We observe that the mutated value of K-Ras remains
rather small, although increased as a consequence of the mutation.
As an expected result of the GoF, the value of the active form
K-Ras−GTP is raised to about 70 nM. Also, the physiological
concentration of B-Raf is more than halved, while the mutated
value of the active form is about five times the physiological one.
Similarly, the inactive form of MEK is heavily decreased by the
mutation, while the active (doubly phosphorylated) form p-p-MEK
is highly augmented; the same remark holds for ERK and p-p-ERK.
To summarize, the concentrations of the inactive forms of the key
elements of the MAPK pathway are reduced by the mutation of
KRAS (with the only exception of K-Ras), while the concentrations
of the active forms are heavily enhanced. Consequently, the whole
path is abnormally active.

Consideration on the first (purple) and the third (green)
columns provides the impact of the LoF of PTEN on the MAPK
pathway. It is found that the equilibrium changes of K-Ras,
K-Ras−GTP, p-p-MEK, ERK, p-p-ERK can be overlooked, while
small changes can be seen in B-Raf, p-B-Raf, MEK. Since the
mutated active forms of the basic elements of MAPK are almost
vanishing, we may conclude that there are no sensible effects of the
LoF of PTEN on MAPK. An inspection of the fourth columns
(yellow) in comparison with the second ones (blue) shows that the

FIGURE 2
Values of the concentration at equilibrium of the four species belonging toMAPK pathway, namely K-Ras (A), B-Raf (C), MEK (E), ERK (G), and of their
active forms, namely K-Ras_GTP (B), p-B-Raf (D), p-p-MEK (F), p-p-ERK (H). The computed equilibria are related to the physiological network (purple)
and to the same one but affected by three different mutations: GoF of KRAS (blue), LoF of PTEN (green) and the concurrence of the two (yellow). For ease
of visualization a different scale is used on the y-axis of each label.
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combination GoF of KRAS + LoF of PTEN produces essentially the
same effects as the mutation of KRAS alone. This is a further
indication that the MAPK path is not sensitive to LoF mutations
of PTEN.

The marked increase of the concentration of the active form of
ERK under the GoF of KRAS, with the consistent reduction of the
inactive ERK, leads in particular to abnormal cell proliferation
(Lavoie et al., 2020; Hamis et al., 2021), as already observed
while commenting Table 1. Further, it is known (Sugiura et al.,
2021) that ERK promotes the apoptosis of the cell, and that this
property is inhibited by the activation of the species itself. Looking at
the histograms, we can observe that the quantity at equilibrium of
p-p-ERK grows steeply under the mutation of KRAS, while the
concentration level of ERK decreases significantly. According to
Yamamoto et al. (2006) and a suggestion by Hamis et al. (2021), this
maintained activation of ERK induces downregulation of
antiproliferative genes, thus confirming the dangerous character
of such a mutation of KRAS.

3.3 Drugs and drug combination targeting
the MAPK pathway

The main objective of this section is to simulate the impact of
drugs having the MAPK pathway as their target. Our investigation
follows the previous analysis of mutations, by considering first the
global effects on the whole network, and next the local effects of the
MAPK pathway. As to the global effects, we examined the
equilibrium states; as to the local effects, we focused on the
analysis of the time course of the activated protein p-p-ERK,
which is the key factor to assess the main effects arising from the
MAPK pathway. In the present approach, the optimal concentration
of a drug is determined by the degree of compliance between the
equilibrium features of the model modified by the drug, and the
corresponding features of the original physiological model.
However, the flexibility of the proposed model could be exploited
to define other optimal criteria, looking e.g. to the amount of drug
that minimizes (even below the level reached in the physiological
network) the concentration of proteins coded by certain oncogenes.

To describe the action of a given drug, we enlarge the set of
the chemical reactions of the CR-CRN, and the corresponding
dynamical system, in order to account for the reactions between
the drug and the target molecules. As an immediate
consequence, the drug and the associated composites are
regarded as additional unknowns. Borrowing from a rather
well established literature, we have simulated the action of
two drugs: Dabrafenib (DBF) and Trametinib (TMT), with
target B-Raf and MEK. As far as reactions are concerned,
DBF is modeled as a competitive inhibitor of Raf, while TMT
is an allosteric inhibitor of MEK (Morkel et al., 2015; Puszkiel
et al., 2019; Sommariva et al., 2021b; Hamis et al., 2021) (more
details are given in the Supplementary Appendix S1). The key
parameters of the enlarged system are represented by the initial
values of the drug concentrations, say cD for DBF, and cT for
TMT, although also the additional rate constants have to be
fixed; the initial values cD and cT denote also the total amounts of
drug available for the network.

For each inhibitor we examined global and local effects; also,
effects of combinations of DBF and TMT are illustrated. In the
first set of experiments aimed at investigating global effects
induced by these drugs, we assumed they were given
concurrently. Indeed, some preliminary tests not shown here
suggest that in the current version of our model other approaches
of drug administration, e.g., inserting TMT after some time that
DBF is in action, does not sensibly change the final equilibrium
state reached by the system. In the present approach we
considered the mutated equilibrium state as the initial state of
the dynamical system modified by the addition of a drug, and we
determined the resulting new equilibrium state xd

i . In particular,
we found the most appropriate concentrations, cD and/or cT, to
obtain the closest equlibrium xd

i closest to the physiological
equilibrium xe

i . Figure 3 provides a synthetic description of
the changes induced by the action of DBF on the network
subject to a GoF mutation of KRAS. This figure has been
obtained through the following steps.

• Consider the augmented system formed by the mutated
dynamical system, enlarged by addition of the reactions
expressing the action of DBF.

• Consider the mutated equilibrium state ~xe
i and the initial value for

the drug concentration cD as the initial values for the dynamics of
the augmented system.

• Determine the equilibrium state xd
i of the augmented system.

• Compare xd
i with the physiological equilibrium xe

i by considering
the corresponding relative difference of the concentrations, which
here is denoted as

di � xd
i − xe

i

xe
i

, (3)

for convenience.

• Investigate the dependence of di on cD, and plot the results.

Clearly, the procedure also applies to the description of changes
induced by TMT, with initial value cT, and to the combination of the
two drugs.

In order to determine which is the best quantity of drug to be
administered the information in vector d = (d)i is summarized in a
unique numeric value through the indicator

G d( ) �
������������∏n
i�1

di + 10−6( )n

√
− 10−6 (4)

that consists in a modified geometric mean allowing the vector d to
contain elements equal to zero (De La Cruz and Kreft, 2018). Such
an index is exploited in Figures 3–5 for showing the performance of
single drugs DBF and TMT and their combination in dependence of
their initial concentration values inside the network. The lower the
value ofG(d) the closer the equilibrium of the network including the
drug(s) is to the physiological equilibrium. The result of the
procedure is that the optimal drugs dosage could be determined
by minimizing G(d) that is, we assume that the drugs work at their
best if the corresponding equilibrium state is close to the
physiological (healthy) state. Other metrics could be introduced,
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e.g., in order to allow the network to surpass the physiological state if
there is evidence that this may reduce oncogenic activity.

Figure 3, panel (A) shows the plot of the modified geometric
mean G(d) as a function of the initial concentration of DBF cD,
which varies in the interval [0, 100] nM. Therefore, the plot provides
an estimate of the drug potential of restoring the healthy state of a
cell. The minimum of G corresponds to the initial drug
concentration that assures the best healing effect on the mutated
network. Figure 3 panel (B) shows a few complete profiles of the
relative differences di. The black line, which has been inserted for
ease of comparison, represents the relative difference between the
concentrations at equilibrium under a GoF of KRAS and the

physiological equilibrium; notice that the values of δi are sorted
in decreasing order, to give evidence to the changes induced by the
drug. The different colors of the other lines correspond to the
profiles of di determined by different values of cD.

The best choice of cD corresponds to the line closest to the
horizontal axis, i.e., cD = 43.5 nM. This is in essential agreement with
the result of panel (A). Notice that the initial values of the
concentration of DBF and the values of the rate constants of the
related reaction have been changed with respect to those ones used
in Sommariva et al. (2021b), as observed in the Supplementary
Appendix S1; this explains the slight difference with the optimal
value of the initial concentration found in that paper.

FIGURE 3
Dosage of Dabrafenib (DBF). (A): modified geometric mean G computed on vector (d) � (di)i of the relative differences between the proteins’
concentration at the equilibrium of the physiological network and in the one obtained by simulating the action of DBF against the GoF mutation of KRAS.
Several values for the initial concentration cD of DBF have been tested and the coloredmarks corresponds to those further explored in the right panel. (B):
Relative difference di as function of the proteins quantifying the effect of the GoF mutation of KRAS (black line) and the effect of four initial values of
DBF concentration (colored lines).

FIGURE 4
Dosage of Trametinib (TMT). (A,B) have been designed as in Figure 3 but considering TMT instead of DBF.
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In correspondence with the value cD = 43.5 nM, the
concentrations of most proteins involved in network are very
close to the values at the physiological equilibrium. We point out
a few exceptions: B-Raf, whose concentration is reduced in that its
function has been inhibited by the drug; a group of complexes that
involve the activated form of K-Ras, that is still overexpressed; the
complexes that are products of the reactions removed to simulate the
GoF of K-Ras, whose function is thus stopped.

Figure 4 describes the same analysis, this time performed in the
case of the effects of TMT on the GoF of KRAS. In this case, the
initial concentration values are allowed to vary over a rather large
interval, from 200 to 2000 nM, the system being poorly sensitive to
variations of cT. A minimum of G(d) is found at cT = 1080 nM.
Figure 4, panel (B), agrees with the previous result.

Finally, Figure 5 analyzes the effects on the relative error di of
various combination therapies involving DBF and TMT. The
heatmap of panel (A) shows the response to a set of combination
therapies. On the horizontal axis, the concentration of TMT varies
from 0 to 2000 nM; on the vertical axis, the concentration of DBF
describes the interval from 0 to 100 nM. The color of the heatmap
reflects the value of G(d) as described by the color map alongside.
Specifically, low values ofG(d) appear in yellow while high values are
in blue. The best result is obtained for cD ≈ 40 nM and cT ≈ 240 nM.
Thus, a combination of smaller doses of both drugs produces almost
the same effects of either a single infusion of DBF, or TMT, delivered
at much higher dose.

Panel (B) shows four examples of di distribution, corresponding
to different choices of the initial conditions cT and cD for TMT and
DBF. As in the previous analogous representations of the
distributions associated with drugs, we have reported by a black
line the relative difference δi between equilibrium values of the
network subject to the GoF of KRAS and the physiological values.
Comparison of the results shows that there is a significant

convergence between the conclusions drawn from panels (A) and
(B) as to the most convenient combination.

The last part of this section is devoted to local considerations on
the time course of p-p-ERK. For the ease of reference, we recall that
ERK is an elemental conserved variable, according to Sommariva
et al. (2021a). Thus, we denote by ERKtot the corresponding
conserved value, and we call activated fraction of ERK the ratio
p-p-ERK(t)/ERKtot. Figure 6 shows the time course of the activated
fraction of ERK under the action of DBF in panel (A), TMT in panel
(B), and the combination DBF + TMT in panel (C). The initial
conditions for the drugs are chosen as cD ∈ {12.5, 25, 37.5, 50} (nM),
cT ∈ {50, 100, 150, 200} (nM), and the same values are considered for
the drug combinations.

The graphs of the three panels have a rather similar behaviour. A
common feature is that the huge amount of the activated fraction of
ERK decreases with time, because of the indirect action of the drugs
that target Raf or MEK or both. In the case that only small quantities
of delivered drug are available, each panel contains a curve showing
an initial slight decrease of the ratio, until it tends to a non vanishing
constant value for growing t. On the contrary, the curves associated
with higher amounts of drug show an almost horizontal behaviour
for a brief initial time interval, after which they decrease very steeply
until a rather small value of the activated fraction of ERK is found.
Actually, the almost stationary low value is reached in about 13 min
or more for DBF and TMT + DBF, and in about 6 min under the
action of TMT alone, perhaps because the target MEK of TMT is
closer to ERK in the network topology.

4 Discussion

A mathematical model has been recently introduced (Tortolina
et al., 2015; Sommariva et al., 2021a) that simulates the behaviour of

FIGURE 5
Dosage of the combination therapy including Dabrafenib (DBF) and Trametinib (TMT). (A): 2-D images representing themodified geometric meanG
of the vector d � (di)i of the relative differences between the proteins’ concentration at the equilibrium of the physiological network and in the network
obtained by simulating the concurrent action of DBF and TMT against the GoF mutation of KRAS. Several pairs of values (cT, cD) for the initial
concentrations of the two drugs have been tested and the colored marks correspond to those further explored in the right panel. (B): Relative
difference δi as function of the proteins quantifying the effect of the GoF mutation of KRAS (black line) and the effect of four pairs of initial concentration
values of TMT, cT, and DBF, cD (colored lines).
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a CRN describing the information flow inside a CRC cell at the G1-S
transition point; furthermore, general procedures to change the
model in order to account for GoF and LoF mutations have been
proposed and investigated (Sommariva et al., 2021b). In other
words, the transition from a healthy to a mutated, cancerous,
signaling network has received an appropriate mathematical
formulation.

In the present study the mathematical model has been applied
in order to analyze the reaction of the network to a GoF mutation
of KRAS, a LoF of PTEN, the combination of the two mutations,
and a partial GoF mutation of KRAS. The interest toward
mutations of KRAS and PTEN comes from the observation
that they have been found in approximately 40% and 34% of
all CRC cases, respectively (Salvatore et al., 2019; Zhu et al.,
2021). A global analysis of pertinent equilibrium states has
pointed out the MAPK pathway, with its K-Ras/B-Raf/MEK/
ERK cascade, as the target of the main changes of the network,
induced by the mutation of KRAS. A corresponding local analysis
has provided a suggestive graphical representation of
quantitative aspects of the products of activation/inactivation
reactions. In particular, the mathematical analysis identifies the

activated form of ERK as the focus of changes, in parallel with
well known results coming from the biologic side (Guo et al.,
2020; Lavoie et al., 2020; Sugiura et al., 2021).

Thus, the species of the MAPK pathway represent the natural
target of drugs that tend to contrast the negative consequences of
KRAS mutations. Here we have examined the response of the
mutated network to administration of DBF and TMT, with
respective targets B-Raf and MEK; more precisely, DBF is
modeled as a competitive inhibitor of B-Raf, and TMT as an
allosteric inhibitor of MEK. As a further related development, the
effects of combination of the two drugs at variable doses have also
been simulated. In fact, it is well known that drug combinations
may counterbalance, e.g., the onset of drug-resistant tumour
subclones (Morkel et al., 2015; Santini et al., 2019; Hamis
et al., 2021).

The main novelty of the mathematical scheme for the simulation
of drug effects is given by the application of three different models,
namely, the model for the healthy, the mutated, and the drug loaded
network. Here, the mutated network has played a fundamental role.
In our approach, we have considered the equilibrium states
pertaining to each model. The mutated equilibrium has provided

FIGURE 6
Time-varying behaviour of the concentration of p-p-ERK, active (doubly phosphorylated) form of ERK, in the CR-CRN affected by GoF of KRAS
under the action of DBF (A), TMT (B) and their combination (C). In all panels, the activated fraction of ERK is represented. The black dashed line indicates
the value of active ERK at equilibrium in physiological conditions, while colored lines refer to four different therapeutic dosage as specified in the legend of
each panel where cD and cT indicate the initial concentration of DBF and TMT, respectively. A logarithmic scale is used on the time axis.
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the initial value of the drug loaded model, leading to the associated
equilibrium. This last, in turn, has been compared with the healthy
equilibrium. A drug, or a drug combination, has been regarded as
effective if its drug loaded equilibrium is close to healthy
equilibrium, which means that the relative difference di is
globally small.

Next, a global index has been introduced, dependent on di,
which selects the amount of drug generating the closest model to
physiological equilibrium. The procedure has been applied to
assess the optimal concentrations of DBF and TMT. The results
have been confirmed by graphical representations of the
distribution of the relative differences between drug loaded
and physiological equilibrium. Similarly, an optimal drug
combination of DBF and TMT has been assessed on the basis
of the values of the global index that have been reported on a
heatmap. Again, the optimal choice has been validated by the
representation of the distributions of relative differences. In
details, Figures 3–5 suggest that in the current version of our
model there is no combination of the two drugs that allows the
system to reach an equilibrium state closer to the physiological
one than the one reached by the system when perturbed by either
drug alone. However, the combination of the two drugs allows to
reduce the optimal dosage, especially the one for TMT, which
decreases from about 1080 nM to 240 nM.

At the local level of analysis, we have examined the time course of
the ratio p-p-ERK(t)/ERKtot, representing a fractional measure of the
activated ERK. Unlike recent computational approaches as (Pappalardo
et al., 2016; Hamis et al., 2021), which, however, consider mutations of
KRAS, we have obtained a realistic behaviour of the activated fraction of
ERK, whereby the ratio decreases with time, because of drug action. In
our opinion this result follows ultimately from the choice of the non-
vanishing initial value of p-p-ERK, coincident with that of the mutated
equilibrium, and the global effects of the network, incorporating also,
e.g., feedback effects.

To further ascertain the realistic behaviour of active fraction
of ERK that follows from our approach, we have investigated the
changes induced under the assumption that DBF is subject to
degradation, while TMT is absent. Precisely, we have considered
for DBF a degradation rate equal to 5.79 · 10–6 s−1 (Anderson
et al., 2019), while all other conditions of the model have been
left unaltered. Figure 7 shows the results: the active local fraction
of ERK shows an initial value of about 0.5, which is reduced to a
very small value in the first hour; the latter is maintained for a
rather long time interval, until it reaches again the value 0.5,
following the decrease of the drug concentration caused by
degradation. If TMT is added to the model, the effects of the
degradation of DBF are mitigated. Indeed, as shown by Figure 8,
also in this case after about 4800 min the concentration of

FIGURE 7
Time-varying behaviour of the concentration of p-p-ERK, active (doubly phosphorylated) form of ERK, in the CR-CRN affected by GoF of KRAS
under the action of DBFwhen also a reactionmodeling drug degradation is included in themodel. The figure has been designed as panel (A) of Figure 6. A
logarithmic scale is used on the time axis; cD indicated DBF initial concentration.

FIGURE 8
Effects of a time-dependent perturbation through the administration of TMT. Similarly to Figure 7, the plot shows the dynamics of the concentration
of p-p-ERK in the network affected by a GoF of KRASwhere cD= 50 nM of DBF have been administrated alone (blue line) or together with cT = 240 nM of
TMT given concurrently (green line) or after 12 min, i.e., when the concentration was close to the value at the physiological equilibrium (pink line). The
value at the physiological equilibrium is used as reference (black dotted line). Only the degradation of DBF was taken into account.
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p-p-ERK started increasing but the ratio p−p−ERK
ERKtot

remains below 4
· 10–3 nM. Figure 8 also shows that the time at which TMT is
administered does not change the final equilibrium state, but
impacts on the overall dynamics followed by the system. As an
example, if the two drugs are given concurrently, p-p-ERK
reached the physiological level faster. Future work will be
devoted to a more in-depth study on the capability of our
model in capturing the effect of drugs sequencing and/or
metromomic therapies.

5 Conclusion and future directions

In this work we have first reviewed the most fundamental aspects
of a recently proposed CRN which simulates the behaviour of the
signaling network inside a colorectal mutated cell (Sommariva et al.,
2021a; Sommariva et al., 2021b). We have described the general
context where the CRN is applied, the basic principles underlying
the development of a system of ODEs representing the chemical
reactions of the network, and we have reviewed the most fundamental
properties of the ODEs applied in the simulations.

Next, we have developed new applications concerning
comparison between a physiological (healthy) network and a few
similar networks resulting from GoF mutations of KRAS, and LoF
mutations of PTEN, frequently observed in CRC. Also, drug loaded
networks associated with either single or combined targeted drugs
have been investigated and compared. The results obtained have
been validated using literature data.

The basic novelty of our approach is given by the interaction
between global and local aspects in the treatment of mutations and the
action of drugs. The most interesting example is concerned with the
abnormal value of activated ERK (p-p-ERK) resulting from a GoF of
KRAS; unlike other approaches (Pappalardo et al., 2016; Hamis et al.,
2021) it is found from the simulations that activated ERK is
considerably reduced by administration of DBF, a B-Raf targeting
drug. The local time course of the complex p-p-ERK, which is of
fundamental interest because of its biologic consequences (Guo et al.,
2020; Lavoie et al., 2020; Hamis et al., 2021; Sugiura et al., 2021), is
obtained through the use of three different, global, and interconnected
networks (physiological, mutated, drug loaded) to assess the general
framework which provides both the system of ODEs to be solved, and
the required initial conditions.

The methods that have been proposed in this paper may be
applied to the prediction of quantitative effects of targeted drugs,
and to the optimization of combination therapies for the mutated
cell of other cancer types, under rather general conditions.

Our approach focuses on simulations of the signaling
network and on the modifications induced by mutations and
drugs on the related equilibrium concentrations. For now, we
have not considered the cellular response to these changes of the
equilibrium state, even though we know that, in general, different
equilibrium states correspond to different cell behaviours, as it
happens for mutated and physiological equilibrium. In
particular, we have not investigated cell behaviours possibly
associated with the considered partial GoF of KRAS.
Consistently, partial mutations have been defined based on
formal assumptions such as a proportional reduction of the
values of the rate constants in the physiological network. In

our opinion this is only a first, necessary step toward a more
comprehensive model of cell behaviour.

In our analysis we have assumed that the parameters of the
model are fixed and given, and that a unique equilibrium state exists
for every stoichiometric surface. These points need for further
investigation. For example, a sensitivity analysis is required to
first identify those parameters that are most influent on the
equilibrium values, and then to design proper biological
experiments to refine their values.

Also, the basic model may require adjustments in order to
account for specific effects as the natural process of degradation
of drugs and other proteins, or changes of the interactions between
proteins, possibly occurring as an answer of the network to
modifications induced by drugs. More in general, the model
could be extended so as to account for changes induced on the
kinetic parameters of the network by the external environment. As
an example, the current model mimics the behaviour of a single
colorectal cell during the G1-S transition phase. A possible future
work may aim at extending this model by considering e.g. selection
mechanisms induced on a group of mutated cells by the external
environment. This extension may allow our model to explain also
more recent experimental evidences by highlighting the importance
of the order of mutations on cancer diseases progression (Levine
et al., 2019). Furthermore, such an extension may also help to better
model the effects of combined therapies. Indeed our simulations
seem to suggest that there are no combined concentrations of DBF
and TMT that are better than the optimal dose of either alone. This
indirectly supports the view that one of the benefits of the
combination of two (or more) drugs consists in delaying the
onset of mechanisms of drug resistance, that, instead, have been
commonly observed in monotherapies (Morkel et al., 2015; Hamis
et al., 2021). Future work will be devoted to modeling this type of
mechanism.

Finally, we should model glucose metabolism and cell
apoptosis. In a sense, our approach to drug action is almost
opposite to that of inducing cell apoptosis, in that our main aim
has been to restore a (nearly) healthy state, instead of triggering
cell death.
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