AUTHOR=An Gary , Cockrell Chase TITLE=Generating synthetic multidimensional molecular time series data for machine learning: considerations JOURNAL=Frontiers in Systems Biology VOLUME=3 YEAR=2023 URL=https://www.frontiersin.org/journals/systems-biology/articles/10.3389/fsysb.2023.1188009 DOI=10.3389/fsysb.2023.1188009 ISSN=2674-0702 ABSTRACT=
The use of synthetic data is recognized as a crucial step in the development of neural network-based Artificial Intelligence (AI) systems. While the methods for generating synthetic data for AI applications in other domains have a role in certain biomedical AI systems, primarily related to image processing, there is a critical gap in the generation of time series data for AI tasks where it is necessary to know how the system works. This is most pronounced in the ability to generate synthetic multi-dimensional molecular time series data (subsequently referred to as synthetic mediator trajectories or SMTs); this is the type of data that underpins research into biomarkers and mediator signatures for forecasting various diseases and is an essential component of the drug development pipeline. We argue the insufficiency of statistical and data-centric machine learning (ML) means of generating this type of synthetic data is due to a combination of factors: perpetual data sparsity due to the Curse of Dimensionality, the inapplicability of the Central Limit Theorem in terms of making assumptions about the statistical distributions of this type of data, and the inability to use