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The use of synthetic data is recognized as a crucial step in the development of
neural network-based Artificial Intelligence (AI) systems. While the methods for
generating synthetic data for AI applications in other domains have a role in certain
biomedical AI systems, primarily related to image processing, there is a critical gap
in the generation of time series data for AI tasks where it is necessary to know how
the system works. This is most pronounced in the ability to generate synthetic
multi-dimensional molecular time series data (subsequently referred to as
synthetic mediator trajectories or SMTs); this is the type of data that underpins
research into biomarkers and mediator signatures for forecasting various diseases
and is an essential component of the drug development pipeline. We argue the
insufficiency of statistical and data-centric machine learning (ML) means of
generating this type of synthetic data is due to a combination of factors:
perpetual data sparsity due to the Curse of Dimensionality, the inapplicability
of the Central Limit Theorem in terms of making assumptions about the statistical
distributions of this type of data, and the inability to use ab initio simulations due to
the state of perpetual epistemic incompleteness in cellular/molecular biology.
Alternatively, we present a rationale for using complex multi-scale mechanism-
based simulation models, constructed and operated on to account for perpetual
epistemic incompleteness and the need to provide maximal expansiveness in
concordance with the Maximal Entropy Principle. These procedures provide for
the generation of SMT that minimizes the known shortcomings associated with
neural network AI systems, namely overfitting and lack of generalizability. The
generation of synthetic data that accounts for the identified factors of multi-
dimensional time series data is an essential capability for the development of
mediator-biomarker based AI forecasting systems, and therapeutic control
development and optimization.
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1 Introduction: what this article is, and is not, about

Synthetic data is recognized to be needed for machine learning (ML) and artificial
intelligence (AI) systems to reach their full potential (Nikolenko, 2019). This article presents
a hypothesis and theoretical basis regarding generating synthetic multi-dimensional
molecular time series data (henceforth termed synthetic mediator trajectories or SMTs)
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for biomedical applications where it is critical to have an
understanding of how the system works. Therefore:

• This article is about how to generate synthetic data to augment
multiplexed molecular-level time series data used to forecast
the behavioral trajectory of an individual patient or, perhaps
more importantly, for the evaluation of whether novel drugs or
novel combinations of existing drugs (repurposing) will work
(hypothesis testing).

• This article is not about searching for a particular candidate
compound based on a presumed target pathway/gene/
molecule (hypothesis generation).

• This article concerns forecasting or evaluative tasks that
presume a mechanistic, hierarchical causal relationship
between the lower scale features (cellular/molecular) and
the higher order, system-level phenotype (clinical disease
manifestation) (Bareinboim, 2020).

• This article is not about producing and using structural causal
models whose feature sets are scale-agnostic and flat (as is seen
in utilizing electronic healthcare data that concatenates
demographic, physiologic and laboratory data to produce
synthetic populations) (Pearl, 2010).

• The task of generating SMTs focuses on enhancing the output
of experimental cellular-molecular biology, which reflects the
vast majority of biomedical research on the discovery and
development of potential drugs.

• This article is not about using physics-based equations to
simulate biology in systems that can be represented at a
mechanical-physical level, such as fluid dynamics models of
vascular flow or the material-wear properties of mechanical
joints.

• This article is about generating synthetic data that can allow
for the identification of individual trajectories (e.g.,
personalization).

• This article is not about synthesizing aggregate populations
(“virtual populations”), as would be seen in epidemiological
models.

We hypothesize that generating multi-scale, hierarchical time
series data precludes the use of: 1) statistical methods, including
the use of generative adversarial neural networks (GANs) and 2)
existing approaches that generate virtual/synthetic populations that,
while producing heterogeneous synthetic populations, do so by
aggregating classes of patients around mean mediator values and
do not replicate the individual patient trajectories needed for ML/AI
training (Brown et al, 2015; Renardy and Kirschner, 2020; Jenner et al,
2021; Sips et al, 2022). We further hypothesize that these tasks require
the use of sufficiently complex, mechanism-based simulation models
of cellular and molecular processes to generate SMTs to train artificial
neural networks (ANNs)/AI systems to address these tasks. As this is a
Hypothesis and Theory article, the arguments presented involve:

1. Challenging underlying assumptions regarding what statistical
approaches can be used (specifically the assumption of normal
distributions predicated upon the applicability of the Central
Limit Theorem.

2. Identifying known failure modes for ML/AI systems (specifically
regarding the failure to generalize)

3. Presenting a proposed solution that addresses these known
limitations.

We then present an example of how a sufficiently complex,
mechanism-based simulation model can be used to generate SMT,
but also acknowledge that at this point its benefits remain
hypothetical, though grounded in theoretical principles that
suggest its utility. To aid in navigating this paper, we provide the
following outline of the components:

• Introduction to Synthetic Data in the wider, general
community
o How such Synthetic Data is generated

• Potential Applications of Synthetic Data in Biomedicine
o Circumstances where general approaches are applicable
o Circumstances where general approaches are not applicable,
specifically with regards to multiplexed molecular time series
data, and why
⁃ Why statistical approaches are insufficient
⁃ Why physics-based simulation is insufficient

• What is required for generating synthetic multiplexed
molecular time series/molecular trajectories for the
purposes of ML/AI training
o Identifying the limitations of ML/AIs
o Strategies to overcome the limitations of ML/AIs

• A proposed strategy for generating SMT, with an example
• Future Considerations

2 Synthetic data: general concepts,
current uses and means of generation

First, we provide an overview of synthetic data, and use cases
where its generation and use are on sound theoretical footing.
Training ANNs for AI applications is notoriously data hungry,
and even in areas with copious data there are recognized benefits
to the supplementation of that data with synthetically generated data
(Nikolenko, 2019). The most well-publicized examples of AI use
synthetic data: image recognition/generation (Kortylewski, 2018),
natural language processing/generation (Puri, 2020), self-driving
cars (Bhandari, 2018) and game-playing systems (Silver et al,
2017; Vinyals et al, 2019; Perolat et al, 2022). In fact, the
development of AI image generators and chatbots integrates the
generation of synthetic data with the target applications, which are
essentially means of generating “realistic” synthetic objects. The
means of generating synthetic data falls into two general groups:

1. Statistical synthetic data can be generated if there is enough
existing real-world data such that either: 1) the statistical
distribution of system features can be reliably approximated or
2) an ANN can be trained, based on their property as Universal
Approximators (Hornik et al, 1989), to a sufficiently robust
generative function, an process that often utilizes generative
adversarial neural networks or GANs (Bowles, 2018; Creswell
et al, 2018). However, if an ANN is going to be used to
approximate the generative function underlying the data, there
needs to be sufficient existing training data such that a GAN-
adversarial training scheme can distinguish between applied
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noise and the “true” data/invariant component (as determined by
appropriate annotation). Consequently, this approach has found
its greatest success in image analysis, where vast libraries of
annotated images have been able to be used to both train initial
ANNs and serve as reference points for GAN-driven synthetic
image generation. The success in this field is evident in the two
most successful applications generating synthetic images: Dall-E2
https://openai.com/product/dall-e-2 and Midjourney https://
www.midjourney.com/home/).

2. Simulation generated synthetic data from mechanism-based
simulation models can be considered “real enough” if the
generative simulations are firmly grounded in natural laws
(“physics-based”) or within the context of known rules (e.g.,
games). In these cases, there is a high degree of confidence in the
rules and mechanisms of the simulations, and thus high trust in
the fidelity of the synthetically generated data and the “real-
world” in which the trained systems must operate
(acknowledging that in the case of a game, the game itself
represent the “real world” for the player).

These two successful forms of generating synthetic data are
presented as reference points for our subsequent discussion to
identify biomedical tasks for which they are suited, and those for
which they are not.

3 Biomedical synthetic data: cases
where existing methods can, and
cannot, be used

There are biomedical use cases where the above well-accepted
means of generating synthetic data through statistical or physics-
based methods can be applied (Chen et al, 2021). Biomedical image
processing (for either radiology or pathology) readily falls into the
category of general image processing, and the same approaches used
for image analysis can be extrapolated to biomedical applications
(Candemir et al, 2021; Chen et al, 2021; Kitamura et al, 2021; Kelly
et al, 2022; McAlpine et al, 2022; Seah et al, 2022; Daniel, 2023).
Other circumstances where there may be enough existing data for
statistical distributions are population-level data suitable to
represent the control population in a potential clinical trial (Zand
et al, 2018; Galaznik et al, 2019; Myles et al, 2023) or based on data
from electronic health records (Baowaly et al, 2019; Chin-Cheong
et al, 2019; Tucker et al, 2020; Libbi et al, 2021; Hernandez et al,
2022; Venugopal et al, 2022). In terms of simulated synthetic data,
biomedical systems that can be represented as physical systems, such
as fluid dynamics for anatomic representation of blood flow,
electrical circuits for cardiac conduction, or the mechanical
properties of joints, can be simulated with well-recognized
“physics-based” methods (Levine, 2019; Burton et al, 2021; Peng
et al, 2021; Sharma et al, 2022).

However, for the vast majority of biomedical research, namely
experimental cellular and molecular biology, neither of these
conditions hold. A central premise of experimental biomedical
research is that more granular mechanistic knowledge can lead to
improved human health, i.e., through the development and use of
various-omics-based and multiplexed molecular assays. The
foundation of the drug development endeavor is based on the

premise that more detailed molecular knowledge of biological
processes is the means to identifying more effective and precise
new therapeutic agents. However, this experimental paradigm has
two consequences that challenge the application of statistical, data-
centric forms of analysis and, consequently, the ability to generate
synthetic data.

1. Perpetual Data Sparsity. As each new “feature” (gene, biomarker,
etc.) is identified, this adds dimensionality to the characterization
of biological systems and this process carries with it a cost: the
Curse of Dimensionality (Verleysen and François, 2005). The
Curse of Dimensionality means that with each additional feature
used to describe a system, there is an exponential increase in the
potential configurations those features can take relative to each
other (combinatorial explosion) and, similarly, the amount of
data/sample points needed to characterize those potential
combinations; this leads to a state of perpetual data sparsity.
Because the space of potential combinations is perpetually under-
sampled in the real world, it is not possible to generate the “true”
statistical distribution of these values. This is specifically relevant
to multiplexed molecular measurements, which are used because
there is not a single measured entity with enough discriminatory
power/utility (or else the multiplexed or-omics characterization
would not be needed).

2. The inapplicability of the (Central Limit Theorem, 2008). Often
there is an assumption that biological data will follow a normal
distribution. This assumption is based on the presumption that
the data being collected is governed by the Central Limit
Theorem. However, the fundamental requirement of the
application of the Central Limit Theorem is that the
measurements are independent random variables. For
molecular measurements related to disease this is not the case
for the following reasons: 1) that the measured entities are not
independent of each other is readily evident insomuch these
molecules/mediators/genes are almost always connected by
shared pathways, so the value of one entity will affect the
value of another, and 2) the source of the samples are not
random, given that the sampling occurs in a population that
is preselected based on their manifestation of a disease process.
Given that the initial requirements for application of the Central
Limit Theorem, which is the justification for assuming a normal/
Gaussian distribution of values, are not met, this means that one
cannot assume a normal distribution for this type of data. This
finding has been confirmed in several publications (Hardin and
Wilson, 2009; Posekany et al, 2011; Lubura et al, 2012). Note that
this does not mean that such measurements will not be normally
distributed, but that such a normal distribution cannot be
assumed.

Because statistical/data-centric approaches have the above
fundamental limitations in terms of generating SMT, we assert
that mechanism-based simulation methods need to be applied.
However, there are also specific issues to directly translating the
concept of “physics-based” simulations to those that can be used to
represent the multiscale effects of cellular/molecular biology.

1. Multiscale cellular/molecular biology simulations cannot be
produced ab initio. Biology, as a physical system, is certainly
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bound by the fundamental laws of physics and chemistry, but
there are no corresponding fundamental laws that constrain the
dynamics and output of cellular/molecular biology. While certain
physical laws and constraints can be incorporated into cellular/
molecular simulations (i.e., mechanical effects on cell signaling or
mass conservation in metabolism), these components must
inevitably be connected to representations of how cells
respond to and modulate their behavior to these features. It is
these behavioral aspects of cellular/molecular biology that
produce the richness of biology, and for which there are not
constraining fundamental laws. Because of this, the essential
features of cellular/molecular biology cannot be represented by
“physics-based” simulations (Levine, 2019; Burton et al, 2021;
Peng et al, 2021; Sharma et al, 2022). Ultimately, the fundamental
problem is that the generative mechanisms that lead to molecular
mediator time series data are mostly unknown; further, they are
undiscoverable (at present) by theory because the set of events
that generate molecular mediator time series data are not
tractable to compute ab initio (i.e., from the electronic
configurations of the relevant molecules).

2. Dealing with the impact of perpetual epistemic uncertainty and
incompleteness. Because of the lack of cell-behavior-scale
fundamental laws, there is perpetual epistemic uncertainty in
terms of the molecular-cellular rules that govern the biological
system. Pushing the boundary of knowledge is the entire goal of
cellular/molecular biology, but it must be acknowledged that it is
impossible to know everything. Therefore, in terms of applied
biology there must be some way of using incomplete knowledge
to in a useful fashion. The only means of accomplishing this is by
posing a particular mechanistic hypothesis and then operating on
that hypothesis structure (through iterative experiment,
recalibration/validation and iterative refinement) until it is
proven to be insufficient. Establishing generative hierarchically
causal/multi-scale mechanisms for such simulation models
involves 1) identifying a level of abstraction that is
“sufficiently complex”, and 2) utilizing a simulation model use
strategy that provides the least bias, and therefore greatest
explanatory expansiveness, in terms of determining its link to
the real-world. This latter concept is reflected in the Maximum
Entropy Principle, a formal method that is grounded in
Information Theory and Statistical Physics (De Martino and
De Martino, 2018), which utilizes thermodynamic principles to
describe why any computational model of a biological system
must necessarily have multiple parameterizations. An expansion
of the Maximal Entropy Principle is manifested in our calibration
methods (see below in Section 4) aimed at finding simulation
model parameterizations and configurations that cannot be
falsified by existing data.

Thus, the investigatory paradigm in experimental biology
generates conditions that preclude the application of traditional
means of generating synthetic data to producing SMTs:

1. Sparsity of high-dimensional time series data renders any
assumptions regarding the true statistical distribution
problematic.

2. Simulation models representing the SMT cannot be generated
from physics-based fundamental laws.

3. The generative rule structures of potential mechanism-based
simulations have perpetual epistemic uncertainty regarding
biological rules.

Because of these factors, methods for generating SMT using
either statistical methods or physics-based/ground-truth/ab initio
simulations cannot be used. Therefore, an alternative approach is
necessary, one that accounts for the limits of ANN-based AI systems
and the perpetual epistemic uncertainty/incompleteness regarding
cellular and molecular mechanisms.

4 What features must synthetic
mediator trajectories (SMTs) have?

We identify two main classes of issues to address in generating
SMT for the purpose of ML training. The first is mitigating the
failure modes for ANNAI systems; these establish issues that need to
be overcome by a simulation strategy to generate SMT:

1. ANNs fail to generalize. This is due to ANN training data sets not
being sufficiently and comprehensively representative enough of
the possible data configurations in the real world. In these cases,
the discrepancy between the training set and the eventual
application in the real world leads to the condition termed
data drift (Nelson, 2015; Baier et al., 2019; Ackerman et al,
2020). Overcoming this limitation arising from insufficient
training data is exactly the goal of using synthetic data for
ML/AI, but with the recognition that such synthetic data must
be generated in a fashion that provides a more comprehensive,
expansive representation of the real-world data, i.e., data
augmentation (which is the point of this paper). Therefore,
the means of generating SMT should be as expansive (e.g.,
least biased) as possible, representing as much of the breadth
of possible configurations of the target/real-world system, so the
generative function learned by the ANN is applicable to the
widest possible circumstances that might exist in the real world
(thereby mitigating and forestalling data drift and increasing the
robustness and generalizability of the trained ANN).

2. Inability to discriminate. A significant number of AI tasks involve
distinguishing between one group from another. As such, there is
an initial supposition that there is a detectable difference present
between groups via a distinguishable phenotype/outcome. The
issue with much existing time series data is that the range of
values within each group is nearly always larger that the
difference between some statistically determined characteristic
of each group (be it mean or median). Since that the “true”
statistical distributions are not known, the only way to create
synthetic data that represents each different group is to generate
it mechanistically, given the criteria of non-falsifiability by
existing data and expansiveness in terms of potential
explanations given a particular hypothesis structure (e.g.,
dealing with epistemic uncertainty as per the Maximal
Entropy Principle).

Overcoming these two limitations intrinsic to ANNs are
therefore key goals for the construction and use of a putative
mechanism-based multiscale simulation approach to generating
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SMT to be used in ML training. Combining these ANN-limit
mitigation requirements with the need to deal with perpetual
epistemic uncertainty in simulation model structure leads to the
following proposed requirements, with accompanying rationale,
below:

1. Choosing a “sufficiently complex” abstraction level for the
multiscale mechanism-based simulation model. All
computational models incorporate parameters within the
rules/equations that make up the model. In mechanism-based
multi-scale simulation models of biological processes those rules
often represent cellular functions and molecular events, such as
receptor binding, signaling, gene activation, protein synthesis or
secretion, etc. However, these models do not explicitly represent
every component of every step present in the cell; in practice this
is impossible because the sum-total of interactions between
components, or even the total set of components, is not
known. However, it is possible to construct such models
where the unknown features (equivalent to latent variables)
can be structured such that these features represent
(primarily) the responsiveness of the represented functions in
the model. We therefore consider a “sufficiently” complex multi-
scale mechanism-based model as one where all essential cellular
behavioral functions for a given purpose of the models are
represented via a selection of chosen pathways, but with a
latent space of variables that represent the differential
responsiveness/gain of the represented functions (representing
in aggregate unknown/unidentified genetic, epigenetic or
signaling pathways not explicitly represented in the model). If
such a model structure is followed, then the unknown features/
latent variables can be aggregated into a multi-dimensional set of
configurations that are responsible for generating the data
heterogeneity seen across biological populations (Cockrell and
An, 2021). Therefore, the next step is developing a means of
operating on this model in a way that maximizes the
expansiveness of behavioral representation used to
generate SMT.

2. Maximizing the expansiveness of the generated SMT to minimize
data drift for the ANN. It is readily evident that there can be no
preconceived means of restricting the possible configurations of
these latent responsiveness features. What is needed is a means of
minimizing potential a priori bias in the representation of this
latent space. The concept of minimizing bias by maximally
quantifying ignorance is the fundamental basis for the
Maximum Entropy Principle. While our proposed approach
does not directly and formally apply the Maximum Entropy
Principle to synthetic data generation, the general principle of not
restricting the range of possible system configurations by some
means outside the available data is crucial to mitigate overfitting
during training of the ANN. A key difference in our proposed
approach is that we operate from the starting point of a
knowledge-based hypothesis structure that is embodied by the
simulation model and utilize the latent space of unrepresented
features, represented in a mathematical object, as the means of
maximizing ignorance/entropy (in an information theoretic
sense).

3. Translating expansiveness of representation (as per the Maximal
Entropy Principle) into an alternative view of “calibration.” In

general practice, the process of calibrating a computational model
involves finding the minimally sufficient set of parameterizations
able to “best” replicate an existing data set. Because the space of
parameterizations is functionally infinite, there is an intrinsically
reductive nature to this task; this reductive paradigm is also
manifest in common practice of fitting to the mean of what is in
reality a highly variable data set (Brown et al, 2015; Renardy and
Kirschner, 2020; Jenner et al, 2021; Sips et al, 2022). If the goal of
the modeling exercise is to provide some insight into the
differences between different cohorts manifesting different
phenotypes of interest (e.g., disease versus not disease), then
this aggregating process can be useful and beneficial. However, if
the goal is to then use that simulation model to produce synthetic
data that captures the total amount of expressiveness in that data
set (e.g., the heterogeneity of different trajectories manifesting as
the variability seen in the data), then the aggregating/mean-
fitting approach is insufficient. Rather, the “noisiness” of the data
is exactly what must be encompassed by any calibration process
used to describe the latent space of unrepresented features in a
fashion that maximizes information-entropy. Additionally, the
outlier values in a biological data set cannot be considered the
min-max values for that particular variable/feature/molecule.
Given the perpetual sparsity of these data sets, there can be
no supposition that one may have happened to stumble across
the actual maximal value biologically possible for that condition.
Rather, the “outliers” in a data set need to be considered as only
points within a larger potential distribution able to be generated
by a proposed simulation model. Thus, any means of generating
SMT must be able to expand the range of possible values for any
feature in a biologically plausible fashion.

Therefore, we hypothesize that the generation of appropriate
SMT for training an AI system requires a multi-scale mechanism-
based simulation model that embodies an initial set of generative
components and ameans of operating over that knowledge structure
that minimizes the bias regarding all the interactions (the latent
variable space and interactions, including second, third to n-order
effects) (De Martino and De Martino, 2018). The following section
presents a demonstration of such an approach, which uses an agent-
based model (ABM) constructed in a particular fashion, and a non-
traditional conception of model “parameter space” that represents
an initial approximation of a means of characterizing the latent
space of unrepresented interactions for a given model. Note that this
method of using ABMs, which addresses the generative hierarchical
nature of SMT, is distinct from those approaches that use ABMs to
generate virtual populations for epidemiological studies, where the
trajectories of internal states of the agents is not the primary focus
(Popper et al, 2020; Bissett et al, 2021; Truszkowska et al, 2021).

5 A proposed approach for generating
SMTs

Here we present an example of a strategy for generating SMT to
potentially train an AI for tasks that require either the forecasting of
individual patient trajectories or the discovery and testing of
potential interventions on molecular targets (e.g., novel drugs).
This example is not intended to imply that the specific steps and
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methods listed below are the onlymeans of meeting the above stated
criteria for generating SMT, but does illustrate an approach that
addresses all the required theoretical criteria for such synthetic data,
as listed in the previous section:

1. The use of a mechanism-based multiscale simulation model
grounded in existing biological knowledge. The use of a
simulation model provides a means of partially addressing the
Curse of Dimensionality, where the constraints on behavior
enforced by the incorporated mechanistic rules constrain the
multi-dimensional configurations possible. The multiscale nature
of the simulation model overcomes the limits imposed by the
Causal Hierarchy Theorem in terms of representing hierarchical
generative causal relationships in a testable fashion.

2. The incorporation of epistemic uncertainty into the simulation
model while following the Maximal Entropy Principle through
the use of a mathematical object, the Model Rule Matrix,
described in detail below.

3. Utilizing the concept of non-falsifiability in the generation of an
unbiased, expansive synthetic data set, also as per the Maximal
Entropy Principle, to overcome the inherent limitations of ML/
ANNs in terms of their brittleness and failure to generalize.

The presented example utilizes a cell-level ABM, though the
approach is potentially modifiable to any complex multi-scale
mechanistic model. Cell-level ABMs represent biological
systems as interactions between different cell types where
each cell type is governed by a defined set of literature-based
rules [for a recent review of ABMs in biomedicine see
(Sivakumar et al, 2022)]. Such ABMs are desirable for
synthetic data generation because: 1) they embody
knowledge and spatial interactions not readily replicated
with a set of differential equations (which would be readily
and misleadingly be reconstituted by training an ANN), 2) they
incorporate stochasticity at a generative level (where it exists in

biology) and therefore are able to produce the non-Gaussian
stochastic distributions seen at the system level and 3) are able
to encompass epistemically uncertain or undefined biological
features if constructed in a particular fashion that allows the
incorporation of epistemic uncertainty in a mathematical
object call the Model Rule Matrix (MRM) (Cockrell and An,
2021).

The MRM is an interaction matrix between 1) all the entities/
molecules/mediators chosen to be included in a simulation model
and 2) the rules utilized by the simulation model to represent the
biological functions. The numerical values present at each matrix
element denote the strength and direction of the contribution of the
entity (column) to the functional rule (row). The lack of inclusion of
a particular entity in a particular rule is represented by a “0” for the
corresponding matrix element. See Figure 1 for a depiction of the
components of anMRM. Since every dynamic computational model
represents some choice by the modeler of the features and
interactions to be represented, the “base” model produces a
relatively sparse MRM: this MRM would only include those
entities and rules represented in the model and all other matrix
elements have values of 0. However, it is readily evident that the
necessary selection of what is represented in the model itself
represents a bias with respect to the full biological complexity
(though an unavoidable one) and that there are numerous other
potential/inevitable contributions from biological components/
molecules/pathways/genes that influence the behavior of the
explicitly represented model components. Thus the “0” elements
in the base MRM represents a representation of a “latent” space of
uncharacterized and unspecified interactions that are nonetheless
known to be present in some form at some degree.We assert that it is
the gap between the explicitly represented structure of a
computational model and the recognized additional potential
interactions (by whatever degree of connectivity) that contributes
to a model to capture the richness (manifested as behavioral
heterogeneity) in the real biological system. It is in this fashion

FIGURE 1
Schematic of Model Rule Matrix (MRM). The MRM is a matrix that depicts the relationship between the entities represented in a mechanism-based
computational model (in the columns) and the behavioral rules incorporated in themodel (rows). Thematrix element values represent the contribution of
the particular entity to the cross-referenced rule. The initial MRM for a given model will be relatively sparse, as it will only include the explicitly included
rules in the model. However, the initially “0” matrix elements represent the unknown/unrepresented potential connections/contributions of those
entities that might be present in the real-world system; it is these matrix elements that will be uncovered as the MRM is evolved in the below presented
machine learning calibration pipeline. See below Figures 3, 4 for the result of this process.
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that the MRM utilizes the Maximal Entropy Principle: the potential
information content of the model is enriched by the representation
of connections that are unknown or electively omitted that become
necessary to represent the full heterogeneity of a data set. The
enriched MRM is then capable of representing a genetically,
epigenetically, and functionally diverse cohort of in silico patients
able to represent a range of heterogeneous experimental or
clinical data.

The process of evolving enriched MRMs involves the
application of a ML pipeline that employs both Genetic
Algorithms (GAs) (Goldberg and Holland, 1988; Fonseca and
Fleming, 1993; Haupt and Haupt, 2004; Cockrell and An, 2018)
and Active Learning (AL) (Cohn et al, 1996; Brinker, 2006; Schein
and Ungar, 2007; Huang et al, 2010; Tsymbalov et al, 2018). To a
simulation model constructed such that the coefficients of the rules
in the simulationmodel can be considered strengths of interactions
of their associated variables (and is therefore able to be represented
by a MRM) and a data set that manifests a large degree of
variability. The ML pipeline identifies the set of MRMs (e.g., set
of possible additional connectivity configurations) that are able to

encompass the range of variability present in the data set. A more
detailed description of the ML pipeline is included in the
Supplementary Material and in Refs (Cockrell and An, 2021;
Cockrell et al, 2021). The large degree of variability in the data
is desirable because the goal is to represent the widest range of
biological behavior as possible; having such a target data set
expands the descriptive comprehensiveness of an ensemble of
MRMs. As opposed to classical parameter fitting, which seeks
to find a minimal set (or single) optimal parameter
configuration(s), this process does the exact opposite by
identifying a very large set of non-falsifiable configurations that
has the capability of generalizing beyond the training data set and
reducing the risk of brittle, over-fitted models. Time series data is
particularly desirable, because the requirement of characterizing of
behavioral trajectories further constrains the set of non-falsifiable
MRMs (because the knowledge-based form of the rules limits their
possible behaviors).

We show an example of this process drawn from Ref (Cockrell
and An, 2021), which uses as an example simulation model a
previously developed and validated agent-based model (ABM) of

FIGURE 2
IIRABM schematic diagram. This is a high-level overview of the signaling rules incorporated into the IIRABM. Rules represented include cytokine
upregulation/downregulation, cell activation, and cellular differentiation. See Supplementary Material for a more detailed description of the IIRABM.
Figure reprinted from Cockrell and An (2018) under the Creative Commons License.
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systemic inflammation, the Innate Immune Response ABM
(IIRABM) (An, 2004; Cockrell and An, 2017). The IIRABM is a
two-dimensional abstract representation of the human
endothelial-blood interface. The IIRABM simulates multiple cell
types, including endothelial cells, macrophages, neutrophils,
T-lymphocyte subtypes (TH0, TH1, and TH2 cells) as well as
their associated precursor cells. See Figure 2 for a diagrammatic
representation of the components and interactions in the IIRABM.
Intrinsic biological stochasticity, such as the spatial distribution of
cells at initialization or movement direction not governed by
chemotaxis and the manifestation of switches governing cellular
actions, is represented by the introduction of randomness into the
IIRABM; this allows the IIRABM to generate a population
distribution of different trajectories from identical
parameterizations and initial conditions.

Figure 3 shows the evolution of the IIRABM’s MRM as it is
“calibrated” to multiplexed cytokine time series data from a burn
population as reported in Ref (Cockrell and An, 2021). The
structure of the IIRABM consists of 17 columns representing
the biologically relevant molecular entities included in the
model rules, and 25 rows each representing a rule in the
IIRABM. Figure 3A shows the “base’ MRM as a heat map of
matrix elements where the heat map is related to the interaction
coefficient present in the rule (we used a heat map representation
of MRM values to aid in visualizing the change in the MRM as it is
operated on through the GA/AL pipeline). Note that the “base”
MRM is relatively sparse, as it only includes the interactions
explicitly implemented in the code of the IIRABM.
Alternatively Figure 3B (reproduced from Ref (Cockrell and An,
2021) shows an example MRM that has been derived from the GA
process of calibrating the IIRABM to encompass the target data set
(in this case a publicly available multiplexed mediator data set on
burn patients as reported in Ref (Cockrell and An, 2021). What is
immediately evident is that the previously sparse “base”MRM has
been substantially enriched by the additional of numerous latent
“control” interactions, such that the heatmap of the evolved MRM
has a similar appearance (in terms of connectivity) as is commonly

seen in gene expression/proteomic data. To take this a step further,
in order to meet the Maximal Entropy Principle, we do not assume
that there is a single “best” MRM that cannot be falsified by the
data, and therefore the AL pipeline is used to identify an ensemble
of evolved MRMs that show a range of non-falsifiable coefficients
as seen in Figure 4 [reproduced from Ref (Cockrell and An, 2021)].
What is evident is that while the number of non-falsifiable
configurations is considerable, it is not infinite and does show
discernable structure.

The sum effect of this pipeline is a set of simulation model
configurations grounded on a known, putative knowledge structure,
yet incorporates the sum-total of unknown interactions in that
knowledge structure that cannot be falsified by the reference data
set. This step fulfills the goal of the Maximal Entropy Principle by
minimizing the bias in the resulting functional forms of the
simulation model such that when this set of simulation model
configurations are run to generate SMTs it provides the widest
possible range of possible plausible data to mitigate the limitations of
the AI ANN as it trains on it.

6 An example of generating SMTs using
the ML-MRM approach

To demonstrate how SMTs can be generated with this approach,
we use the IIRABM within the GA/AL pipeline to create synthetic
cytokine trajectories that expand upon data from a cohort of trauma
patients to distinguish between those that develop acute respiratory
distress syndrome (ARDS) from those that do not. This work is
reported in Ref (Cockrell et al., 2022). The IIRABMwas calibrated to a
clinical data set from The Uniform Services University/Walter Reed
National Medical Military Center of 199 trauma patients, 92 of which
developed ARDS at some point during the course of their
hospitalization, matched with 107 controls that did not develop
ARDS. Data elements that were used to calibrate the model
include two primary elements: 1) vital signs/laboratory observables
necessary to determine SOFA score; for the respiratory compartment,

FIGURE 3
Depictions of the MRM for the IIRABM. There are 17 columns, one for each molecular entity in the IIRABM, and 25 rows, one for each molecular rule
in the IIRABM. A heatmap of the original rule matrix is shown in (A), the optimized matrix representative of the valid ensemble is shown in (B). In (A, B), the
white blocks represent a matrix element with a value of 0 (e.g., no connection); the dark blue to green represents a negative matrix element; the pink to
light blue represents a positive matrix element. The optimization process vastly increases the connectivity of the ABM elements (as would be
expected in the true biological system). Figure reproduced from Cockrell and An (2021) under the Creative Commons License.
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this consists of the partial pressure of oxygen, complete information
regarding respiratory support, and blood oxygen saturation,
representing aggregate organ function; and 2) time-series blood-

serum cytokine profiles consisting of Interleukin-1-beta (IL-1b),
Interleukin-1 receptor antagonist (IL-1ra), Interleukin-6 (IL-6),
Interleukin-4 (IL-4), Interleukin-8 (IL-8), Interleukin-10 (IL-10),

FIGURE 4
Depiction of ensemble of MRMs. Depiction of the range of values of the MRM for the IIRABM for the valid ensemble of MRMs able to produce data
non-falsifiable by the clinical data (consistent with the Maximal Entropy Principle). As with Figure 3, the MRM includes the 17 columns for each molecular
entity in the IIRABM and 25 rows for eachmolecular rule in the IIRABM. (A) shows the ranges of theMRM values as a heatmap, where dark blue is a range of
0 and yellow indicates a range of 3.42, with a maximal range of 4.0. (B) shows this same data as a 3-dimensional bar graph, where the height of each
cell reflects the range of the values for each matrix element. Figure reproduced from Cockrell and An (2021) under the Creative Commons License.

FIGURE 5
Comparison of experimental and simulated protein concentration trajectories. In (A), we show both simulated and clinically collected blood-serum
cytokine measurements for TNFα. Distinct points are the clinically collected data, with red points representing patients that developed ARDS sometime
between days 7 and blue points representing patients that did not. The dotted lines indicate representative clinical trajectories seen in the data; note
specifically the sparsity of time points for an individual. The shading indicates the boundaries of themodel trajectory space for the parameterizations
that generate ARDS (red) or not (blue). Note significant overlap between the two spaces given the overlap of data points. However, the key point is that
differential parameterizations are able to identify clear regions that are unique to each group. In (B), the three solid lines (two red lines eventually
developing ARDS and the blue line not) show actual simulated trajectories of TNFα blood-serum concentrations; note here the continuous nature of the
trajectories, which would more accurately reflect the actual underlying biological behavior. Reconfigured from Cockrell et al (2022) under the Creative
Commons License.
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Granulocyte Colony Stimulating Factor (GCSF), Interferon-gamma
(IFNg), and Tumor Necrosis Factor-alpha (TNFa), sampled
periodically for the duration of the patient’s hospitalization.
Simulations of the IIRABM were used to identify
parameterizations (which represent varied individuals responding
to varied insults) that could not be falsified by the available data,
and therefore represented the most expansive potential interpretation
of the data given the structure of the IIRABM and its corresponding
MRM. Using the nested GA parameter discovery and AL
parameterization boundary identification method referred to above
[and described in more detail in the Supplementary Material and in
Ref (Cockrell and An, 2021; Cockrell et al, 2021; Cockrell et al, 2022)]
we identified an ensemble of IIRABM MRMs that were used to
perform simulations of burn injury and generated SMTs for those
patients that would develop ARDS and those that would not.
Representative SMT spaces can be seen for TNFa (as a
representative cytokine) in Figure 5 (reconfigured from Ref
(Cockrell et al, 2022). Note that several features are present in
these plots that reflect what we have noted as important
characteristics for SMTs to be used to train ANNs.

1. Note that the raw data (seen as discrete blue or red points) are
highly variable, highly overlap, and have variable and shifting
distributions over the course of the time series. This pattern is
nearly ubiquitous in time series mediator data and precludes the
ability to make any informed decision on the statistical
distribution of such data (which would be necessary for either
a statistical generation of synthetic data, or to inform a non-
traditional noise function in a stochastic differential equation).
This calls back to the issue of persistent data sparsity, inability to
a priori assume a statistical distribution and non-discrimination
between mediator measurements despite different clinical
phenotypes.

2. While there is considerable overlap in the trajectory spaces for
non-ARDS (blue) and ARDS (red), there are distinct points at
which these spaces separate. But these points of separation are
not necessary present at a real-world sampling point, and only
become evident in the synthetic data. This demonstrates that real
world data is not only sparse in terms of total number of sample
sources (Curse of Dimensionality) but also that logistical issues
preclude the ability to sample with enough frequency to capture
potentially critical bifurcation points.

3. The solid blue and red lines in Panel B show examples of
specific simulated trajectories that make up the trajectory
space (also note the difference between these projected
trajectories and the clinical sequential time series
represented by the dotted lines in Panel A). Note that these
trajectories are affected both by their parameterized MRM and
the stochastic processes included in the IIRABM, but it is
exactly these trajectories that are being sought by the AI ANN
(if the purpose of the AI requires the ANN to know how the
system works). This is a key point that separates this approach
to generating synthetic time series data from synthetic/virtual
populations, where aggregate outcomes are the target output,
as is the case for epidemiological investigations (45–47), or
approaches that create distinct virtual populations by fitting
the mean mediator values (4–7).

The computational resources presented in the preceding section
can be found at: https://github.com/An-Cockrell/IIRABM_
MRM_GA

7 The importance of useful failure:
iterative refinement

Given the known effects of data drift (Nelson, 2015; Baier et al.,
2019; Ackerman et al, 2020) and underspecification (D’Amour,
2020) on the degradation of AI/ML system performance in real-
world applications, for mission-critical applications (such as many
potential biomedical applications), it is important to mitigate the
consequences of performance degradation by anticipating, as
much as possible when performance falls below some identified
threshold. As such, the ability to determine the regimes of
applicability of a given model is essential. A primary rationale
for the use of synthetic data is preempt the performance
degradation by increasing the training set to increase the
robustness of the trained AI system (mitigating data drift), but
this presupposes that the means of generating the synthetic data
does not merely accentuate any bias present in the data used to
generate the synthetic data. If a data-centric approach is used to
generate synthetic data to train ANNs, the identification of bias or
insufficient representation in generating the training synthetic data
will not become evident until the ANN fails in its intended use.
This is because there is no step that allows for a “reality check” of
the synthetic data for molecular time series because no one knows
what it is “supposed” to look like, for the reasons of perpetual data
sparsity and lack of means of predefining the shape of the data
distribution. This is distinct from use-cases where such a reality
check can be performed, e.g. image analysis or natural language
processing, where the synthetically generated data can be
examined for believability. Conversely, SMT generated by cell-
behavior mechanistic multi-scale simulation models can provide
an intermediate step in the applicability of the generated SMT can
be evaluated using the criteria of non-falsifiability to determine if
data drift of the synthetic data set is occurring. The ability to
perform simulation experiments allow the mechanistic models to
be refined through both the process of evolution of an MRM-like
parameter space characterization, or modification of the
underlying simulation model rules based on new biological
knowledge. This iterative refinement process allows for “useful
failure,” since the simulation models are transparent with respect
to their composition and can be interrogated to determine where
their insufficiencies may be.

8 Conclusion

In this paper we pose that there is a specific class of data,
namely multidimensional molecular-mediator time series data
(abbreviated herein as Synthetic Mediator Trajectories or SMT),
that presents challenges to traditional means of generating
synthetic data to be used for training ANN/AI systems. The
specific properties of this data that preclude traditional
statistical/GAN methods are:
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1. Perpetually sparse data, such that the Curse of Dimensionality
cannot be overcome.

2. The variability/“noise” present in this data cannot be assumed to
follow an established distribution pattern (e.g., failure to meet the
requirements of the Central Limit Theorem preclude an
assumption of a normal distribution).

We further assert that while mechanism-based simulations are
needed to overcome the above restrictions, there are specific
properties that are to be met to overcome the limits of
traditional simulation means of generating synthetic data:

1. The mechanism-based simulation models need to incorporate a
means of dealing with the perpetual epistemic uncertainty
regarding knowledge of cellular-molecular mechanisms (e.g.,
no ab initio physics-based modeling).

2. The means of utilizing these simulation models to generate SMT
must maximize the generalizability of the generated synthetic
data set, and this means maximizing the expansiveness of the
applied parameter space, motivated by the Maximal Entropy
Principle.

3. As part of maximizing the expansiveness of the SMT, this means
that the simulation method must represent the space of
individual trajectories that cannot be falsified by the data. This
is because the ultimate goal of the developed/trained ANN/AI is
to forecast individual trajectories and/or identify specific controls
for individual trajectories.

We intend the focus of this paper to be very specific: to examine a
very specific type of biomedical data, namely trajectories of molecular
entitiesmeasured over a disease course. This is because there are many
other types of biomedical data, as we note in the opening sentences of
Section 3, that do not require what we propose. However, the use of
serial measurements of molecular entities during a disease course is a
central method used in biomedical research, most notably in the
discovery of cellular/molecular mechanisms, characterization of
pathophysiological dynamics and in the development of new
therapeutic agents. The generation and use of increasingly granular
molecular information about how biological systems work is the
primary paradigm in experimental biology, and, in an applied
sense, underpins the entire drug development pipeline. Therefore,
while this paper is focused on a particular type of data, it does happen
to be a type of data that is present across a wide range of biomedical
research. Given the importance of such data and the reasonable
interest in applying cutting edge ML and AI methods to these
problems, it is crucial to develop a means to generate bioplausible
SMT to train these systems. The key descriptor here is “bioplausible,”
as we recognize that method will not necessarily be a representation of
the fundamental truth. As noted above, biomedical research operates
in a space of epistemic uncertainty and incompleteness, with every
hypothesis subjected to the possibility (and perhaps inevitability) of
falsification. Rather, the operational strategy in being able to use
biomedical knowledge involves being able to find levels of
representation that can be demonstrated to be useful. In this sense,
the relationship between our proposed methods and reality is
analogous to the case of Newtonian Mechanics. The classical
understanding of mechanics is broadly applicable to everyday life
and has significant predictive power when in its applicable regime

(i.e., not quantum or relativistic); however, Newtonian Mechanics
alone cannot explain much of the observed motion of our universe.
Similarly, while biomedical models suitable to generate SMT have a
broad range of explanatory potential, there will certainly be regimes in
which themodel that generates that data is invalid as these models are,
and will be for the foreseeable future, informed by experimental data
and not first principles (hence the importance of iterative refinement
and “useful failure.”).

Thus, it can be concluded from our argument that while the
acquisition of more data is certainly necessary, it is not sufficient to
meet tasks that require knowledge of the mechanistic processes that
cross causal hierarchies (e.g., cell/molecule to individual). It also
provides guidelines as to what mechanism-based simulations must
account for to be suitable for ANN training. We have presented a
specific example that utilizes a cell-based ABMwithin aML-augmented
pipeline that maximizes the expansiveness of a SMT, but we make no
claim as to the uniqueness of this approach, either in terms of the type of
simulation method applied, nor the specific components of our
parameter-space characterizing pipeline. We also note that at this
time there is no proof that the creation of SMT in this fashion will
enhance the training, performance and generalizability of ANN/AIs.
Rather, this paper is intended to provide a theoretical basis for why
“classical” means of generating synthetic data for AI training (i.e.
statistical or physics-based simulation methods) are not applicable
for this specific task of generating synthetic multidimensional
molecular/mediator time series data, while also providing theoretical
basis for why producing SMT using the presented approach “should”
work. Our group is actively working on producing a proof-of-concept
demonstration that would lend credence to the presented approach, but
in the meantime we hope that by presenting the underlying theory and
rationale for generating this type of data we can provoke other
investigators to work in this area.
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