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Prediction of a new molecule’s exposure in plasma is a critical first step toward
understanding its efficacy/toxicity profile and concluding whether it is a possible
first-in-class, best-in-class candidate. For this prediction, traditional
pharmacometrics use a variety of scaling methods that are heavily based on
pre-clinical pharmacokinetic (PK) data. We here propose a novel framework based
on which preclinical exposure prediction is performed by applying machine
learning (ML) in tandem with mechanism-based modeling. In our proposed
method, a relationship is initially established between molecular structure and
physicochemical (PC)/PK properties using ML, and then the ML-driven PC/PK
parameters are used as input to mechanistic models that ultimately predict the
plasma exposure of new candidates. To understand the feasibility of our proposed
framework, we evaluated a number of mechanistic models (1-compartment,
physiologically based pharmacokinetic (PBPK)), PBPK distribution models
(Berezhkovskiy, PK-Sim standard, Poulin and Theil, Rodgers and Rowland, and
Schmidt), and PBPK parameterizations (using in vivo, or in vitro clearance). For
most of the scenarios tested, our results demonstrate that PK profiles can be
adequately predicted based on the proposed framework. Our analysis further
indicates some limitations when liver microsomal intrinsic clearance (CLint) is
used as the only clearance pathway and underscores the necessity of investigating
the variability emanating from the different distributionmodels when providing PK
predictions. The suggested approach aims at earlier exposure prediction in the
drug development process so that critical decisions on molecule screening,
chemistry design, or dose selection can be made as early as possible.
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Introduction

The prediction of the pharmacokinetic (PK) exposure of drugs is critical to
understanding their behavior, with researchers striving for optimal concentration versus
time profile at the site of action to reach both efficacy and a suitable safety profile at a given
dose and regimen (Hutchinson and Kirk, 2011; Khanna, 2012; Scannell et al., 2012; Schuck
et al., 2015; Waring et al., 2015; Pammolli et al., 2020; Davies et al., 2020). PK profile is a
function of both a drug’s intrinsic molecular properties such as lipophilicity, solubility, and
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chemical reactivity and an organism’s physiological characteristics
that ultimately drive its absorption, distribution, metabolism, and
excretion (ADME) (Lucas et al., 2019). Although there have been
major efforts to using machine learning (ML) to predict the intrinsic
properties of compounds for de novo molecular design, ML-based
predictions of in vivo PK dynamics has been much less prominent
(Obrezanova et al., 2022). A possible reason for this is that
generating a large quantity and high quality of PK exposure data
is far more costly and difficult than in vitro assays that can be run
more easily to characterize a compound’s intrinsic properties
(Hughes et al., 2011; Bender and Cortes-Ciriano, 2021). This
hinders the application of ML in predicting PK dynamics.

Current approaches for predicting in vivo PK mainly involve
mathematical models that build upon the classical foundations of
pharmacology (Jusko, 2013; Ayyar and Jusko, 2020). These
models can be categorized as non-compartmental,
compartmental, and physiological. Noncompartmental analysis
(NCA) is a useful analysis of concentration vs. time data to assess
a drug’s maximum concentration (Cmax), area under the curve
(AUC), clearance (CL), and steady-state volume of distribution
(Vdss) for the preliminary assessment of properties such as
linearity and stationarity. Compartmental models are
improving the insights into distribution properties of drugs by
incorporating “black box” compartments to capture the different
slopes of the PK profile. Physiologically based PK (PBPK) models
retain a model structure that is based on the physiology of the
species of interest, with parameters divided into those
representing a compound’s intrinsic properties and those
assigned to the physiological measurements of the body (e.g.,
blood flow and organ size) (Rowland et al., 2011). Based on their
structure, the use of ML approaches is increasingly appealing for
predicting the input parameters for PBPK models to not only
accelerate the development of robust PBPK-based predictions
but also to save substantial resources and become an alternative
approach to traditional in vivo data-based modeling (Hosea and
Jones, 2013).

Several recent studies have used ML approaches to predict in
vivo PK parameters such as Cmax, AUC, and Vdss (Schneckener
et al., 2019; Wang et al., 2019; Ye et al., 2019; Feinberg et al., 2020;
Kosugi and Hosea, 2020; Kosugi and Hosea, 2021; Lombardo et al.,
2021; Miljkovic et al., 2021), while others studies have incorporated
ML and PK models to predict PK profiles (Hosea and Jones, 2013;
Schneckener et al., 2019; Antontsev et al., 2021; Chen et al., 2021;
Chou and Lin, 2022). Predicting a drug’s PK profile rather than PK
parameters can be advantageous, especially regarding its
relationship to efficacy and toxicity. This relationship is not easy
to correlate to a specific PK parameter but rather to its concentration
time course at the site of action for the time the drug interacts with
its target. In addition, compared to predicting PK solely through
data-based methods, systems-based models such as PBPK can
facilitate both the prediction of PK profile for different species
and for a different tissue from that used to train the PBPK
model. Both extrapolations can take advantage of the
physiological basis of the model. However, the information
needed to inform a systems-based model like PBPK is not always
available in the early stages of drug development, and these models
often incorporate numerous assumptions that they cannot be
appropriately addressed.

We here evaluate the framework for using ML in combination
with mechanism-based modeling (PK and PBPK) to predict the PK
profile of intra-venous (IV) administration of small molecules in rats
for 1 mg/kg dose. We thus evaluate several test cases where different
types of mathematical models (1-compartment PK model, PBPK),
different inputs to the models, and different distribution
assumptions are considered. The overall goal of this proof-of-
concept work is to evaluate whether using ML-derived
parameters in tandem with PK/PBPK modeling can result in
reasonable exposure predictions and to demonstrate the
feasibility of conducting these predictions early after discovery,
only knowing the structure of the molecule. ML algorithms
developed here are meant to be continuously optimized by the
incorporation of new datasets.

Materials and methods

Modeling framework and input parameters

The schema of the framework used in this work is shown in
Figure 1, where ML is used to predict PK and physicochemical
(PC) parameters that are then used as input to mechanistic
models to ultimately predict rat plasma exposure for IV
administration. We therefore investigated 1-compartment and
PBPK models. For PBPK modeling, we explored two
parameterizations using as input either in vivo or microsomal
intrinsic clearance (CL or CLint), and we tested five distribution
models: Berezhkovskiy (Berezhkovskiy, 2004), PK-Sim standard
(Willmann et al., 2005), Poulin and Theil (Poulin and Theil,
2000), Rodgers and Rowland (Rodgers et al., 2005), and Schmidt
(Schmitt, 2008). The parameter inputs required for the different
models are shown in Table 1.

Data used for ML and PK/PBPK model
development

To ensure data consistency and to mitigate variability due to
assay choice, historical data generated exclusively in the Sanofi
Boston site were used. These data were derived from two datasets:
the compound property dataset, where structural, PC, and PK
parameters are stored, and the PK profile dataset, where
concentration time profiles for the different compounds are
saved. The compound property dataset consisted of
530 compounds for which in vivo rat CL and Vdss were
calculated based on NCA of 1 mg/kg IV administration in
rats, and 451 compounds for which CLint was calculated based
on in vitro microsomal experiments. There were 459 and
324 compounds with available information for pka (most
acidic) and pka (most basic), respectively, and only
188 compounds for which Fu data were available. SMILES
(simplified molecular-input line-entry system) string format
was available for each compound. The PK profile dataset
consisted of 397 compounds for which we had rat PK profile
(concentration vs. time data) for 1 mg/kg IV administration in
rats. A total of 637 unique compounds were obtained after
combining the aforementioned datasets, of which
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61 compounds were found to be common across all. As shown by
chemical similarity distribution based on Tanimoto score
(Supplementary Figure S1), most compounds in our dataset
differed from each other.

Machine learning methodology

As a first step in our proposed framework, MLmodels were built
to predict the parameters required as input to mechanistic models.
Details about the data used to develop these models are provided in
Table 2. In-house ML models were built for fraction unbound (Fu),
in vivo CL, in vivo Vdss, CLint, pKa (mostly acidic), and pKa (mostly
basic). For molecular weight and lipophilicity (logP), they Python
RDkit package was utilized to generate predictions (Swain, 2016b;
Cheminformatics, 2022; RDKit, 2022; RDKit, 2023).

SMILES strings—one of the most widely used ways to represent
a molecule—were used as input to the ML model. For most
structures, one part of the SMILES string consists of salt, and
another part represents the base chemical structure for the
compound; thus, initial data cleaning was performed prior to
training the ML models. In the data cleaning process, salts were
stripped from the molecules. In the pre-processing step, the SMILES
strings were converted into their canonical forms, and SMILES
strings were standardized using the MolVS package (Swain, 2016a)
in Python. The SMILES strings, prior to feeding into the algorithm,
were transformed into molecular descriptors (200 structure-based
descriptors (RDKit, 2022)), molecular fingerprints (Morgan
fingerprints, 1024 bit), and graphs (undirected graph represented
as a 3-tuple (atom_features, bond_features, and pair_indices))

FIGURE 1
Schematic of the framework studied in this work. Molecules were represented asmolecular fingerprints (bit vector), descriptors, or graphs. Machine
learning was then used to predict pharmacokinetic (PK) and physicochemical (PC) parameters based on molecular representations. PK/PC parameters
were finally inserted to either 1-compartment or physiologically based models to predict rats’ exposure.

TABLE 1 Mechanistic models developed and the respective parameters
required for IV administration PK prediction. For the physiologically based
model, we used either in vivo clearance (CL) measured with NCA or intrinsic
clearance (CLint) from liver microsomes.

Models developed Input required

1-compartment model In vivo clearance (CL)

Volume of distribution (Vdss)

Physiologically based model Clearance (CL, or CLint)

Number of halogens

Lipophilicity (logP)

pKa (mostly acidic)

pKa (mostly basic)

Fraction unbound (Fu)

Molecular weight (MW)

TABLE 2 Metrics for different models utilized to generate final prediction. Ten-fold cross-validation was performed on the training set for hyperparameter
optimization (see Supplementary Table S2 for MAPE scores of cross-validation datasets). Performance metrics are reported for the best model.

Parameter Size of test data Size of train data Algorithm MAPE RMSE Unit

CL 61 469 XGboost on fingerprints 0.82 15.74 ml/min/kg

Vdss 61 469 XGboost on descriptors 0.57 961 ml/kg

CLint 61 390 XGboost on descriptors 0.75 30.6 ul/min/mg

pKa (most basic) 61 398 Support vector regression on fingerprints 0.28 1.47

pKa (most acidic) 61 263 Random forest on fingerprints 0.054 1.2

Fu 61 127 Random forest on descriptors 1.11 0.052

logP 61 rdkit 0.4767 1.215,068

MW 61 rdkit 1.84E-05 0.008761 g/mol
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(Kensert, 2021) to test which molecular representation may help
generate models (by testing different algorithms) with better
accuracy (lower root-mean squared error (RMSE) or mean
absolute percent error (MAPE)). ML models were developed by
splitting the dataset into test and train sets. Validation was
performed using ten-fold cross-validation on the training set.
During cross-validation, hyperparameter optimization was also
performed : for random forest algorithm, they were the number
of estimators and max depth; for XGBoost, they were the number of
estimators, subsample, colsample by tree, and learning rate; for
support vector regression, they were kernel, gamma, regularization
parameter, and epsilon (Pedregosa et al., 2011); for message passing
neural network, they were the number of layers, number of neurons,
and activation function (Kensert, 2021). Different molecular
representations (molecular fingerprints, descriptors, and graphs
(specifically for message-passing neural networks (MPNN))) were
initially tested to determine which molecular representation had the
best performance metrics (RMSE, MAPE) for our datasets. Different
ML algorithms (random forest (Liaw and Wiener, 2002), support
vector regression (SVR) (Awad and Khanna, 2015), XGboost (Chen
and Guestrin, 2016), and MPNN (Gilmer et al., 2020)) were also
tested to see which had the best performance metrics
(Supplementary Table S1). To avoid biased predictions
(predictions of PK profile generated for compound available in
training set) and have uniform predictions generated from one
compartment model and PBPK model, 61 compounds for which
we had all associated data (PK, PC parameters, and PK profile) were
used in the test set for all the models. Based on data availability, the
rest of the compounds were used in the training set (see Table 2).
Different algorithms, including both classical (random forest,
XGboost, and SVR) and deep learning (MPNN) algorithms were
tested on different combinations of molecular representation
(fingerprints, descriptors, and graphs) to identify which
combination of algorithm and molecular representation worked
best for the data available (Table 2). Root-mean square error and
mean absolute percent error were used to determine the final model.

PK/PBPK model characteristics and
assumptions

1-Compartment modeling
The 1-compartment model assumes that the distribution of the

drug takes place homogeneously in a single volume of distribution
(Vdss), and its clearance is mediated by a unique rate of elimination
(CL) following first-order kinetics (Talevi and Bellera, 2021). The
one-compartment model was developed using MATLAB R2019a.

Physiologically based pharmacokinetic modeling
A whole-body physiologically based pharmacokinetic (PBPK)

model was used to simulate the plasma concentration profiles for the
same 61 drug compounds which were available in the test set of ML
models. The PBPK model structure and its assumptions are detailed
elsewhere (Willmann et al., 2003). Briefly, this model incorporates
multiple compartments that represent physiologically relevant body
tissues. The parameters of the model are related to the PC drug
properties (e.g., lipophilicity and MW) and to physiological
information (e.g., tissue volumes and blood flows) that are

combined to predict the time course of the drug in the most
relevant organs of drug distribution, metabolism, and excretion.
Drug properties are used to predict tissue permeabilities and
partition coefficients which, in turn, are used to predict the drug
distribution in the different tissues. Since several distribution models
are available to predict the drug partition coefficients, all the
distribution models available were used to generate the drug
concentrations, and respective variability was evaluated. PK/PC
parameters were included in the simulation as measured or
predicted from ML algorithms, depending on the simulation
scenario. Simulations with both in vitro and in vivo clearance
parameters were used to compare the predictability of these two
parameters. In vitro clearance values were used as direct input into
the PBPK model after conversion to specific clearance (intrinsic
clearance normalized to the liver volume), while plasma clearances
were converted into intrinsic clearances using the well-stirred model
equation. This conversion was performed using PBPK modeling
software. The PBPK model was implemented in PK-Sim, part of the
Open Systems Pharmacology Suite version 11.0 (https://www.open-
systems-pharmacology.org/). R version 4.2.0 (R Foundation for
Statistical Computing) was used to perform the simulations.

Results

Figures 2A–F show the measured vs. predicted values for each of
the parameters tested. ML predictions for CL, Vdss, CLint, pKa (most
acidic), and pKa (most basic) were found to be reasonable, with less than
two-fold error (MAPE <1) for the final model. MAPE corresponding to
fraction unbound was 1.11, whichmay be due to the low amount of data
in the training set (Figure 2F). It was found for this dataset that deep
learningmethods were less accurate than the classical approach, perhaps
due to a low amount of data used in the training set. Finally, it was
observed that the MPNNmodel (deep learning) converged to the mean
value of the parameter and hencewas not able to capture the distribution
spread. Performance metrics of the final model used for ML predictions
are provided in Table 2, and performance metrics of different models
tested for this analysis are provided in Supplementary Table S1. A
combination of MAPE and RMSE were utilized to select the best model
for each parameter (Supplementary Table S1).

ML-derived in vivoCL and in vivoVdss were used as input to the
1-compartment model, and the resulting profile was compared to
the observed rat PK exposure data. Comparison between observed
and predicted rat plasma exposure is shown in Figure 3. The
majority of the predicted time points are close to the observed
values as shown by the clustering of most of points around the
identity line (Figure 3A). The ratio between the observed AUC until
the last time point of 24 h (AUClast) and the predicted AUClast has a
median of 0.9, and 50% of values are between 0.4 and 1.5 (Figure 3B),
which indicates satisfactorily prediction of the relevant metrics.
Similarly, the ratio of the observed maximum concentration and
the predicted Cmax has an average of 0.9 and a 50% range narrower
than the AUClast ratio (Figure 3C).

PBPK-based predictions using ML-driven parameters (Table 1)
were also tested against the same PK profile dataset. Figure 4 shows
individual profiles along with PBPK-based predictions using in vivo
CL for the different distribution models investigated. The PBPK
model predictions appear to satisfactorily describe the majority of
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the compounds’ PK profile. The PBPK model was able to capture the
bi-exponential nature of the compounds’ plasma distribution.
Comparing the different distribution models, simulations show that
there are cases where all of them conclude in similar exposure
prediction (e.g., compound 5 and others), whereas, for cases such as
compound 60 or 61 and others, the PK profile has significantly different
characteristics depending on the distribution model used.

Analysis of the AUClast and Cmax fold difference between
observations and predictions for all PBPK distribution models is
shown in Figure 5. Different distribution models have slightly
different median values, but all distribution models tested
showed a median AUClast_observed/AUClast_predicted range
between 1 and 2, which indicates a reasonable prediction of
observed AUC. Similarly, the ratio between Cmax_observed and

FIGURE 2
Scatter plots of observations (experimentally measured data) and predictions for test and train data in log scale for (A) Clearance (CL), (B) Volume of
distribution (Vdss), (C) Intrinsic Clearance (CLint), (D) pka (most acidic), (E) pka (most basic), (F) Fraction unbound (Fu). Model predictions were based on
best model as described in Table 2.

FIGURE 3
Comparison between observed rat plasma exposure and exposure predicted by the 1-compartment model using as input ML-derived CL, Vdss
parameters. (A) Observed plasma exposure vs. 1-compartment model predictions. The solid line indicates the identity line. (B) Ratio between observed
AUC until the final time point (AUClast_observed) and 1-compartment model-predicted AUC (AUClast_predicted). (C) Ratio between observed maximum
concentration (Cmax_observed) and 1-compartment model-predicted maximum concentration (Cmax_predicted).
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Cmax_predicted retained a median range of 0.5 to 0.8. Compared to
the AUC ratio, Cmax retained a larger spread of the predicted
values.

Finally, we compared PBPK simulations using ML-driven PK/
PC parameters and intrinsic clearance (CLint) with observed data
(Figure 6). The median AUClast_observed/AUClast_predicted ranged
from 0.2 to 0.7. The interquartile difference was different
between the distribution models used. In contrast, the Cmax_

observed/Cmax_predicted median had a narrower range (0.7–0.9) for
all distribution models, with similar interquartile intervals.

Discussion

In the past few decades, there have been considerable efforts to
improve R&D productivity in the pharmaceutical industry. The
main focus is to ensure that a molecule has desired pharmacological
activity in humans prior to Phase II studies, with a heavy focus on
having enough good Phase I-ready molecules (Paul et al., 2010). In

this quick-win-fast-fail paradigm, ML and mechanism-based
modeling have found increasing application to all stages of drug
discovery and development (Pillai et al., 2022).

The application of ML is particularly appealing in the early
stages of drug development where there is not enough mechanistic
knowledge of how a new molecule distributes in the body and
mediates its pharmacological effects. Several quantitative
structure–activity relationship (QSAR) models for predicting
preclinical ADME properties have been described (Van der Graaf
et al., 1999; Ng et al., 2004; Gombar and Hall, 2013; Dave and
Morris, 2015; Valitalo et al., 2016) and used in drug discovery. In this
work, ML has been used to predict compounds’ PK/PC properties
that are later used as input for mechanistic models to ultimately
predict plasma exposure. Based on the ML models developed, it was
found that, for all parameters except Fu, the average error in
predictions with respect to observation was less than two-fold
(MAPE values less than 1), while the average error for Fu was
slightly higher than two-fold (MAPE values 1.1)—perhaps due to
lack of data in the training set. We further assessed ML-driven

FIGURE 4
Comparison between observed PK profiles and profiles predicted using PBPK modeling with ML-driven PC/PK parameters and in vivo CL for the
individual compounds tested. Different subplots indicate different compounds tested, and different colors indicate different distribution models.
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propagation error in the ultimate exposure predictions by
comparing 1-compartment/PBPK simulations using input
parameters measured experimentally vs. predicted by ML
(Supplementary Figure S2). Our analysis not only showed no
significant difference in the PK profile prediction when using ML
vs. experimental data, as indicated by overlapping boxplot edges, but
it was also noted in some cases that ML models can mitigate errors
that may occur due to variability in either recording or performing
the experiment (Supplementary Figure S2, more outliers in data vs.
ML predictions). The ML models developed in this study can be
further improved by utilizing deep learning techniques and classical
approaches when more data are available.

ML-derived in vivo CL and in vivo Vdss were initially used as
input parameters to a 1-compartment model, and the resulting
plasma exposure was tested against rat plasma profile
(Figure 3A). The 1-compartment model is the simplest PK
model that assumes a single volume of drug distribution

(Vdss) with a linear clearance (CL); it is designed to explain
mono-exponential PK profiles (straight line in logarithmic
concentration vs. time plot). As such, 1-compartment
representation is not suitable for capturing the distribution of
the molecule to peripheral tissues of the body. Due to this
inherent limitation, we observed a cluster of concentration
data over the identity line at lower concentration values
(Figure 3A), an indication of model underpredictability.
Despite this inherent limitation, the 1-compartment model
was able to capture the majority of both AUClast, and Cmax of
observed data within a two-/three-fold difference (Figures 3B, C).
In pharmacokinetics/toxicokinetics, there is no a priori threshold
on an acceptable model error, but PBPK/PK models are generally
accepted and considered useful when the prediction error on
AUC or Cmax is in the two- or three-fold range (De Buck et al.,
2007; Maharaj and Edginton, 2014; Mavroudis et al., 2018;
Mavroudis et al., 2022).

FIGURE 5
Ratio between observed and predicted AUC and Cmax based on PBPK prediction using ML-driven PK/PC parameters and in vivo clearance (CL). (A)
Ratio between observed AUC until the final time point (AUClast_observed) and PBPK model-predicted AUC (AUClast_predicted). (B) Ratio between observed
maximum concentration (Cmax_observed) and PBPK model-predicted maximum concentration (Cmax_predicted). Different boxplot colors indicate different
distribution models.

FIGURE 6
Ratio between observed and predicted AUC and Cmax based on PBPK prediction using ML-driven PK/PC parameters and intrinsic clearance (CLint).
(A) Ratio between observed AUC until the final time point (AUClast_observed) and PBPKmodel-predicted AUC (AUClast_predicted). (B) Ratio between observed
maximum concentration (Cmax_observed) and PBPK model-predicted maximum concentration (Cmax_predicted). Different boxplot colors indicate different
distribution models.
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To predict a new molecule’s tissue distribution in the absence of
exposure data, quantitative pharmacologists often use PBPK
modeling (Chen et al., 2012; Jones et al., 2015). The physiological
details incorporated in PBPK models and the distribution models
involved in their mathematical representation enable the prediction
of tissue distribution based solely on the PC properties of the
compound and the physiology of the relevant species. ML-driven
parameters were used as input to the PBPK model (Table 1),
considering all distribution models available in PK-Sim. In the
results shown in Figures 4, 5, the PBPK model uses in vivo
clearance (CL) resulting from NCA. As expected, the PBPK
model can capture the distribution clearance and, as such, the bi-
exponential exposure of the molecules (Figure 4) better than the 1-
compartment model (Supplementary Figure S3). The median fold
difference between observed and predicted AUClast ranged
1–2 depending on the distribution model chosen. This is an
indication of the different assumptions involved in the different
distribution models that ultimately lead to different clearances and
exposure predictions (Figure 4). In contrast, Cmax is mainly
determined by the compound’s PC properties and the body’s
physiology, which was identical for all distribution models tested.
As a result, the interquartile differences observed in Cmax are
similar for the different distribution models and the narrower
median value range (Figure 5B).

Our framework was also tested with PBPK model-based
predictions using ML-driven parameters and intrinsic
clearance (CLint) derived from in vitro experiments. For this
case, although PBPK model could still satisfactorily describe the
Cmax median within a two- to three-fold error (Figure 6B), the
AUClast prediction was significantly higher for the majority of the
observed data, leading to a low AUCobserved over AUCpredicted

ratio (Figure 6A; Supplementary Figure S4). This is a common
observation and challenge across companies when using in vitro
data (Petersson et al., 2022). In contrast with in vivo CL that
results from NCA and represents a holistic representation of the
in vivo PK data elimination rate, intrinsic clearance here solely
represents the liver microsomal clearance. To be used in PBPK
modeling, CLint is scaled based on the relevant species liver
weight, assuming a well-stirred liver compartment (Obach,
2001; Austin et al., 2002). In this case, all other clearance
mechanisms (e.g., renal clearance) and active transports of the
molecule (e.g., Pgp transporters) are not taken into
consideration. This limited mechanistic representation of the
molecule’s clearance pathways leads to an overprediction of
AUClast and, ultimately, lower values of AUClast observed over
a predicted ratio. Comparing AUClast and Cmax predictions from
all models and parameterizations used in this work using ML-
driven input (Supplementary Figure S5), PBPK using CLint
maintains a lower ratio of AUClast observed/predicted,
whereas PBPK with in vivo CL results in a similar AUClast

ratio prediction to the 1-compartment model. Cmax
prediction shows significantly higher variation independent of
in vitro/in vivo parameterization.

Due to recent progresses in bioinformatics and systems
modeling, along with technical improvements in instrumentation
and quantification methods that enable large numbers of molecules
to be screened early in discovery, the methodology presented in this
work has been investigated to some extent by others (Hosea and

Jones, 2013) (https://www.simulations-plus.com/software/
admetpredictor/). Compared to previous efforts, our analysis
consists of a significantly larger test set of molecules and
considers a number of alternative models and parameterizations;
it is thus the first to examine the use of ML in combination with
mechanistic modeling to such a conclusive extent. Henceforth, ML
models may not be applied interchangeably in any given task due to
their poor extrapolation capabilities outside the range of data
utilized to train the model. Due to their black-box nature, ML
models and methodologies need to be dynamically developed and
fine-tuned in orchestration with new data generation, as is the case
for the models presented in this work.

In conclusion, the ML/mechanistic modeling framework
proposed here results in reasonable exposure predictions for
most of the scenarios tested. Our work underlines the
necessity of considering multiple distribution models when
predicting PK based on molecular structure and providing the
respective variability in addition to a single PK profile estimate.
This effort aims to enable PK prediction earlier in the drug
development process and ultimately help in prioritizing
compounds for future evaluation.
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