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Background:Count scores, disease clustering, and pairwise associations between
diseases remain ubiquitous in multimorbidity research despite two major
shortcomings: they yield no insight into plausible mechanisms underlying
multimorbidity, and they ignore higher-order interactions such as effect
modification.

Objectives: We argue that two components are currently missing but vital to
develop novel multimorbidity metrics. Firstly, networks should be constructed
which consists simultaneously of signs, symptoms, and diseases, since only then
could they yield insight into plausible shared biological mechanisms underlying
diseases. Secondly, learning pairwise associations is insufficient to fully
characterize the correlations in a system. That is, synergistic (e.g., cooperative
or antagonistic) effects are widespread in complex systems, where two or more
elements combined give a larger or smaller effect than the sum of their individual
effects. It can even occur that pairs of symptoms have no pairwise associations
whatsoever, but in combination have a significant association. Therefore, higher-
order interactions should be included in networks used to study multimorbidity,
resulting in so-called hypergraphs.

Methods:We illustrate our argument using a synthetic Bayesian Networkmodel of
symptoms, signs and diseases, composed of pairwise and higher-order
interactions. We simulate network interventions on both individual and
population levels and compare the ground-truth outcomes with the
predictions from pairwise associations.

Conclusion: We find that, when judged purely from the pairwise associations,
interventions can have unexpected “side-effects” or the most opportune
intervention could be missed. The hypergraph uncovers links missed in
pairwise networks, giving a more complete overview of sign and disease
associations.
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1 Introduction

Multimorbidity, defined as the co-occurrence of two or more
chronic diseases in the same individual, is highly prevalent in the
general population, especially among older individuals (65%
prevalence in persons aged 65–84 years and 82% in persons aged
85+) (Nguyen et al., 2019; Skou et al., 2022). With ageing
populations, the number of people with multimorbidity is set to
rise (Fortin et al., 2005; Salisbury et al., 2011; Barnett et al., 2012),
leading to worse health outcomes and reduced quality of life
(Huntley et al., 2012).

The single-disease paradigm is however still dominant in
current clinical practices. In this approach, clinical symptoms
and signs are linked to a single disease; and in case of multiple
diseases, each disease is treated individually (Olde Rikkert et al.,
2003). This approach is inappropriate for patients with
multimorbidity for multiple reasons. Treating diseases in parallel
often leads to a high total treatment burden and over-treatment,
which can be exacerbated by treatment interactions (Boyd and
Kent., 2014; Boyd and Kent., 2014). Treating each of a set of
diseases individually, without considering the other diseases, is
also inefficient and potentially harmful (Boyd and Kent, 2014).

Count scores and clustering methods characterize current
multimorbidity research. However, these approaches yield no
insight into plausible mechanisms underlying multimorbidity.
The field of “network medicine” has brought the richer
perspective of networks to the study of multimorbidity, with so-
called “disease networks” to investigate the structure and dynamics
of complex patterns in multimorbidity and “disease trajectories” of
patients (Barabási et al., 2010; Jones et al., 2022). However, disease
networks are currently defined using (pairwise) associations
between diseases, which miss possible higher-order (synergistic)
associations. Existing works which use hypergraphs do not use them
to represent non-linear multivariate associations but, e.g., to count
co-occurrences of diseases (Haug et al., 2021; Rafferty et al., 2021).

Our first argument is that symptoms, signs, and disease states
should be part of one and the same network. In contrast, the single
disease burden has so far been dominant in practice, so the
symptoms and signs were not the primary focus in the past.
Tripp-Reimer et al. (2020) allude to symptoms not being widely
used due to their subjectivity and difficulty to access from health
records. We believe it is nevertheless important to combine them in
one network because symptoms and signs form plausible pathways
between diseases. The definitions of symptoms, signs, and diseases is
a long-standing debate with no consensus yet (Olde Rikkert et al.,
2022). Throughout the article we use the term sign to refer to a an
objective indication of some medical fact, symptom to a subjective
experience of a patient, and disease to the diagnosis of disease states.

Our second argument is that we must go beyond pairwise
interactions by including also so-called “synergistic associations”
in the network models. Synergistic interactions are often referred to
as effect modification or mediation, and traditionally captured by
including interaction terms in regression models (more specifically:
polynomial series). There are two shortcomings with this approach.
The first is that it is parametric: a very specific choice of functional
form must be chosen (usually a multiplication of variables), which
can be suitable for capturing certain non-linear effects (e.g., an
AND-gate for multiplication) but unsuitable for other non-linear

effects (e.g., no sequence of AND-gates can represent an XOR-gate)
(Liang and Han, 2012). The second shortcoming is that, depending
on the choice of functional form, many terms may be needed to
represent a given non-linear association. Making matters worse, for
a single choice of functional form, multiple different loadings of the
interaction terms may lead to the same prediction power. This is
referred to as the multiplicity problem (Tsuchiya, 2014; Marx et al.,
2020). This makes the interpretation of the interaction terms,
representing the synergistic interaction, difficult and ambiguous.
Therefore, we use a non-parametric approach, based on Shannon’s
information theory. More precisely we will use the O-information
heuristic because of its computational efficiency (Rosas et al., 2019).

We first demonstrate our two arguments in a synthetic Bayesian
network (BN) model constructed using both pairwise and
synergistic associations, which we use to generate synthetic
datasets with 100,00 realisations. In healthcare, BNs are used in
aiding decision-making processes for diagnosis, prognosis, and
treatment selection (Lucas et al., 2004). Binary nodes of diseases,
disorders and risk factors, along with background information, have
been used in BNs to study the multimorbidity rate, and co-
occurrences of multiple diseases (Lappenschaar et al., 2013b;
Lappenschaar et al., 2013a; Song et al., 2022). However, to our
knowledge, there does not appear to be BNs studying
multimorbidity using symptoms, signs and diseases in one
network, even though several works mention the need to
combine these elements (Willadsen et al., 2016; Yarnall et al.,
2017; Griffith et al., 2018). Then we use EASYcare Twostep Older
persons Screening data (van Kempen et al., 2015) to identify
synergistic associations and highlight their prevalence. The code
and generated data are provided at https://github.com/
CillianHourican/Synergistic-Networks.

2 Methods

2.1 A primer on synergistic interactions

Synergistic effects are common in complex systems and can take
many forms. The clearest evidence of a synergistic effect is when
independent random variables individually cannot predict a target
variable (zero correlation) but when considered together they can
(non-zero correlation). This is not the only situation where
synergistic effects take place: synergy is also present when the
sum of the pairwise correlations between the independent
variables and the target variable is less than the multivariate
correlation of the independent variables with the target variable.
Throughout the article, “correlation” is taken to be measured using
Shannon’s mutual information (Cover and Thomas, 2005). This is
non-parametric and captures both linear and non-linear
associations (Kinney and Atwal, 2014).

A classic example of a purely synergistic interaction is when
predicting the output Y of an XOR-gate with two binary inputs
S1, S2. An XOR gate effectively indicates whether the inputs are equal
(output 0) or unequal (output 1). Intuitively this is clearly a type of
relationship where the output cannot be predicted from one input
alone. To see this, let an XOR gate output Y � 1 whenever exactly
one input equals 1 and the other 0, and Y = 0 otherwise.
Furthermore, let each input be 50/50 distributed. Without
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observing any input values, the target Y has a marginal probability
distribution which is maximally uncertain (also 50/50 distributed):

P y � 1( ) � P y � 0( ) � 0.5

This distribution does not change if we condition on either one
of the input variables:

P y � 0
∣∣∣∣S1( ) � 0.5 � P y � 1

∣∣∣∣S1( )

P y � 0
∣∣∣∣S2( ) � 0.5 � P y � 1

∣∣∣∣S2( )

In words, observing either input alone does not improve our
information (ability to predict) the output. Indeed, using mutual
information we see that separately each input tells us zero
information about the response:

MI S1: Y( ) � 0,MI S2: Y( ) � 0

In contrast, the joint random variables specify all the
information about the target: MI(S1, S2: Y) � 1.

This is because observing both inputs fully determines the
output Y (100/0 or 0/100 distributed). Concluding, the
information about the target in an XOR-gate is not stored in
either single input (pairwise correlation) but is stored completely
synergistically in the combination of both inputs.

This is important because many networks are constructed using
pairwise correlations. In our example, though, the pairs
(S1Y), (S2, Y) have zero correlation. No algorithm that depends
on pairwise correlations can find the synergistic relationship. This is
the essence of our argument against focusing purely on pairwise
association networks and for explicitly including synergistic
interactions. This argument remains true when building
correlation networks based on conditioned correlations or
conditional independences (James et al., 2016).

Quantifying the exact amount of synergy between variables
remains an open problem, with frameworks such as partial
information decomposition aiming to decompose information
between variables into unique, redundant, and synergistic
information (Timme et al., 2014; Grith, 2014; Olbrich et al.,
2015; Finn and Lizier, 2018; Lizier et al., 2018; Procaccia et al.,
2023). In our current study, we use the O-information heuristic
when analysing data to assess if synergy is indeed present (Rosas
et al., 2019). This heuristic is easy to compute but is conservative,
i.e., some interactions may be at least partly synergistic while the
O-information measure fails to detect them (Rosas et al., 2019). The
converse is not possible: if O-information infers a synergistic
relationship then there must be significant synergy. This metric
has been utilized in neuroscience, in fMRI signals to characterise
higher-order communication between different regions of the brain,
and to capture neural spiking dynamics (Stramaglia et al., 2021;
Santos et al., 2023). This information-theoretic approach captures
synergy by computing (multivariate) mutual information and is
model free.

However, capturing synergistic interactions is relevant in many
domains, such as synergistic drug-drug combinations, increased co-
occurrances of diseases, and functional activity in the brain
(Tallarida, 2011; Timme et al., 2014; Wildenhain et al., 2015;
Rønneberg et al., 2021). As prediction models become ever more
complex, feature attribution methods have become essential tools to
provide explainability and interpretability. This often involves

performing a sensitivity analysis or breaking down a complex
system into its individual components and analysing how these
components interact to produce the overall behaviour of the system.
This process allows us to better understand the underlying
mechanisms and processes in the model. Approaches such as
Integrated gradients, Layer-wise Relevance propagation and
Gradient-weighted Class Activation Mapping have been
developed for neural networks, while Sobol’ Indices and Shapley
values are used for a much broader range of models (Owen, 2014;
Selvaraju et al., 2017; Montavon et al., 2019; Gevaert and Saeys, 2022;
Lundstrom et al., 2022). These approaches require two choices to be
made; what model should be fit to the data and what attribution
technique should be utilised. This contracts with the information-
theoretic approach which is directly applied to data. Further
discussion on different approaches to capture synergy,
O-information and mutual information variants is provided in
the Supplementary Material.

2.2 Creating a synthetic network model with
synergistic interactions

Our synthetic model (Figure 1A) is a BN model of sign and
disease variables. In this example model we do not differentiate
between symptoms and signs and refer to them simply as signs. BNs
are causal graphs which are directed and acyclic and its edges are
defined by conditional distributions among stochastic variables,
which are shown as nodes (Briganti et al., 2022).

Our running example follows Lucas et al. (2004) and Borsboom
(2017) where signs can cause (the diagnosis of) diseass, but diseases
do not directly cause sign activation. In other words, while signs are
causally linked and can have both incoming and outgoing
connections, diseases are inferences derived from (a combination
of) signs. Notwithstanding, others do consider causal relations from
diseases to signs (Richens et al., 2020). It is important to note,
however, that our main conclusions would remain unchanged if
adding such causal relations.

Our synthetic network has three independent nodes (S1, S2, S5),
without incoming links, each with a Dirichlet prior distribution
(Koller and Friedman, 2009). For further simplicity, our model has
only binary nodes (“on/off”) which is sufficient for our
demonstration, but the described approach is valid for both
discrete and continuous data. Node S3 has a large mutual
information with its parent node S2, as represented by the direct
link from S2 to S3. Similarly for the edge S3 → D3. Highly synergistic
random variables from Quax et al. (2017) are appended to the
system, as shown by the wide edges for (S1, S2) → S4 and
(S2, S3) → S6, which we refer to as triplets. Arrows on each edge
indicate the causal direction in the network. We do this by joint
optimization of conditional probabilities by maximizing the so-
called Whole-Minus-Sum objective function, where we aim to
minimise the pairwise mutual information and maximise the
combined mutual information of both inputs about the target.
For the edge (S1, S2) → S4, this synergistic association ensures
the mutual information of pairs MI(S1, S4) and MI(S2, S4) are
approximately zero, meaning no pairwise association, while there is
a large mutual information when jointly considering both nodes on
the target. A similar setup is seen with the triplet (S2, S3) → S6.
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However, in this case the mutual information MI(S2, S3) is
significant, as shown by the directed edge, thus making the
synergistic effect weaker. Finally, OR gates are used for the
dynamics of diseases D1 and D2, where D1 activates if either S1
or S4 activates, while D2 activates if S5 or S6 activates. This
combination of pairwise and synergistic edges results in a
hypernetwork structure.

We assume this ground truth is known, with the focus on
illustrating how synergistic interactions influence model
interventions. We do not focus on techniques to reconstruct such a
BN from data, or the presence of latent variables in this synthetic model.
The only latent variables present are noise-generating functions.
Pairwise associations alone cannot reconstruct this network
structure. Figure 1B shows a matrix of mutual information values
for each pair of variables, computed from a synthetic dataset generated
by the model. Each shaded square represents an edge in the
corresponding pairwise network. However, some associations are
then missing, which incorrectly results in three disconnected
pairwise network forming (See Supplementary Material). Including
synergistic associations is needed to form the complete network
structure, resulting in a hypernetwork structure.

2.3 Model interventions

Next we perform two types of interventions to gain insight into
this complex system. We first simulate an intervention at the
population-level by picking a sign variable and nudging its
marginal distribution slightly, acting as a mass influence on the
whole population. The marginal probability distribution reflects the
prevalence of the sign in the population. By nudging we mean
moving probability mass from one state to the other in the
probability mass function (pmf) for a variable, slightly changing
its marginal probabilities while keeping all conditional probabilities
unchanged, in causal inference this is known as a soft intervention
(Eberhardt and Scheines, 2007). We remind the reader that in our
model, conditional probabilities reflect causal mechanisms (e.g.,
smoking leads to increased risk of lung cancer), so we only
change marginal probabilities. This type of population-level
intervention is akin to a shift in society’s normal behaviour or

trying to manipulate population-level causes of the incidence
sickness through public health measures rather than protecting
high risk individuals within a population (Rose, 2001). For
example, a nudge of 0.1 on node S may correspond to increasing
P(S � 1) � 0.3 to P̂(S � 1) � 0.4, which changes the probability by
|P − P̂| � 0.1. The effect of the intervention is then computed using
the change in log-odds ratio for each node in the network. In the
binary setting, a nudge is not probabilistic and so is fully
reproducible. However, when using multivariate or continuous
variables there are many ways to shift the PMF, and some
sampling techniques would be needed to analyse the effects of
nudge interventions, as the results would vary each time.

Our second simulated intervention, on the other hand, pertains
to clinical practice where we are concerned with a single patient
rather than population-level scores. Here we may ask: “Given that
this patient has this sign, what other sign is she likely to acquire?”Or,
“Can the onset of a particular sign be prevented by a strategic
intervention, given the other signs of a patient?” In this case it no
longer makes sense to speak of a pmf of a sign: a given patient has a
well-defined value for a sign, which in our binary formalismmeans a
patient either has or does not have a particular sign. To this end,
individual-level interventions were performed by generating one
realisation (value for each sign and disease in the network), changing
the state of one or more nodes, and recording the downstream
changes. This is akin to hard interventions in do-calculus, as we are
forcing a node to take a certain value (Eberhardt and Scheines,
2007).

2.4 Uncovering synergistic associations in
medical data

The prevalence of synergistic associations was illustrated using
the O-information heuristic. The data set used is the EASYcare
Twostep Older persons Screening data (van Kempen et al., 2015) This
is a group of 587 older persons aged 60+ from GP practices in the
Netherlands, and holds cross-sectional data on 37 signs along with
binarized Cumulative Illness Rating Scale-Geriatric (CIRS-G) data
on the absence or presence of diseases (operationalized as each of the
14 CIRSG-subscales being equal to or greater than 2) taking from a

FIGURE 1
(A) The synthetic network model with pairwise and synergistic interactions. The narrower hyperedges indicate interactions less synergistic than the
wider hyperedges. (B) The conditional probability table with variables S1, S2 ,P(S4|S1 ,S2) can be interpreted as follows; The first row shows a 2.8% chance
of S4 being on when S1 and S2 are off. If S1 is on and S2 is off, S4 is always off. If S1 is off and S2 is on, S4 is always on. And if both S1 and S2 are on, S4 is
always on. (C) Mutual information scores for each pair of variables from a synthetic dataset, with 100,000 realisations, generated by the model.
Larger and darker squares show stronger pairwise associations.
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complete medical examination. A permutation test was used to
determine the significance of each synergistic triplet using the
Benjamini-Hochberg procedure (BHR) with a family-wise error
rate of 0.15 (Ferreira and Zwinderman, 2006).

3 Results

3.1 Interventions at the population-level

First, we nudge the pmf of S5 by 0.2 (Figure 2B), changing its
marginal probabilities while keeping all conditional probabilities
unchanged. This carries through to a slight increase in the
prevalence of D2, while all other variables are unaffected. This direct
causal effect is expected by the pairwise network, since a pairwise
connection is inferred in the network from S5 to D2. By construction,
no other nodes are descendants of this node, and so are not affected.

In a second intervention, we nudge the prevalence of S2
(Figure 2C). This intervention filters through the network,
changing the marginal probability (prevalence) of several other
nodes in the network. The direct pairwise links (S2 → S3) and
then (S3 → D2) catered for these secondary effects. However, by
construction, the synergistic associations also facilitate (minor)
changes in distributions of S4 and S6, which subsequently caused
changes inD1 andD2. The pairwise network misses these changes to
S4, S6, D1, D2.

3.2 Interventions at the individual-level

Suppose a patient presents with signs S1, S2, S3, S4, S5, S6
(Figure 1C), where we have no reason to prioritise treating one

sign over another. When considering only the direct pairwise
associations, we incorrectly conclude that the active signs are not
connected to each other. This implies that each sign must be treated
individually, meaning four separate treatments for the patient.
However, when synergistic associations are included, we see that
not all interventions are necessary. Sign S2 has a synergistic causal
effect on sign (S4, S6), so this intervention will impact both signs, as
making S2 inactive also makes both (S4, S6) inactive. Ignoring
synergistic interactions leads to overtreatment of the patient, as
this involves intervening on every active sign node.

3.3 Synergistic associations in medical data

For computational efficiency, we first found triangles of low
dyadic mutual information (MI < 0.05) as these are likely to be
missed when performing a pairwise analysis. Of these, 184 triplets
were (Quax et al., 2017) significantly synergistic, with p-values less
than 0.05 using the Benjamini-Hochberg algorithm to account for
the false discovery rate.

One such example is weight loss (w), dyspnoea (d), and locomotor
pain (pl), which all have weak dyadic associations but significant
synergistic associations. A patient with only joint painmay be advised to
lose weight to reduce the strain on their joints (King et al., 2013).
Similarly, a patient with dyspnoea may be advised to lose wight to
alleviate its effects (Bernhardt and Babb, 2014; Bernhardt et al., 2019).
However, if the patient has both joint pain dyspnoea, their intensity and
duration of physical activity is further limited. This comorbidity further
increases the patients suffering, making it much less likely that losing
weight to reduce joint pain succeeds (Hayen et al., 2013). Here the
probability of weight loss (0.097) remains (almost) unchanged given the
presence/absence of one sign:

FIGURE 2
(A) An example realisation of the network. Coloured nodes are active (“on”) in the “patient” while white nodes are inactive. An individual-level
intervention turns off one node, updating downstream nodes as they also become inactive. (B) The effect of a (population-level) nudge intervention on
node S5 . This intervention updates downstream marginal probabilities from where the nudge intervention occurred. Larger nodes indicate a larger
change in the log-odds ratio compared to the system state before interventions. Green nodes show increased prevalence (marginal probabilities),
red show decreases, and white shows no change. (C) The corresponding effect of nudging node S2.
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P w
∣∣∣∣pl � 1( ) � 0.094

P w|d � 1( ) � 0.084

P w
∣∣∣∣pl � 0( ) � 0.077

P w|d � 0( ) � 0.088

However, conditioning on both variables results in a much
larger change of probabilities;

P w
∣∣∣∣pl � 0, d � 0( ) � 0.048

P w
∣∣∣∣pl � 0, d � 1( ) � 0.169

P w
∣∣∣∣pl � 1, d � 0( ) � 0.126

P w
∣∣∣∣pl � 1, d � 1( ) � 0.045

Other synergistic triplets include (Stiff restricted, UTI, CIRS-G
Lower GI) and (Movement limitation, Hearing problem, CIRS-G
Heart). A collection of synergistic triplets is presented in the
Supplementary Material.

4 Discussion

Multimorbidity research is moving from individual treatment
of diseases toward a complex system view of multimorbidity, but
it remains unclear how exactly this is to be achieved. Network
models of diseases and disease clusters, which are based on
dyadic associations, are becoming increasingly popular to
study multimorbidity (Barabási et al., 2010; Jones et al., 2022).
However, we have shown that such networks may miss important
synergistic relationships in data, so we argue that polyadic
associations be included in such networks. The prevalence of
synergistic associations was demonstrated using a medical
dataset where we found 184 triplets to be significantly
synergistic. Although more datasets should be analysed to
uncover the true prevalence of synergistic associations, this
result at least demonstrates that further investigation is
warranted.

Melis et al. (2017) argue that methods modelling multimorbidity
at the disease level may have limited value, as they do not accurately
inform clinical decision making.With increasing disease burden, the
presenting signs become less specific, and it is more difficult to
identify a clear set of underlying diseases. Therefore, network
models must uncover relationships among signs and diseases.
Constructing such networks with synergistic associations permits
interdependencies among signs and diseases to be uncovered while
capturing associations that may be missed when only considering
pairwise associations.

There are three key points we wish to take from the analysis of
our synthetic model. Firstly, synergistic associations may cater for
changes in the system that cannot occur from pairwise associations,
and thus statistical analyses should not just explore pairwise
correlations but also involve additional analyses that are able to
uncover these synergistic association in empirical data to fully
determine intervention effects.

Secondly, local interventions in complex systems can have global
effects. When considering interventions, we must look beyond
variables directly associated with our variable of interest and

consider how modifying a single node changes the whole system.
Networks built from pairwise associations uncover links that may
overlook synergistic interactions, and so may not capture the true
global effects.

Thirdly, networks constructed from pairwise associations
uncover links that may overlook synergistic interactions. This
may lead to unexpected outcomes because we overlook links that
do exist. If we only try to construct the causal structure using
pairwise associations, we may miss the carry-through effects via
synergistic interactions, expect inaccurate global-effects, and
intervene on more or less nodes than needed.

However, these approaches are not without limitations. Finding
synergistic associations brings additional computational costs,
especially when including higher-order groups, such as
quadruplets and quintuplets. Capturing higher-order associations
is constrained by the availability of data, which limits the complexity
of the resulting hypergraph. Quantifying the amount of synergy also
remains a theoretical problem (Grith, n.d.; Quax et al., 2017; Finn
and Lizier, 2020). Spurious findings should also be considered when
constructing network models (Fried, 2017; Epskamp and Fried,
2018). Additionally, integrating these associations into prediction
and causal models remains an open problem. Nevertheless, it is
important to be aware of such synergistic associations, especially
when they uncover relations missed in the pairwise-based network.

To conclude, patients with multimorbidity have complex
patterns of signs and diseases, each of which should
simultaneously be included in networks constructed to study
multimorbidity. Studying pairwise associations alone is not
sufficient in such a complex setting. Synergistic associations
between signs occur and must be included in future analysis. Our
arguments were supported by both results from the simulations in
the synthetic model and analyses of real-world data.
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