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Alzheimer’s disease (AD), a neurodegenerative disorder, is characterized by its
ability to cause memory loss and damage other cognitive functions. Aggregation
of amyloid beta (Aβ) plaques and neurofibrillary tangles in the brain are responsible
for the development of Alzheimer’s disease (AD). While attempts targeting Aβ and
tau proteins have been extensively conducted in the past decades, only two FDA-
approved drugs (i.e., monoclonal antibodies) tackle the underlying biology of
Alzheimer’s disease. In this study, an integrated computational framework was
developed to identify new drug targets for Alzheimer’s disease and identify small
molecules as potential therapeutical options. A systematic investigation of the
gene networks firstly revealed that the Apolipoprotein E4 (ApoE4) gene plays a
central role among genes associated with Alzheimer’s disease. The ApoE4 protein
was then chosen as the protein target based on its role in the main pathological
hallmarks of AD, which has been shown to increase Aβ accumulation by directly
binding to Aβ as well as interfering with Aβ clearance that is associated with other
receptors. A library of roughly 1.5 million compounds was then virtually screened
via a ligand-protein docking program to identify small-molecule compounds with
potential binding capacity to the ApoE4 N-terminal domain. On the basis of
compound properties, 312 compounds were selected, analyzed and clustered to
further identify common structures and essential functional groups that play an
important role in binding ApoE4. The in silico prediction suggested that
compounds with four common structures of sulfon-amine-benzene, 1,2-
benzisothiazol-3-amine 1,1-dioxide, N-phenylbenzamide, and furan-amino-
benzene presented strong hydrogen bonds with residues E27, W34, R38, D53,
D153, or Q156 in the N terminal of ApoE4. These structuresmight also form strong
hydrophobic interactions with residues W26, E27, L28, L30, G31, L149, and A152.
While the 312 compounds can serve as drug candidates for further experiment
assays, the four common structures, alongwith the residues for hydrogen bond or
hydrophobic interaction, pave the foundation to further optimize the compounds
as better binders of ApoE4.
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1 Introduction

On 3 November 1906, the first case of Alzheimer’s disease (AD)
was reported by Alois Alzheimer, a clinical psychiatrist and
neuroanatomist at Munich University Hospital (Hippius and
Neundörfer, 2003). Since people can live longer than in the past,
Alzheimer’s disease has become a major public health issue in the
world. According to “2022 Alzheimer’s Disease Facts and Figures”
reported by Alzheimer’s Association, an estimated 6.5 million
Americans are living with Alzheimer’s dementia in 2022, and the
number of AD Americans is projected to double in 2050
(Alzheimer’s Association, 2022). Alzheimer’s disease was officially
listed as the sixth-leading cause of death in the United States in 2019.
The U.S. Annual Alzheimer’s death rate was generally increasing by
year from 2000 to 2019 (Alzheimer’s Association, 2022).
Alzheimer’s disease has become the most common cause of
dementia, with the most symptoms of memory loss that disrupt
daily life, challenges in planning or solving problems, and difficulty
in completing familiar tasks (Markus, 2020), (Alzheimer’s
Association, 2020). All these indicate an urgent need to
investigate effective interventions for Alzheimer’s disease.

Extensive research has been conducted on Alzheimer’s disease in
the last few decades. It is reported that the pathology of Alzheimer’s
disease is characterized by the formation of amyloid plaques and tau
protein tangles in patients’ brains (LaFerla and Oddo, 2005; Li, 2018;
Wu, 2021). Amyloid plaques accumulated between neuron cells
interrupt the communication of these cells (Huffels, 2022). Tau
proteins are the most frequent microtubule-associated proteins in
the neurons of the central nervous system (CNS). The tau tangles
affect the maintenance of metabolism of neuron cells. The
accumulation of amyloid plaques and tau protein tangles, which
eventually causes the death of neuron cells, is a slow process. It may
take 20 years or longer before the patients show AD symptoms that
interfere with some everyday activities. The early-onset patients,
who generally have a family history of Alzheimer’s disease, show
symptoms before the age of 65. These familial patients account for
only 5% of AD cases. The other patients who have no family history
of Alzheimer’s disease (so-called sporadic patients) generally show
AD symptoms after age 65. After the initial diagnosis of Alzheimer’s
disease, most people live with it for between 3 and 11 years.

Since the progression of Alzheimer’s disease is slow, it is
important to identify biomarkers that can be used as potential
indicators for early diagnosis. It is reported that familial patients
generally carry genes APP (amyloid precursor protein), PSEN1
(Presenilin-1), and PSEN2 (Presenilin-1) (Tanzi, 2012; Lanoiselée,
2017; Gao, 2019). All these genes are involved in the synthesis of
amyloid. While extensive studies have been conducted to identify
biomarker genes for sporadic patients, who account for 95% of AD
cases (Grünblatt, 2009; Lista, 2015; Castanho and Lunnon, 2019), no
common biomarker genes like APP, PSEN1, and PSEN2 for familial
patients have been identified. This explains the challenges in drug
discovery to treat AD patients. Only seven drugs have been approved
by the FDA to treat Alzheimer’s disease, including Lecanemab
(Swanson, 2021), Aducanumab (Schneider, 2020), Donepezil
(Birks et al., 2000), Rivastigmine (Desai and Grossberg, 2005),
Memantine (Reisberg et al., 2003), Manufactured combination of
memantine and donepezil (Howard, 2012), and Galantamine
(Lilienfeld, 2002). Five of these seven drugs are designed to

reduce AD symptoms (e.g., memory loss and confusion), and
enable AD patients to maintain certain daily functions (Birks
et al., 2000; Lilienfeld, 2002; Reisberg et al., 2003; Desai and
Grossberg, 2005; Howard, 2012). They are unable to stop the
disease from worsening over time. Among these seven drugs,
only Lecanemab and Aducanumab, monoclonal antibodies, tackle
the underlying biology of Alzheimer’s disease by reducing the
accumulation of amyloid plaques (Sevigny, 2016). Both of them
were approved by the FDA for Biogen recently under the FDA’s
Accelerated Approval pathway. However, Aducanumab was studied
in people living with early Alzheimer’s disease, without safety or
effectiveness data on initiating treatment at earlier or later stages of
the disease than were studied (Dhillon, 2021), (Budd Haeberlein,
2022). The accelerated approval of accumulation is controversial
(Vaz et al., 2022). Concerns were raised for the side effects of
Lecanemab. New drugs to treat Alzheimer’s disease are still in
high demand.

To address the aforementioned knowledge gap, a pipeline
integrating systems biology and computational drug discovery
was developed in this work. The pipeline is built upon existing
computational tools and databases to accelerate the pace of drug
discovery for Alzheimer’s disease. In particular, DisGeNet (Piñero,
2017), STRING (Szklarczyk, 2021), Cytoscape (Shannon, 2003),
MCODE (Bader and Hogue, 2003), cytoHubba (Chin et al.,
2014), DAVID (Dennis, 2003), all of which are free commonly-
used tools in systems biology, were integrated to identify genes
associated with Alzheimer’s disease in medical databases (via
DisGeNet), generate interaction networks of proteins encoded by
the selected genes (via STRING), visualize the protein-protein
interaction networks (via Cytoscape), investigate the highly-
interactive subnetworks of proteins (via MCODE), rank the
protein targets in subnetworks based on their interactions with
other proteins (via Cytohubba), and further study the biological
meanings behind the top-ranked protein targets (via DAVID).
DisGeNET is one of the largest public databases of human
disease-related genes and variations (Piñero, 2017). STRING is a
database of known and predicted protein-protein interactions that
covers 24 million proteins from 5,090 organisms (Szklarczyk, 2021).
Cytoscape was chosen not only because it is a common platform
used for visualizing complex networks but also it integrates those
networks with programs for subnetwork analysis and protein target
ranking (Shannon, 2003).

The top protein targets selected through our pipeline were
further screened based on whether crystal structures are available.
One of these targets is Apolipoprotein E4 (ApoE4). ApoE,
containing 299 residues, is a lipid-carrying protein that plays a
crucial function in lipid homeostasis (Mahley et al., 1999). ApoE
transports lipids in both the plasma and the central nervous system
through its interaction with low-density lipoprotein receptors
(Hatters et al., 2006). ApoE protein has three primary isoforms
identified by the ApoE2, ApoE3, and ApoE4, which differ at
positions 112 and 158 of the N-terminal domain. The
ApoE2 isoform contains cysteine residues at both positions,
ApoE3 has a cysteine at position 112 and an arginine at position
158, and the ApoE4 protein owns arginine residues at both positions
(Chen et al., 2021). The three isoforms appear with varying
frequency among the human population, indicating 8.45%,
77.9%, and 13.7%, respectively (Farrer, 1997). According to
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genome-wide association studies, the presence of two ApoE4 alleles
is a significant genetic risk factor for late-onset Alzheimer’s disease
(Corder, 1979).

As for the protein target hinted by the protein network
analysis (e.g., ApoE4), a computational ligand-protein docking
platform named Molsoft ICM Pro was then used to investigate
the binding affinity between the protein target and each of
1.5 million chemical compounds from FDA-approved drugs
and the ChemBridge database. Molsoft ICM outperforms a
range of other methods for docking pose and affinity
prediction. Molsoft ICM was evaluated with over 90%
accuracy in flexible docking and covalent docking, which was
better than other programs like Autodock, DOCK, FlexX, Gold,
FITTED and MOE (Chilingaryan et al., 2021). ICM was ranked
first place for docking pose and energy prediction in the drug
design data resource (D3R) challenge for both 2017 and 2018
(Lam et al., 2019). The structures of chemical compounds with
top binding affinity scores were further studied via statistical
clustering analysis to identify the structures and interactions
shared by those compounds for future drug design and
experimental validation.

2 Materials and methods

An overview of the developed pipeline that integrates system
biology and computational compound screening to identify
potential drug candidates to treat Alzheimer’s disease is shown in
Figure 1. In particular, a machine learning-based network analysis
on genes related to Alzheimer’s disease was conducted. The proteins
encoded by those genes were then connected in an interaction
network so that the proteins with the largest interactions with
others could be identified. Apolipoprotein E4 (ApoE4) turned out
to be the top protein target from this study. Though a few fragments
were co-crystalized with ApoE N-terminal domain (Petros, 2019),
however these molecules suggest low binding affinity. It is
hypothesized here that the binding of chemical compounds,
which are more suitable as drug candidates than small fragments,
may inhibit the function of ApoE4, thereby contribute to the combat
of Alzheimer’s disease. On the basis of a validated crystal structure of
ApoE4 (Petros, 2019), a computational compound screening
platform was developed to evaluate the binding affinities of

compounds from FDA-approved drugs and the ChemBridge
database. The virtual screening platform consists of a ligand-
protein docking program (i.e., Molsoft ICM Pro) to evaluate the
binding affinities and an unsupervised learning method to identify
the common structures shared by the compounds with good binding
affinities with ApoE4. The interactions between those structures and
residues in the binding pocket in ApoE4 were further analyzed to
identify certain patterns conserved in the interactions.

2.1 The pipeline for the analysis of gene
interaction network

Figure 2 illustrates the pipeline for building the interaction
network of genes involved in the progression of Alzheimer’s
disease. These genes were then ranked according to their
interaction with other genes. Specifically, the key word
“Alzheimer’s disease” was used in the DisGeNET database v6.0
(Barcelona, Spain), to search the relevant genes. The DisGeNET
database returns a gene-disease-association (GDA) score for each
gene (Piñero, 2017). A higher GDA score indicates a stronger
association between the gene and Alzheimer’s disease. A GDA
score of 0.1 was used in this work to narrow down the focus of a
list of 3,397 Alzheimer’s disease-associated genes (Supplementary
Table S1). The threshold of 0.1 maintained a manageable number of
candidate genes (221 genes) for further analysis while still capturing
potentially relevant gene-disease associations. All these genes were
further validated for their association with Alzheimer’s disease in
PubMed.gov by searching for each gene’s symbol along with the
keywords “Alzheimer’s" or “Alzheimer’s disease” in the literature
database. A systems-biology approach was employed to study gene-
gene interactions in AD and identify the most significant genes.
Specifically, the genes associated with Alzheimer’s disease, as
determined by their GDA scores over 0.1, were input into the
STRING program. This allowed for the generation of a protein-
protein interaction network based on the proteins encoded by the
selected genes. Subsequently, the protein interaction network was
imported into the Cytoscape program to enable improved
visualization and analysis. These genes were then clustered and
ranked according to their interactions with other genes. To analyze
the generated network, MCODE, a clustering algorithm, was used to
discover densely connected proteins that may represent molecular

FIGURE 1
Overview of the pipeline for integrating systems biology and virtual compound screening to identify inhibitors for ApoE4.

Frontiers in Systems Biology frontiersin.org03

Zhai et al. 10.3389/fsysb.2023.1188430

http://PubMed.gov
https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2023.1188430


complexes in huge protein-protein interaction networks. In this
study, the generated networks were clustered using MCODE with
parameters setting of the degree cutoff 2, a haircut option, and 0.
47 minimum score. The degree cutoff value is the parameter that
prevents nodes with fewer connections from being scored and
included in a cluster. The highly interconnected proteins were
grouped. However, when a cluster of nodes has been calculated
and pulled out from the full network, some nodes might only
have one interaction with the nodes in the cluster. The haircut
option would eliminate these types of nodes from the established
cluster. This parameter choice has been supported by previous
research and is the default setting in the MCODE plugin for
Cytoscape (Bader & Hogue, 2003; Brohee & van Helden, 2006).
Furthermore, different degree cutoff values (1, 3, 4, and 5) were
tested, and the results of the subnetworks remained consistent.
The “minimum score” setting, also referred to as the node score
cutoff, determines the minimum score a node must have to be
included in a cluster, which would impact the size and number of
subnetworks (Bader and Hogue, 2003). Therefore, different
minimum scores other than 0.47 were tested to validate the
consistency of top genes across different cutoff values. From
the output of MCODE, highly linked nodes and their
corresponding interactions were identified.

Additionally, the application cytoHubba was used to further
rank the protein targets with the most interactions with other
proteins in the subnetworks determined by MCODE with the
MCC (Maximal Clique Centrality) algorithm. Earlier research
indicated MCC as the method that was able to identify more
important proteins than the other methods. The MCC algorithm
was thus employed for this investigation (Chin et al., 2014). The
top-ranked proteins may reveal potential drug targets to treat
Alzheimer’s disease. The tool DAVID was implemented to
investigate the functions of those proteins, which was followed
by a thorough literature and patent review of existing inhibitors
for each top-ranked protein. Finally, the top-ranked protein
target with limited studies of associated compound binder was
selected as the target for virtually screening small molecule
inhibitors.

2.2 The crystal structure of the N terminal of
ApoE4

While the detailed result of gene network analysis will be shown in
the Results section, it turns out that ApoE4 is the top-ranked protein
target with limited studies of associated compound binders. ApoE4 is
indeed regarded as one of the greatest genetic risk factors for late-onset
Alzheimer’s disease, and around 50% of people diagnosed with
Alzheimer’s have the ApoE4 (Serrano-Pozo et al., 2021). In addition
to ApoE4, Apolipoprotein E has two other alleles, which are ApoE 3 and
ApoE 2 (Butterfield and Mattson, 2020). ApoE 3 is the most common
Apolipoprotein E allele (i.e., 77.9% of alleles), followed by ApoE4 (13.7%
of alleles) and ApoE 2 (8.4% of alleles). Different from ApoE4, reports
show that ApoE2 protects against Alzheimer’s disease through both
amyloid-beta (Aβ)-dependent and independent mechanisms (Ana-
Caroline, 2011; Keeney et al., 2015; Li et al., 2020). The ApoE protein
is made up of two domains (i.e., N-terminal and C-terminal) and
299 residues, and the three ApoE isoforms differ in two amino acid
residues (i.e., 112 and 158) in the N-terminal. In particular, ApoE2 has
C112 and C158, while ApoE4 has R112 and R158. This difference is
reflected in the fact that the N-terminal domain of ApoE4 contains a
receptor binding site while the N-terminal domain of ApoE2 does not. It
is reported that ApoE alters the clearance of amyloid-β in an isoform-
dependent manner (Ana-Caroline, 2011). Specifically, very-low-density-
lipoprotein-receptor (VLDLR) and low-density-lipoprotein-receptor
(LDLR) play an important role in cleaning amyloid-β through blood-
brain-barrier (Yamazaki et al., 2019). This is impaired by ApoE4, as these
receptors may bind to the N-terminal of ApoE4. It is reasonable to infer
that the binding of chemical compounds to the N-terminal of
ApoE4 may alter its function in regulating the clearance of amyloid-β.

While the crystal structure of the full-sequence ApoE4 protein is not
available, the N-terminal of ApoE4 (blue) was co-crystalized with a
fragment (yellow) by a research group from Abbvie (North Chicago)
(Petros, 2019), shown in Figure 3. The rotation of residues W26 and
W34 constructs a hydrophobic pocket for binding (PDB code 6NCN).
Experimental data from this group indicates that ApoE alleles show
isoform-specific differences in ‘opening’ of the ApoE N-terminal
domain helix bundle structure to facilitate a binding interaction of its

FIGURE 2
The pipeline to identify the key genes related to Alzheimer’s diseases via gene-gene network analysis.
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hydrophobic interior with the lipid surface. Once the co-crystalized
fragment binds to the hydrophobic pocket in the N-terminal of
ApoE4, the physical properties of ApoE4 are changed, and
ApoE4 would be more functional like ApoE3 and ApoE2 in liposome
breakdown (Petros, 2019). Since the co-crystallized fragment is less than
200 Da, it is not a gooddrug candidate according to the Lipinski’s Rule of 5
(Lipinski et al., 1997; Lipinski et al., 2001; Lipinski et al., 2012; Walters,
2012). This motivates us to identify chemical compounds binding to the
N-terminal domain of ApoE4.

2.3 Virtual screening of chemical compound
databases to identify high-affinity
ApoE4 binders

Since it is costly and time-consuming to experimentally
screen a large number of chemical compounds for their
bindings to ApoE4, a computational approach was

implemented in this work. The druggability of ApoE4 was first
evaluated by Merck’s Drug-like density score (DLID) (Sheridan
et al., 2010) to confirm that ApoE4 is suitable as a drug target.
Figure 4 illustrates the general steps for virtual compound
screening. The crystal structure of the N-terminal domain of
ApoE4 from PDB (i.e., 6NCN) was input into the ligand-protein
docking platform (i.e., Molsolf ICM Pro). The interaction
between each chemical compound and the binding pocket in
ApoE4 N-terminal was thoroughly evaluated to quantify the
H-bond energy, van der Waals interaction energy,
hydrophobic energy, desolvation energy, solvation electrostatic
energy, internal molecular energy, loss of entropy, and number of
atoms in the complex. A binding score that integrates the
aforementioned interaction terms was determined to evaluate
the binding affinity of each tested chemical compound to the
N-terminal domain of ApoE4. Generally, a lower binding score
indicates a lower the Gibbs energy of binding, which is correlated
with a better binding affinity. Different ligand-protein docking

FIGURE 3
The structure of the N terminal of ApoE4 (blue) with the co-crystalized fragment (yellow) PDB code 6NCN. The residues around the binding pocket
are shown with the fragment.

FIGURE 4
Virtual evaluation of 1.5 million chemical compounds from FDA-approved drugs and the ChemBridge database for their binding affinities with the
binding pocket in the N-terminal of ApoE4.
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programs use different algorithms to: 1) quantify the
aforementioned interaction terms for potential binding
postures of the compounds, and 2) determine the binding
score. Molsolf ICM Pro is preferred in this work due to its
better performance when compared to other platforms
(Chilingaryan et al., 2021), (Lam et al., 2019), (Neves et al.,
2012). The research team in this work has implemented Molsolf
ICM Pro to successfully identify and experimentally validate
several small molecule inhibitors against protein targets
involved in antimicrobial resistance of foodborne pathogens
(Zhang et al., 2020), (Zhang et al., 2022) and replication of
SARS-CoV-2 (Zhai et al., 2021).

Around 1.5 million chemical compounds from the FDA-
approved drugs and the ChemBridge database which contains
drug-like chemicals were evaluated in this work. The ligand-
protein docking program was conducted in a Dell workstation
with 24 CPU cores and 192G memory. A compound library
containing the structures of selected compounds was constructed
and connected to the ligand-protein docking program so that the
binding affinity between each compound and ApoE4 was evaluated
(which took three to 10 seconds per compound), according to Eq. 1.

ΔG � ΔEHBond + ΔEVwlnt + ΔEHPhob + ΔESolv + ΔESolEl
+ ΔEIntl + TΔSSc + Qatom

(1)
where ΔEHBond, ΔEVwlnt, ΔEHPhob, ΔESolv, ΔESolEl, ΔEIntl,
TΔSSc, Qatom represent H-bond energy, van der Waals interaction
energy, hydrophobic energy, desolvation energy, solvation
electrostatic energy, Internal molecular energy, loss of entropy,
number of atoms, respectively.

The binding score of the co-crystalized fragment with
ApoE4 turns out to be −15 kcal/mol. Since the goal of this work
is to identify compounds with better binding affinities than the co-
crystalized fragment, the binding score of −20 kcal/mol was used to
select compounds for further evaluation. This binding score has a
margin of −5 kcal/mol from the one for the co-crystalized fragment
to guarantee better binding affinities.

The 1,319 compounds were identified from the virtual screening
and further evaluated for their druglike properties, toxicity, and
ability to penetrate the blood brain barrier through ICM software.
The ICM drug-likeness score was calculated using Molsoft’s internal
model, which calculates chemical fingerprints of 5,000 marketed
drugs from World Drug Index (positives) and 10,000 carefully
selected non-drug compounds (negatives) (Kashgari et al., 2020).
ICM Toxicity score (Toxscore) is determined approximately from
one thousand SMARTS strings with known toxicity/reactivity that
were gathered from diverse sources and calculated based on the
number of present bioactive chemical fragments that were identified
as structural alerts (Svetlov, 2018). The Blood Brain Barrier
prediction score has been calculated by an algorithm, designated
“BBB Score”, composed of stepwise and polynomial piecewise
functions (Gupta et al., 2019). According to these existing
literatures, the compounds need to meet the specific features for
further considerations: an ICM drug-likeness score of [-1, 1], a
toxicity score of [0, 1], a blood brain barrier score of (Alzheimer’s
Association, 2020; Li, 2018). Therefore, the 312 compounds meeting
all these conditions specific features would be candidates of
ApoE4 binders.

2.4 Investigation of common structure and
essential function groups of identified
ApoE4 binders

The candidates of ApoE4 binders selected from Section 2.3 were
further analyzed to identify the common structures and essential
functional groups shared by those compounds. Chemical clustering
methods based on substructure similarity were applied to identify
the common structures and essential functional groups which
contribute to ligand-protein interactions. The 2D chemical
structure information was used to cluster the compounds into
different groups using unweighted pair group method with
arithmetic mean (UPGMA) clustering method. Figure 5A shows
the clustering of 312 selected compounds into 109 groups, which are
represented in different colors. The details of the 312 compounds
can be found in Supplementary Table S2. The number of groups was
determined by the elbow method that depends on the change of the
cumulative variance of all groups (Thorndike, 1953). The 3D
binding conformations of compounds in each group were aligned
and compared to find common substructures. The common
structure of the compounds in each group was then identified
and evaluated on the basis of the Drugbank database. The
common structures that are not related to special functions, such
as carbon double bond and benzene ring, were generally not specific
to known drugs in the Drugbank database. Figure 5B illustrates the
structure of sulfonyl thiophene was identified from a group of
compounds. It was input the Drugbank database, and 9 drugs
with clinical experimental evaluation or approved by FDA were
found. For example, sitaxentan is one of the nine drugs containing
sulfonyl thiophene. It has been approved by FDA for the treatment
of the treatment of pulmonary arterial hypertension. The chemical
compound with the lowest binding score was selected for each group
to investigate the common interaction between the group
compounds and the binding pocket in the N-terminal of ApoE4.
Compound ChemBrige 9156684 (CB9156684) was selected to
represent the group to study the role of sulfonyl thiophene in
binding to ApoE4 in this study. The docking pose of compounds
with specific common structures was manually checked to find any
hydrogen bonds between the functional groups and protein residues.
If a hydrogen bond interaction was formed between the same
functional groups and same residues among various compounds,
the interaction between the functional groups and residues was
regarded as a conserved interaction. Conserved interactions between
functional groups of ligands and protein residues are helpful for
drug development. Core compounds were selected as
representatives to illustrate the interactions between specific
functional groups and residues of the binding pocket of ApoE4.

3 Results

3.1 Identification of protein targets for
Alzheimer’s disease through gene
interaction network analysis

The approach for protein interaction network analysis shown in
the Methods section was implemented to the 208 genes identified
and validated from DisGeNET database. Specifically, the key word
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“Alzheimer’s disease” was used in the DisGeNET database, which
returned 3,397 genes, as shown in Supplementary Table S1. A GDA
score of 0.1 was used in this work to narrow down the focus to
221 genes. Subsequently, 208 genes can be identified as valid nodes
by STRING to build a network. Figure 6 shows the highly connected
subnetworks generated by MCODE that contain more than

10 nodes (i.e., proteins). Each subnetwork was further explored
for the protein-protein interactions. The subnetwork with 83 nodes
was selected and zoomed in Figure 6B. Different proteins are
presented in different colors, with their sizes indicating their
expression level in the brain. This subnetwork was selected
because it contains certain proteins that are known for their

FIGURE 5
The procedure to identify the common structures with strong binding affinities with the binding pocket in the N-terminal of ApoE4: (A) hierarchical
clustering to separate chemical compounds into different groups according to their chemical structures; (B) common structures identified for individual
groups and validated in the Drugbank database. Sulfonyl thiophenewas identified as the common structure for the group. Nine approved or experimental
drugs were found in Drugbank database with sulfonyl thiophene. The ChemBridge compound (CB915k6684) had the lowest binding score in the
group of compounds.

FIGURE 6
Protein targets identified from the analysis of protein interaction networks: (A) highly-connected subnetworks identified by the program MCODE;
(B) the subnetwork of proteins visualized in Cytoscape to further study the interaction of these proteins; and (C) top proteins ranked by Cytohubba on the
basis of their interactions with other proteins. ApoE4 was ranked the top one protein target for Alzheimer’s disease treatment.

Frontiers in Systems Biology frontiersin.org07

Zhai et al. 10.3389/fsysb.2023.1188430

https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2023.1188430


involvement in Alzheimer’s disease progression. For example, APP,
PSEN1, BACE1, and PSEN2 are all in this subnetwork. It is
reasonable to hypothesize that the top drug target for
Alzheimer’s disease should interact with or influence these
proteins through known mechanisms for regulating Alzheimer’s
disease. The program Cytohubba in Cytoscape was further used to
rank the proteins in the subnetwork in Figure 6A to identify the top
10 targets for treating Alzheimer’s disease (Figure 6C). The redness
indicates the importance of the compounds. ApoE was ranked as the
top target, followed by SORL1, BIN1, ABCA7, PICALM, CD2AP,
MS4A6A, ZCWPW1, CLU, and TREM2. Furthermore, irrespective
of threshold setting of the minimum score, ApoE consistently
emerged as a top-ranking gene in the subnetworks. This suggests
that ApoE4 is a core component of these subnetworks, reinforcing
its importance in the context of Alzheimer’s disease. Additionally, it
is interesting to find that all these proteins have been extensively
studied for their involvement in the progression of Alzheimer’s
disease. Particularly, ApoE, especially ApoE4, is involved in carrying
cholesterol and other types of fat in the brain (Butterfield and
Mattson, 2020). SORL1 protein, also known as SORL1 or LR 11,
shunts amyloid precursor protein (APP) into non-amyloidogenic
processing pathways, and loss of SORL1 leads to higher amyloid-β
levels in cell culture experiments (Yin et al., 2015). The
overexpression of BIN 1 (i.e., the Bridging Integrator 1) was
found to result in an increase in the size of early endosomes and
neurodegeneration and contribute to early-endosome size
deregulation, which is an early pathophysiological hallmark of
AD pathology (Lambert, 2022). ABCA7 (i.e., ATP-binding
cassette transporter A7) variants are regarded as susceptibility
loci for late-onset Alzheimer’s disease, as ABCA7 deficiency
exacerbates amyloid-β pathology and it is also involved in the
microglial amyloid-β clearance pathway (Aikawa et al., 2018).
PICALM, an accessory protein in the endocytic pathway, was
identified in one of the first large-scale genome-wide association
studies (GWAS) for late-onset Alzheimer’s disease. It is reported to
affect the internalization of APP and thus the production of
amyloid-β (Harold, 2009). CD2AP (i.e., CD2 associated protein)
plays a role in maintaining early endosome morphology and the
traffic between early and late endosomes (Tao et al., 2019), in
regulating amyloid-β generation by a neuron-specific polarization
of amyloid-β in dendritic early endosomes (Ubelmann, 2017), and
in affecting APP and BACE1 sorting in early endosomes by distinct
mechanisms (Sun and Roy, 2018). MS4A6A (i.e., membrane-
spanning 4-domains, subfamily A, member 6A), susceptibility
loci of Alzheimer’s disease, was found to be related to the
volume loss of middle temporal, precuneus, and entorhinal in the
brain (Ma, 2016). ZCWPW1 (i.e., Zinc Finger CW-Type and
PWWP Domain Containing 1), a histone modification reader
that is involved in epigenetic regulation, was reported for strong
association with late-onset Alzheimer’s disease in several reports
(Rosenthal and Kamboh, 2014; Gao, 2016; Karch, 2016; Küçükali,
2021). CLU (i.e., clusterin) could bind amyloid-β peptides and
prevent fibril formation, a hallmark of AD pathology (Wojtas,
2020). TREM2 (i.e., Triggering receptor expressed on myeloid
cells 2) induces microglial anti-inflammatory activation in AD-
related conditions, and it is regarded as a potential target for the
prevention and treatment of Alzheimer’s disease (Carmona et al.,
2018), (Ulrich et al., 2017).

While the 10 proteins shown in Figure 6B are all heavily involved in
the cause or progression of Alzheimer’s disease, ApoE4 was selected as
the protein target for this study as it was ranked as a top genetic risk
factor by this study and other studies (Vassar, 2017; Fernandez et al.,
2019; Safieh et al., 2019). In addition, few drugs have been investigated
or identified for ApoE4. Finally, the crystal structure of the binding
pocket in ApoE4 has been published (Petros, 2019).

3.2 Virtual screening of chemical
compounds to bind ApoE4 N-terminal
domain

The 1.5 million chemical compounds from the FDA approved
drugs and ChemBridge database were evaluated by the ligand-protein
docking program shown in Figure 4. There were 1,391 compounds with
binding scores less than −20 kcal/mol (less than the score of −15 kcal/
mol for the co-crystalized fragment). These compounds were further
evaluated by their druglike properties, toxicity score, and the ability to
penetrate the blood brain barrier (BBB score) with the conditions
specified in the Methods section. The compounds that satisfy each
condition are marked in the histograms shown in Figure 7. While most
compounds have satisfied druglike and toxic properties, only one-third
of the compounds might penetrate the blood brain barrier. A total of
312 chemical compounds were finally selected as druggable candidates
for binding ApoE4 for Alzheimer’s disease intervention.

3.3 The common structures of putative
ApoE4 binders

The 312 putative ApoE4 binders indicating various docking
conformations were clustered into 109 different groups, results of
which were shown in Supplementary Table S2. Four large groups
containing more than ten compounds indicated certain common
structures. The compounds sharing similar structures would bind to
the ApoE4 protein with similar 3D docking poses. This suggests that
those similar structures shared by various compounds fit well into
the binding pocket. The four common structures, which include
sulfonamide-benzene, 1,2-benzisothiazol-3-amine 1,1-dioxide,
N-phenylbenzamide, furan-amino-benzene, were obtained by 3D
conformation alignment, as shown in Figure 8. Such four scaffolds
fit the binding pocket of the co-crystalized fragment and extend to
sub pocket p1 or p2, shown in Supplementary Figure S1. Several
molecular interactions were observed conserved among the
common structures, which were listed in Table 1. The sulfon-
amine-benzene structure might occupy the main ligand binding
pocket by the benzene or pyridine group via hydrophobic
interactions or VWD forces with the residues (shown in
Figure 8A; Supplementary Figure S2). The NH group might form
hydrogen bond with residues E27, which can further enhance the
binding affinity. Substitute alkyl group on benzene could extend the
interaction with residues L149 and W34. Additional six or five
member rings linked to sulfonamide would bind to sub pocket
p1 formed by E27 and L28. The common structure of 1,2-
benzisothiazol-3-amine 1,1-dioxide might fully occupy the main
binding pocket, shown in Figure 8B; Supplementary Figure S3. The
benzisothiazol group might form hydrophobic interactions or
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anion-pi interactions with the main binding pocket, in which the
dioxide group would contact W34 by VDW. The benzene rings
might undergo functionalization with different substituents, such as
alkyl or chloro groups. The structure N-phenylbenzamide might fit
the main pocket and the sub pocket 2 by the two benzene rings,
shown in Figure 8C; Supplementary Figure S4. Nonetheless, the
furan group of the common structure 4 might prefer binding to the
sub pocket p1, as shown in Figure 8D; Supplementary Figure S5.
While these common structures dominate the interactions between
the identified compounds with the residues in the binding pocket of
ApoE4, other functional groups like carboxylic acid, ketone, amine,

amide, and hydroxy also contribute to the binding (as shown in
Table 1). These common structures, along with their interactions
with residues in the binding pocket of ApoE4, pave the way for
future compound optimization. For example, the interactions
between the functional groups of ligands and the listed residues
in Table 1 can serve as a starting point for ApoE4 drug development.

As highlighted in Figure 8; Table 1, the hydrogen bonds play an
important role in the interactions between the common structures
and ApoE4 residues. The 312 identified small molecules contain a
variety of hydrogen bond donor or acceptor functional groups. In
particular, the compounds are more likely to form hydrogen bonds

FIGURE 7
The distribution of the 1,391 compounds selected by the ligand-protein docking program in their druglike properties, toxicity, and ability to
penetrate blood brain barrier.

FIGURE 8
Common structures extracted from the identified ApoE4 binders by the clustering of 2D structures and the alignment of 3D conformations: sulfon-
amine-benzene (A), 1,2-benzisothiazol-3-amine 1,1-dioxide (B), N-phenylbenzamide (C), furan-amino-benzene (D) were obtained from four large
groups of candidates. The putative ApoE4 binders (yellow), amino acid residues of ApoE4 protein (green), and surface of ligand binding pocket
(transparent white) were displayed using ICM.
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with polar residues around the ligand binding pocket, for instance,
residues W34, R38, E27, D35, D153, and Q156. To further illustrate
this, six compounds were displayed as examples in Figure 9. The
carboxylic acid group of compounds would form hydrogen bonds
with both residues W34 and R38 (e.g., Compound a in Figure 9A).
Compound b not only binds to residues R38 and W34 with the
ketone functional group but also forms a hydrogen bond (HB) with
D153 through the triazole group. Compound c binds to a HB donor,
i.e., residue Q156, by the quinolin-2(1H)-one group and to
R38 residues by an ether group. The triazole group of compound
d and residues D35 might also have hydrogen bonds in between. As
shown for Compounds e and f in Figures 9E, F, the amine and amide
groups might bind to residues E27 by one or more hydrogen bonds.
In short, some hydrogen bonds can be found conserved via a careful
analysis of ligand-protein interactions. Carboxylic acid, ketone,
amide, and ether might function as HB acceptors and bind to
residues W34 and R38. Amine and amide groups acting as HB
donors form hydrogen bonds with residues E27. Since these
interactions were conserved in multiple compounds, they may be
retained in other ligands with similar functional groups when they

bind to ApoE4. Due to the limitation of hardware, the
conformational change of every compound was limited during
the virtual screening. The aforementioned functional groups may
make directions of screening of large make-on-demanded libraries
which might contain billions of compounds, and thus would reduce
the simulation time.

4 Discussion

4.1 The identified drug target for Alzheimer’s
disease

A systems-biology pipeline was developed in this work to identify
potential protein targets to regulate the progression of Alzheimer’s
disease. ApoE4 turned out as the top protein target. Interestingly,
previous studies also attempted to prove ApoE4 as a protein that
could increase the risk of Alzheimer’s disease. In an ApoE inducible
mouse model, the ApoE4 isoform indicated a correlation with amyloid
pathology, which impairs Aβ clearance and accelerates its aggregation

TABLE 1 Summary of the common interactions between identified compounds and ApoE4 protein.

Chemical structure Structure name Predicted interactions with individual residues

Sulfon-amine-benzene Hydrogen bond (HB): E27, Hydrophobic: A152, W26 VDW: D153

1,2-benzisothiazol-3-amine 1,1-
dioxide

Cation/Anion-π interactions: Q156, D153 Hydrophobic: E27, L30, G31, W26, A152, L149 VDW: W34

N-phenylbenzamide Cation/Anion-π interactions: Q156 Hydrophobic: L30, L149, A152 VDW: D153

Furan-amide-benzene HB: E27 Cation/Anion-π interactions: D153, Q156 Hydrophobic: W26, L28, L30, L149

1,2,4-triazole HB: D153, D53

Quinolin-2(1H)-one HB: Q156

-COOH Carboxylic acid HB: W34, R38

-CO- Ketone HB: W34, R38

-O- Ether HB: R38

-NH-CO- Amide HB: E27

-NH, -NH2 Amine HB: W34, R38, E27

-OH Hydroxy HB: E27, D153
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during the early seeding stage of amyloid accumulation (Liu, 2017).
Another mouse model of tauopathy demonstrated that ApoE4 affected
tau pathogenesis, caused neuroinflammation, and exacerbated tau-
mediated neurodegeneration (Shi, 2017). It is reported that the
binding of the co-crystalized fragment to a hydrophobic pocket in
ApoE4 may change the physical properties of ApoE4 and manipulate
ApoE4 activity (Petros, 2019). The binding may make ApoE4 function
like other Apolipoprotein E alleles (i.e., ApoE3 and ApoE2) in liposome
breakdown. ApoE3 and ApoE2 are reported to have neutral and
protective effects on the progression of Alzheimer’s disease,
respectively (Huang et al., 2019). Although ApoE4 could be a
valuable treatment target of Alzheimer’s disease, very limited study
had used it as a target to develop new therapeutic methods of
Alzheimer’s disease. This work thus represents the first systematic
evaluation of ApoE4 as the target for identifying small molecules for
Alzheimer’s disease intervention. In addition to ApoE4, other potential
protein targets listed in Figure 6 can be further investigation for their

involvement in the progression of Alzheimer’s diseases in the future.
Besides, top 20 genes with high GDA scores, including ApoE, were
further investigated for their involvement in Alzheimer’s disease through
a literature review. The results have been detailed in Supplementary
Figure S6.

4.2 Common structures of potential
ApoE4 binder compounds

Since there are millions of chemical compounds, it is time
consuming and costly to test each compound in experiments for
its binding affinity with ApoE4. Different from the conventional
drug discovery method, a computer-aided drug discovery and
design method was developed in this work to discover
compounds that could be used as binders of ApoE4. While it is
meaningful to evaluate the 312 putative ApoE4 binders in

FIGURE 9
Six putative ApoE4 binders (A–F) present interactions identified conserved between ligand functional groups and ApoE4 residues. The hydrogen
bonds formed by the compounds (yellow) and protein residues (green) were labelled in black solid line.
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experiments, it is challenging to obtain purified ApoE4 whole
protein along with its activity assay at current stage. Instead, this
work is focused on studying the common structures of the
312 identified compounds, as these functional groups may be
used for further compound optimization.

Four common structures, i.e., sulfonamide-benzene, 1,2-
benzisothiazol-3-amine 1,1-dioxide, N-phenylbenzamide and
furan-amino-benzene, were identified via hierarchical clustering
of compound chemical structures. The sulfonamide-benzene
structure facilitates the binding to ApoE via hydrophobic
interactions or VWD forces between the benzene or pyridine
group with the residues (i.e., residuals L30, A152, W26, W34,
L149 for hydrophobic interaction; residuals D153, Q156, G31 for
VWD forces). The structure of 1,2-benzisothiazol-3-amine 1,1-
dioxide shows hydrophobic interactions or anion-pi interactions
with the binding pocket, especially with residuals L30, W26, Q156,
D153, A152, L149 for hydrophobic interactions) and with residual
W34 (via the SO2 group) for VDW. N-phenylbenzamide might fit
the main pocket and the sub pocket 2 by the two benzene rings via
the hydrophobic interaction with residuals A152, L30, G31. The
furan-amino-benzene structure enables its binding to the sub pocket
p1. The interactions between these structures shared by multiple
compounds and residuals in ApoE4 can provide guidance to further
optimize compound structures to obtain better binding affinities.
This demonstrates that computational approaches are capable of
studying detailed ligand-residual interactions that are challenging,
costly, or time-consuming to experiment with.

4.3 Limitations and future work

The ligand-protein docking program in this work was based on
the crystal structure of the N-terminal of ApoE4 from existing
experimental data (Petros, 2019). The crystal structure of the
C-terminal of ApoE4 is not available yet. One solution to address
this is using AlphaFold, an AI system developed by DeepMind to
predict the 3D structure of a protein from its amino acid sequence, to
predict the crystal structure of ApoE4 with both N-terminal and
C-terminal domains. This is the next direction for us to pursue
before the crystal structure of ApoE4 is determined from
experiment. The compounds along the discovered common
structures will be further evaluated by the updated crystal
structure of ApoE4.

This work mainly aims to identify compounds and common
structures for further optimization of compounds for binding
ApoE4. While experimental validation was planned and tried, no
protein-based assay kit has been designed for ApoE4 yet. This is like
the situation for the complete crystal structure of ApoE4. One
approach to address this issue is to use mouse models with
different ApoE alleles to evaluate the compounds and common
structures discovered in this work. Researchers can use induced
pluripotent stem cells (iPSC) to grow human neurons in a dish now
(Lagomarsino, 2021). It may be possible to grow neurons with
microglia and astrocytes in a dish to mimic the brain in the
future. This may enable the testing of the ApoE4 binders in a dish.

Since ApoE4 is hinted by the literature as a genetic risk factor for
Alzheimer’s disease, this work was mainly focused on identifying
binders to ApoE4. The ApoE2 isoform contains cysteine residues at

both positions, ApoE3 has a cysteine at position 112 and an arginine
at position 158, and the ApoE4 protein owns arginine residues at
both positions (Chen et al., 2021). This is an interesting direction to
further study whether the identified compounds would be selective
to ApoE4 rather than ApoE2 and ApoE3.

The dynamic system modeling formalism, such as The Cell
Collective, would be helpful to investigate the complex feedback
mechanisms and dynamic behavior of the protein-protein
interaction network in Alzheimer’s disease. For example,
molecular regulation with feedback circuits may be presented
in Boolean networks (Azpeitia, 2017). In order to build and
validate the dynamic models, gene regulation data over time is
needed for Alzheimer’s disease. While the dynamic data is note
complete for all AD genes in the DisGeNET, the dynamic system
modeling formalism is an interesting direction for future
investigations.

5 Conclusion

Alzheimer’s disease has become a major public health issue.
After decades of extensive research, only seven drugs have been
approved by the FDA to treat Alzheimer’s disease. One reason for
this is that various genes, reactions, and pathways are involved in
regulating the progression of Alzheimer’s disease. This work
conducted a comprehensive analysis of genes from existing
clinical database and identified ApoE4 as the top protein target
to intervene Alzheimer’s diseases. Existing data indicated the
binding of fragments to ApoE4 may change its function as the
greatest risk factor of Alzheimer’s disease. On the basis of the crystal
structure of ApoE4 N-terminal, a computational pipeline was
developed to screen 1.5 million compounds from FDA approved
drugs and ChemBridge database for their binding affinities with
ApoE4. Totally 1,391 compounds were identified with better
binding affinities than the co-crystalized fragment, and 312 of
them have met the required druglike properties, low toxicity, and
ability to penetrate blood brain barrier. Statistical analysis of the
312 compound structures indicated that the compounds with good
binding affinities generally have the structures like sulfon-amine-
benzene, 1,2-benzisothiazol-3-amine 1,1-dioxide,
N-phenylbenzamide, and furan-amino-benzene. The common
interactions between the 312 compounds and residues in
ApoE4 were thoroughly analyzed. It turns out that the residues
E27, W34, R38, D53, D153, and Q156 in the N terminal of
ApoE4 play an important role in forming hydrogen bonds with
compounds. Hydrophobic interactions are found between
compounds with the following residues W26, E27, L28, L30, G31,
L149, and A152. The four common compound structures and the
interactions with the aforementioned residues can serve as starting
points for future compound optimization to identify ApoE4 binders
for potential Alzheimer’s disease intervention.
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