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The principles governing genotype-phenotype relationships are still emerging
(Jovanovic, Science, 2015, 347 (6,226), 1,259,038; Buccitelli et al., Nature Reviews
Genetics, 2020, 21 (10), 630–44; Öztürk et al., Nature Communications, 2022,
131), 6,153), and detailed translational as well as transcriptomic information is
required to understand complex phenotypes, such as the pathogenesis of
Alzheimer’s disease. For this reason, the proteomics of Alzheimer disease (AD)
continues to be studied extensively. Although comparisons between data
obtained from humans and mouse models have been reported, approaches
that specifically address the between-species statistical comparisons are
understudied. Our study investigated the performance of two statistical
methods for identification of proteins and biological pathways associated with
Alzheimer’s disease for cross-species comparisons, taking specific data analysis
challenges into account, including collinearity, dimensionality reduction and
cross-species protein matching. We used a human dataset from a well-
characterized cohort followed for over 22 years with proteomic data available.
For the mouse model, we generated proteomic data from whole brains of CVN-
AD andmatching controlmousemodels.We used these analyses to determine the
reliability of a mouse model to forecast significant proteomic-based pathological
changes in the brain that may mimic pathology in human Alzheimer’s disease.
Compared with LASSO regression, partial least squares discriminant analysis
provided better statistical performance for the proteomics analysis. The major
biological finding of the study was that extracellular matrix proteins and integrin-
related pathways were dysregulated in both the human and mouse data. This
approach may help inform the development of mouse models that are more
relevant to the study of human late-onset Alzheimer’s disease.
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1 Introduction

Genome-wide association studies and multiple -omics studies,
including proteomics, have revealed that AD pathology is
accompanied by perturbations in multiple metabolic and
biological pathways that impacts virtually all cell types in the
brain (Thompson et al., 2003; Wan et al., 2020a).

Because each protein represents one structural gene, the
extensive information represented in proteomics datasets, can be
analyzed by appropriate statistical methods to identify structural
genes and pathways that are highly correlated with AD, and hence,
provide a focus for further research. As is the case for most late-onset
neurodegenerative diseases, for Alzheimer’s Disease there are
specific aspects of protein dysmetabolism, specifically misfolding
and aggregation of specific proteins into abnormal, toxic species that
define the neuropathology. Recent work has supported the premise
that many biological changes relevant to AD pathophysiology are
occurring through mechanisms that are not reflected through
changes in mRNA abundance or co-expression (Johnson et al.,
2022). This work emphasizes the importance of proteomics
analysis and the integration of multiple levels of omics data for
understanding the biological mechanisms that underlie
development of AD.

Prior multilayer brain proteomic and phosphoproteomic studies
have identified molecular networks, including amyloid cascade,
inflammation, complement, WNT signaling, TGF-β, BMP
signaling, lipid metabolism, iron homeostasis ad membrane
transport that are involved in AD progression and contrasted
molecular signatures in brain tissue and cerebrospinal fluid
proteomic (CSF) with the 5xFAD mouse model (Bai et al., 2020).
Reviews of proteomics methods and analysis strategies for unbiased
deep profiling of the proteome, specifically differentially expressed
proteins and post-translational modifications associated with
Alzheimer’s disease have been published (Bai et al., 2021).
Multiplexed tandem-mass-tag for ultra-deep proteomics coverage
followed by systems biology analysis revealed specific protein
signatures for AD across the cortex, CSF and serum that
highlighted mitochondrial proteins as involved with the
development of AD (9).

For this study, we used human proteomic data from the
ROSMAP [Religious Orders Study and the Memory and Aging
Project]) study that contains a cohort of 387 individuals well-
characterized in terms of sex, race, education, and their state of
AD development (Bennett et al., 2012a; Bennett et al., 2012b;
Bennett et al., 2018). This dataset contains measurements of
4,913 proteins from the dorsolateral cortex of each individual
enrolled in the study.

The mouse proteomic data were obtained from whole brain
samples of the CVN-AD AD mouse model. This model faithfully
recapitulates the three primary pathologies of human Alzheimer’s
disease, amyloid deposits, the accumulation of neurofibrillary
tangles, and neuron loss, with minimal genetic manipulation. It
is a transgenic model that incorporates human APP bearing the
Swedish/Dutch/Iowa (APPSwDI) amyloidogenic mutations under
control of the Thy1 promoter (Davis et al., 2004;Wilcock et al., 2008;
Colton CA. et al., 2014), on the Nos2 knock-out background. Unlike
many other mouse AD models used up until now, the introduced
human APP is expressed at a low level, only ~0.5X the level of

endogenous App (Davis et al., 2004).We placed this mutation on the
Nos2 knock-out background because inducible nitric oxide synthase
has a key role in innate immunity (Bogdan, 2015), and the innate
immune response is critical for both the initiation and progression of
AD ((Zhang et al., 2013; Kan et al., 2015; Shi and Holtzman, 2018)),
However, the expression and activity of human NOS2 are
significantly lower than for the mouse Nos2 ((Colton et al., 1996;
Mestas and Hughes, 2004)); in order to mimic the human condition
we knocked-out Nos2 expression. APPSwDI mice display only
amyloid pathology (Davis et al., 2004), and the Nos2 knock-out
mice do not exhibit any AD pathology. By contrast, the APPSwDI/
Nos2−/− (CVN-AD) mice develop amyloid plaques and tau
pathology, including hyperphosphorylated tau and the
accumulation of neurofibrillary tangles, and exhibit neuron loss
and learning and memory deficits reminiscent of human AD
(Wilcock et al., 2008; Colton C. et al., 2014). Control studies
showed that CVN-AD mice exhibit the same pathologies as
APPSwDI/huNOS2Tg, representing CVN-AD engineered to
express human NOS2 (Colton CA. et al., 2014). Knocking out
the endogenous Nos2 therefore faithfully phenocopies the
consequences of the human gene. We have also confirmed the
effects of knocking out Nos2 on tau pathology, by crossing
another amyloid model, Tg2576 (APPSw), with Nos2 knock-out
mice (Colton et al., 2006). Because limited genetic changes, based on
well-known and established biology, elicit AD pathology, we chose
the CVN-AD model for the studies reported in this paper. The
mouse model proteome dataset contains expression measurements
of 2014 proteins in 40 samples, and covariate information including
mouse model genotype, sex and age.

Regression models have been useful for the analysis of
proteomics data. However, the type of regression models must be
carefully selected based on their functionalities and advantages in
overcoming the challenges of high dimensionality and co-linearity
present in the proteomics data. In addition to the problem of high
dimensionality, in which the number of proteins (p) far exceeds the
number of observations (n), collinearity in the feature space is also a
critical issue since expression levels of many related proteins are
highly correlated. In this study, we contrast LASSO regression with
partial least squares-discriminant analysis (PLS-DA), a variant of
Partial Least Squares Regression (PLSR). We compared the mouse
and human proteomic analyses at the individual protein and
biochemical pathway levels.

2 Methods

2.1 Description of datasets used

2.1.1 Human data
The human data sample was taken from a subset of the Religious

Orders Study and Rush Memory and Aging Project (ROSMAP)
dataset (Bennett et al., 2012a; Bennett et al., 2012b; De Jager et al.,
2014) that had proteomics data available from the dorsolateral
frontal cortex. ROS has enlisted nuns and brothers since 1994.
MAP recruited individuals from the northern Illinois region since
1997. Both studies were run by the same investigators using similar
data collection techniques. Thus, the results from both were
comparable. For the analyses reported in this paper, the clinical

Frontiers in Systems Biology frontiersin.org02

Shi et al. 10.3389/fsysb.2023.1085577

https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2023.1085577


consensus diagnoses of Alzheimer’s disease or mild cognitive
impairment were used to define a case while the diagnosis of no
cognitive impairment/no impaired domains defined controls.
Additional covariates for the statistical models were age, sex and
APOE genotype. The total sample with proteomics data contained
387 subjects, with 221 cases and 166 controls. Demographic
information for the sample is summarized in Table 1. Data for
the human samples was generated from tandem-mass-tag
proteomics (TMT). A complete description of the tissue
preparation and mass spectrometry is given in Johnson et al.
(Johnson et al., 2020) and described on the data description page
available in the Alzheimer’s Disease Knowledge Portal (https://www.
synapse.org/#!Synapse:syn17015098). In brief, before TMT labeling,
individuals were randomized by covariates (such as age, sex, PMI
and diagnosis), into 50 total batches (eight individuals per batch).
Peptides from each individual (n = 400) and the GIS pooled standard
(n = 100) were labeled using the TMT 10-plex kit (Thermo Fisher
Scientific, 90,406). Labeling was performed as described in Johnson
et al. (Johnson et al., 2018) and Ping et al. (Ping et al., 2018).

2.1.1.1 High-pH off-line fractionation of brain tissues
(50 10-plex TMT batches)

High pH fractionation was performed essentially as described in
Ping et al. (Ping et al., 2020) with slight modification. Dried peptide
samples were resuspended in high-pH loading buffer (0.07% vol/vol

NH4OH, 0.045% vol/vol FA, 2% vol/vol ACN) and loaded onto an
Agilent ZORBAX 300 Extend-C18 column (2.1 × 150 mm with
3.5 µm beads). An Agilent 1100 HPLC system was used to carry out
fractionation. Solvent A consisted of 0.0175% (vol/vol) NH4OH,
0.01125% (vol/vol) FA and 2% (vol/vol) ACN; solvent B consisted of
0.0175% (vol/vol) NH4OH, 0.01125% (vol/vol) FA and 90% (vol/
vol) ACN. The sample elution was performed over a 58.6-min
gradient with a flow rate of 0.4 mlmin−1. The gradient consisted
of 100% solvent A for 2 min, then 0%–12% solvent B over 6min,
then 12% to 40% over 28 min, then 40%–44% over 4 min, then 44%–
60% over 5 min and then held constant at 60% solvent B for
13.6 min. A total of 96 individual equal volume fractions were
collected across the gradient and subsequently pooled by
concatenation into 24 fractions and dried to completeness using
a SpeedVac.

2.1.1.2 TMT-MS of brain tissues
All fractions were resuspended in an equal volume of loading

buffer (0.1% FA, 0.03% TFA, 1% ACN) and analyzed by liquid
chromatography coupled to tandem MS essentially as described,
with slight modifications. Peptide eluents were separated on a self-
packed C18 (1.9 μm) fused silica column (25 cm × 75 μM internal
diameter; New Objective) by an Dionex UltiMate 3,000 RSLCnano
liquid chromatography system (Thermo Fisher Scientific) and
monitored on an Orbitrap Fusion mass spectrometer (Thermo
Fisher Scientific). Sample elution was performed over a 180-min
gradient with flow rate at 225 nLmin−1. The gradient was from 3%
to 7% buffer B over 5 min, then 7%–30% over 140 min, then 30%–
60% over 5 min, then 60%–99% over 2 min, then held constantly at
99% solvent B for 8 min and then back to 1% B for an additional
20 min to equilibrate the column. Buffer A was water with 0.1% (vol/
vol) FA and buffer B was 80% (vol/vol) acetonitrile in water with
0.1% (vol/vol) FA. The mass spectrometer was set to acquire in data-
dependent mode using the top speed workflow with a cycle time of
3 s. Each cycle consisted of one full scan followed by as manyMS/MS
(MS2) scans that could fit within the time window. The full scan
(MS1) was performed with an m/z range of 350–1,500 at
120,000 resolution (at 200 m/z) with AGC set at 4 × 105 and
maximum injection time of 50 ms. The most intense ions were
selected for higher energy collision-induced dissociation at 38%
collision energy with an isolation of 0.7 m/z, a resolution of 30,000,
an AGC setting of 5 × 104 and a maximum injection time of 100 ms.
Five of the 50 TMT batches were run on the Orbitrap Fusion mass
spectrometer using the synchronous precursor selection-based
(SPS)-MS3 method as previously described (Öztürk et al., 2022).

2.1.1.3 TMT database searches and protein quantification
All RAW files (1,200 RAW files generated from 50 TMT 10-

plexes) were analyzed using the Proteome Discoverer suite (v.2.3,
Thermo Fisher Scientific). MS2 spectra were searched against the
UniProtKB human proteome database containing both Swiss-Prot
and TrEMBL human reference protein sequences (90,411 target
sequences downloaded on 21 April 2015), plus 245 contaminant
proteins. The Sequest HT search engine was used and parameters
were specified as follows: fully tryptic specificity, maximum of two
missed cleavages, minimum peptide length of six, fixed
modifications for TMT tags on lysine residues and peptide
N-termini (+229.162,932 Da) and carbamidomethylation of

TABLE 1 (Panel A) Human sample demographics. (Panel B) Mouse sample
demographics.

Status Sex N Age (years) mean (SD)

AD Female 156 88.6 (2.90)

AD Male 65 86.6 (3.99)

NCI Female 116 86.9 (4.32)

NCI Male 50 85.5 (5.04)

Genotype Sex N Age (months) mean (SD)

ApoE-3 F 3 54.0 (2.65)

ApoE-3 M 2 66.0 (7.07)

ApoE-4 F 3 55.7 (11.68)

ApoE-4 M 2 50.5 (10.61)

CVN-AD F 3 54.0 (1.73)

CVN-AD M 3 52.0 (1.00)

E3 HN F 3 59.0 (0.00)

E3 HN M 3 55.0 (0.00)

E4HN F 3 68.0 (0.00)

E4HN M 3 58.3 (2.89)

HuNOS2 F 3 54.7 (1.15)

HuNOS2 M 3 52.7 (10.97)

NOS2 KO F 3 62.3 (0.58)

NOS2 KO M 3 56.7 (4.62)
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cysteine residues (+57.02146 Da), variable modifications for
oxidation of methionine residues (+15.99492 Da) and
deamidation of asparagine and glutamine (+0.984 Da), precursor
mass tolerance of 20 ppm and a fragment mass tolerance of 0.05 Da
for MS2 spectra collected in the Orbitrap (0.5 Da for the MS2 from
the SPS-MS3 batches). Percolator was used to filter peptide spectral
matches and peptides to an FDR <1%. Following spectral
assignment, peptides were assembled into proteins and were
further filtered based on the combined probabilities of their
constituent peptides to a final FDR of 1%. In cases of
redundancy, shared peptides were assigned to the protein
sequence in adherence with the principles of parsimony. Reporter
ions were quantified from MS2 or MS3 scans using an integration
tolerance of 20 ppm with the most confident centroid setting.

2.1.2 Mouse model data
The cohort of 40 mice used in our analysis contained

34 control mice and six APPSwDI/Nos2−/− (CVN-AD) mice.
The CVN-AD mouse model of AD used in our study expresses
human APP with the Swedish-Dutch-Iowa mutations that are
associated with early-onset AD in humans, and that cause the
development of amyloid plaques in the brains of the mice,
thereby corresponding to human AD. The CVN-AD mouse
model was chosen for this study because it also possesses the
Nos2 deletion, to better reflect the human immune response,
unlike all other mouse models of AD [17–20]. The distribution
of the control mice by genotype, age and sex is provided in
Table 1. For this study, we used a set of control mice that covered
several genetic backgrounds that have similarity to the
backgrounds that are associated with AD risk in humans: that
is: APOE genotype, age, sex and NOS2 gene expression. The use
of a diverse set of control mice was used to provide a set of
controls that would correspond more closely to the diversity of
controls in the human sample. The statistical models were
adjusted for the covariates of mouse genotype, age and sex.
Peptides for both mouse Apoe and human Apoe were quantified.
All mouse model proteomics data is included in Supplementary
Table S1.

2.1.2.1 Proteomics analysis for the mouse model data
Brain tissue preparation. Brain tissue samples stored in 1.5 mL
tubes were delivered to the Duke Proteomics and Metabolomics
Core Facility (n = 6 per genotype). 0.5% w/v ALS-1 surfactant in
50 mM ammonium bicarbonate (AmBic) was added to each
sample at a volume of 10 uL/mg wet weight of tissue. Tissue
homogenization and cell lysis was performed with probe
sonication (Misonix) over three pulses at power level 3 for 5 s
each with cooling on ice between pulses. A five uL aliquot of
homogenate was diluted 25x in AmBic for determination of
protein content by Bradford assay. Based on Bradford results,
samples were 0.7 ± 0.2 mg protein/mg tissue. Following
normalization (100 μg protein at 1 mg/mL protein in 0.5% ALS-
1/AmBic), samples were reduced with 10 mM dithiothreitol (DTT)
at 80°C with shaking for 15 min, alkylated with 20 mM
iodoacetamide (IAA) at room temperature in the dark for
30 min, and digested with 2 μg sequencing grade modified
trypsin (Promega) overnight at 37°C with shaking. Digestion
was stopped with the addition of 12 μL 10/20/70 v/v/v TFA/

MeCN/H2O and heating at 60°C for 2 h and diluted further
with 1/2/97 v/v/v TFA/MeCN/H2O for a final digested protein
concentration of 0.5 ug/uL. A pool of all samples (Study Pool QC,
SPQC) was created from equal volumes of each sample, and
analyzed at regular intervals throughout the study to allow
observation of any experimental drift.

2.1.2.2 Proteomics analysis
The samples were analyzed using a nanoAcquity UPLC system

(Waters) coupled to a Q Exactive HF Orbitrap high-resolution
accurate-mass tandem mass spectrometer (Thermo Scientific) via
a nanoelectrospray ionization source. Each sample was analyzed
once, and the SPQC was analyzed approximately every six
samples. Briefly, the sample was first trapped and desalted on a
Symmetry C18 180 um x 20 mm trapping column (5 uL/min at
99.8/0.1/0.1 v/v water/acetonitrile/formic acid), then the
analytical separation was performed using a 1.7 um Acquity
HSS T3 C18 75 um x 250 mm column (Waters). The peptides
on the column were eluted using a 90-min gradient of 5%–40%
acetonitrile with 0.1% formic acid at a flow rate of 400 nliters/min
(nL/min) with a column temperature of 55°C. Data collection on
the Q Exactive HF mass spectrometer was performed in a data-
dependent MS/MS manner, using a 120,000 resolution precursor
ion (MS1) scan followed by MS/MS (MS2) of the top 12 most
abundant ions at 30,000 resolution. MS1 was accomplished using
an automatic gain control (AGC) target of 3e6 ions and mass
accumulation time of up to 50 msec. MS2 used AGC target of
5e4 ions, up to 45 msec maxiumum ion accumulation, 1.2 m/z
isolation window, 27V normalized collision energy, and 20 s
dynamic exclusion.

Following the analyses, the data was imported into Rosetta
Elucidator v 4.0 (Rosetta Biosoftware, Inc.), and all LC-MS files
were aligned based on the accurate mass and retention time of
detection ions (“features”) using a PeakTeller algorithm
(Elucidator). The relative peptide abundance was calculated based
on area-under-the-curve (AUC) of aligned features across all runs.
The MS/MS data was searched against a custom built database based
on the SwissProt database with Mus musculus taxonomy
(downloaded 28 April 2017) with additional proteins, including
yeast ADH1_YEAST (surrogate standard), ALBU_BOVIN
(contaminant), APOE_HUMAN (genetic substitution), and
additional mutated proteins expressed in the mice with sequences
provided by the investigators, were also included in the custom
database. An equal number of reversed-sequence “decoys” were
appended to this “forward” DB for false discovery rate
determination. A total of 3,084 proteins were quantified, and
2,118 (69%) proteins were quantified with two or more peptides
(Supplementary Table S1).

2.2 Statistical methods

2.2.1 LASSO logistic regression
LASSO logistic regression is an adaptation of linear regression

that uses shrinkage to reduce model complexity for binary
classification problems (Tibshirani, 1997; Qian et al., 2020;
Reisetter and Breheny, 2021). We use this as the baseline model
for comparison with the Partial Least Squares method.
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2.2.2 Partial least squares
Partial Least Squares (PLS) is a generalization of multiple linear

regression and is well suited for proteomic data analysis (Boulesteix
and Strimmer, 2007) since it is designed to address the high
correlations between the independent variables. It is a data
reduction method that identifies specifically the variation of
independent variables (X) that correlates with the output of
interest (Y). In our model, the independent variable matrix (X)
are the protein concentrations and baseline information of the
samples controlling for age and sex. The response variable Y is a
binary vector containing zeros and ones for whether the subject has
AD (or expresses the causal APP variants in the case of the mouse
model) or not.

When X are correlated rather than orthogonal, ordinary linear
regression estimates can become unstable. PLS regression
overcomes this collinearity problem by finding uncorrelated
variables (i.e. principal component scores) and then uses multiple
linear regression to regress the principal components (PC’s) against
the Y, or the response variable. This allows PLS to provide
substantial prediction results as well as having robust descriptive
power. In contrast to multiple linear regression, which scales and
offsets each variable in X as independent entities separately to model
the output Y, PLS takes X as an entire matrix and iteratively
transforms both X and Y matrices to maximize their covariance
(Cramer, 1993). Because the response variable of interest for this
study is a binary categorical variable (i.e. either the subject has AD or
not), we used Partial least squares-discriminant analysis (PLS-DA),
a variant of PLS, for this study.

PLS is not only good for predictive and descriptive modeling,
but also for variable selection. Variable Importance in Projection
(VIP) score, calculated based on loading scores from PLS results,
estimates the relevance, and hence importance, of each variable in
X in determining the response variables Y. Loading scores are
weights that are estimated from the relationships between variables
in the data for both the proteomics data matrix (X). Highly
correlated variables have similar loading score. Therefore, VIP,
based on these scores, can measure the importance of a gene with
respect to both the response variable as well as the proteomics data
matrix. Because the PLS properties of dimensionality reduction
and variable selection are tightly related, multiple latent
components are taken into account in the variable selection
procedures, and hence the approach can discover non-linear
patterns in the data (Boulesteix and Strimmer, 2007). In
contrast to PLS-DA, LASSO regression does not model the
covariation among independent variables.

Since an aim of this study is to identify and then analyze the
proteins that are highly associated with the outcome of interest,
specifically onset of AD, we used PLS-DA mainly as a gene selection
approach utilizing the variable selection procedures, specifically the
calculation of variance importance scores. The first step of the
analysis identified the proteins that were significantly different
between individuals with AD and cognitively normal in the
human data (ROSMAP dorsolateral prefrontal cortex) and
significantly different between the CVN-AD mice and control
mice. As a second step, gene-set enrichment analysis was then
performed on the resulting data. Finally, the individual protein
results and gene set enrichment results were used to make the
interspecies comparisons.

2.3 Gene set enrichment analysis

Gene set enrichment analysis (Subramanian et al., 2005) was
carried out with the GENE2FUNC algorithm implemented in
Functional Mapping and Annotation of Genome-Wide
Association Studies (FUMA) version v1.3.8 (Watanabe et al.,
2017). For the 20 input genes for the mouse and human datasets,
the unique Entrez identification numbers were used in the analysis.
All genes with an Entrez identification number (19,277) were used as
the background gene set for the hypergeometric test. The Molecular
Signatures Database v7.0 (August 2019) was used for the set of
potential biological signatures. The Benjamini–Hochberg method
was used as a correction for multiple testing with a maximum
adjusted p-value of 0.05 for gene-set enrichment tests.

3 Results

3.1 Statistical model comparisons

First, we assessed the performance of the two statistical methods,
LASSO logistic regression and PLS-DA on both mouse and human
proteomics datasets. The accuracy scores of both methods are very
similar for the mouse data (~0.97). For the human data, however, the
accuracy of the model using LASSO logistic regression is 0.63 while
the accuracy of the model using PLS-DA method is 0.66. The
difference in accuracy between the human and mouse datasets
may be attributed to the fact that, excepting the sex
chromosomes, the mice are genetically uniform, in contrast to
the human subjects. Additionally, the mouse dataset is smaller,
and hence potentially more focused, than the human dataset and can
be modelled with fewer adjustable parameters than the human
dataset.

3.2 Individual protein results for human and
mouse

3.2.1 LASSO regression
The top eight proteins identified by LASSO regression as

significantly associated with carriage of the causal APP mutation
for the mouse model are shown in Table 2. Table 3 summarizes the
top eight proteins identified as significantly associated with
Alzheimer’s disease risk in the human data. We will restrict our
remarks to a few points for each case. In the mouse comparison, the
protein with the highest beta coefficient is hexosaminidase B (Hexb),
the beta-subunit of the lysosomal glycosyl hydrolase
hexosaminidase. Hexosaminidase degrades molecules containing
terminal N-acetyl hexosamines, many of which are related to the
extracellular matrix. Deficits in Hexb inmice, and its orthologHEXB
in humans, are associated with lipid storage diseases and
neurodegeneration that is accompanied by activated microglia. In
contrast to the present study, in which Hexb expression in APP-
expressing mice is elevated compared with control mice, Masuda
et al. report that microglial Hexb expression is stable in a variety of
neurodegenerative conditions in the mouse, including in the 5xFAD
mouse (Masuda et al., 2020), which is another APP-expressing
mouse line. The second highest expressed protein in the mouse
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comparison is Amyloid Precursor Protein (APP). This is not
unexpected since the CVN-AD mouse is an APP transgenic
model. In addition to serving as the precursor for amyloidogenic
peptides, APP is a cell surface receptor that is involved in cellular
adhesion and regulates neurite outgrowth and synaptogenesis
(Müller and Zheng, 2012; Baumkötter et al., 2014). By contrast
to these up-regulated genes, Neuronal Guanine Exchange Factor
(Ngef), is down-regulated in the CVN-AD model, altering actin
dynamics and disrupting growth conemotility (Shamah et al., 2001).

Methionine metabolism is critical for white matter synthesis and
is defective in human AD (Linnebank et al., 2010; Hooshmand et al.,
2019; Mihara et al., 2022) and in the CVN-AD mouse (Colton, CA,
unpublished observations). Enolase-phosphatase 1 (Enoph1), which
is highly expressed in stress responses of the brain (Wang et al., 2005;
Fagerberg et al., 2014), is also involved inmethionine salvage (Pirkov
et al., 2008; Barth et al., 2014; Wang et al., 2021). Down regulation of
this enzyme in this mouse model further implicates methionine
disruption as a likely contributor to AD-like brain pathology.

In the human comparison, the top ranked protein is Ankryn
(ANK2), which tethers integral membrane proteins to the underlying
extracellular matrix. The second highest, GH3 Domain Containing

(GHDC), may be involved in microtubule cytoskeleton organization
and microvesicular trafficking, by analogy with the fly Dmel\TTL1A
gene data (Janke et al., 2005). Its up-regulation may be in response to
the formation of neurofibrillary tangles. The third highest ranked
protein, Glypican (GPC4), is an integral membrane proteoglycan that
is involved with the endosomal trafficking of ApoE-bound receptors
andmay itself be anApoE receptor; it has been implicated as a cause of
APOE4-dependent tau pathology (Saroja et al., 2022). Among other
reactions, Aldehyde Dehydrogenase 1A3 (ALDH1A3), the fourth-
highest ranked protein, catalyzes the conversion of retinal to all-trans
retinoic acid (Moretti et al., 2016). Retinoic acid is the ligand for the
RXR receptor, which, via heterodimerization with a number of other
nuclear receptors (e.g., PPARa, PPARg, PPARd, LXR, FXR), regulates
lipid and glucose metabolic pathways and the innate immune
response (Saunders et al., 2021).

LASSO regression analysis also revealed that expression of
Pyruvate Dehydrogenase Component X (PDHX) was reduced in
AD. PDH is a multimeric intramitochondrial complex that
generates acetyl-CoA from pyruvate, linking glycolysis with the
TCA cycle and providing acetyl-CoA for neurotransmitter
synthesis, epigenetic regulation and post-translational
modification of proteins (Jankowska-Kulawy et al., 2022). PDH
activity is reduced in AD (Bubber et al., 2005). PDHX couples
the dihydrolipoamide dehydrogenase (E3) component of PDH to
the central core subunit, dihydrolipoamide acetyltransferase (E2)
(Škerlová et al., 2021). The activity of the overall complex is
regulated by loosely associated PDH kinases and a PDH
phosphatase. The latter is Ca2+-sensitive (Roche et al., 2001), and
reduced PDH activity in AD has been attributed to altered
mitochondrial calcium homeostasis (McCormack and Denton,
1989; Calvo-Rodriguez and Bacskai, 2021). The reduced PDHX
expression may also be a contributing factor.

3.2.2 PLS-DA
The variance importance plots for all of the protein

concentration data based on the PLS-DA model are shown in
Figure 1. Relatively few proteins show VIP scores greater than
2.5 for either species. For the human proteomic data (Figure 1A)
several collagens (COL1A1, COL1A2 and COL23A1) show VIP
scores greater than 10; one collagen has a VIP of approximately 8
(COL2A1); two collagens (COL6A2 and COL14A1), the amyloid
precursor protein (APP) and the CD44, NPTX2 and
SMOC1 proteins have VIP scores of approximately 5. These
proteins show the strongest effect on the human AD phenotype.
For the mouse proteomics data (Figure 1B), the Apoe and Cox7A2L
proteins show VIP scores greater than 9. Of note, the peptides that
map to both the mouse apolipoprotein E protein (designated Apoe)
and that map to the human ApoE protein (designated APOE) have
VIP scores in the 8-13 range. Several proteins (Htra, C
(complement), Nnt, Ngef, Fga, Fgb) show intermediate level VIP
scores in the range of greater than 4.7 but less than 10. Interestingly,
two other apolipoproteins, Apoa and Apob and two serpine
proteins, Serpina1d and Serpina1b, show VIP scores of
approximately 3. The collagen Col1a has a VIP score of
approximately 5.

Peptides for both the mouse ApoE protein (designated Apoe)
and human ApoE protein (designated APOE) were quantified, full
results for all of the mouse models are provided in Supplementary

TABLE 2 Coefficients of important (by VIP scores) mouse genes with
corresponding human genes identified from logistic LASSO regression results
on the mouse proteomics data.

Mouse genes Corresponding human genes Coefficient

(intercept) - -57.227

APP A4 0.781

CLU CLUS 0.371

ENOPH ENOPH -0.783

HEXB HEXB 2.234

HTRA HTRA 0.416

LRP LRP1 0.011

NGEF NGEF -1.521

MPST THTM 0.226

TABLE 3 Top eight coefficients of important (by VIP scores) human genes from
logistic LASSO regression results on the human data.

Human genes Coefficient

(intercept) −0.542

PDHX −0.049

GHDC 0.306

COL23A1 −0.004

ALDH1A3 0.161

ANK2 1.671

GPC4 0.203

PDIA4 −0.268

ACTN4 −0.131
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Table S2. ApoE protein concentrations as measured by log2
(intensity) for the CVN and control mouse models are shown in
Table 4. The human ApoE protein concentration is similar for the
ApoE replacement mouse models, however, the concentration is
lower in the CVNmouse and the two models that do not contain the
ApoE replacement. The mouse ApoE levels are similar across the
genotypes with the CVN mouse, HuNOS2 and NOS2 knock out
mice showing slightly higher but similar concentrations.

The PLS-DAmodel enables interpretation of the magnitude and
direction of the difference in levels of the phenotype (CVN-AD vs.
control mice, AD vs. cognitively normal humans) in context of
linear and logistic regression models. Table 5 presents the top
20 proteins, based on VIP scores, that show differences in
concentration between individuals with LOAD in contrast to
cognitively normal individuals, and between the CVN-AD and
control mouse models. The direction of the effect for the beta
coefficient is positive for the CVN-AD model compared with
control mice and, for the human data, for the AD samples

relative to cognitively normal controls (Table 4). Positive
coefficients show that the protein concentration is estimated to
be higher in the CVN-AD mouse model or in human samples
with AD.

3.3 Gene set enrichment results

Gene set enrichment analysis was performed for the human and
mouse data separately using the 20 genes in the respective human
and mouse sets with the strongest signals defined by VIP scores
(Table 5).

For the human data (Figures 2, 3), under GO biological processes
(Figure 2A) and molecular function (Figure 2C), FDR (false discovery
rate)-significant pathways included collagen, fibrils and the extracellular
matrix (ECM). FDR-significant reactome (Figure 3) pathways included
ECM, collagen and integrins. The only FDR significant pathway for
KEGG (Figure 2D) is the extracellular matrix-receptor interaction.

FIGURE 1
Variable Importance in Projection (VIP) plots from LASSO regression for (A)Human and (B)Mouse data. Predictors are the individual proteins. Labels
on the plots represent the protein symbols.

TABLE 4 Protein intensities for the human and mouse ApoE proteins for the mouse model genotypes.

Genotype N APOE human log2 (intensity) APOE mouse log2 (intensity)

ApoE-3 5 31.3 (0.25) 30.4 (0.38)

ApoE-4 5 30.8 (0.20) 29.9 (0.24)

CVN 6 26.0 (0.11) 33.3 (0.23)

E3 HN 6 31.1 (0.13) 30.2 (0.08)

E4HN 6 30.8 (0.07) 29.9 (0.09)

HuNOS2 6 26.2 (0.24) 32.4 (0.12)

NOS2 KO 6 26.2 (0.14) 32.5 (0.06)
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For the mouse data (Figures 4–6), strong GO biological
processes (Figure 4) signals were observed for reactive oxygen
species, cell adhesion/coagulation, endocytosis, amyloid beta
clearance and cell death. For the reactome (Figure 5), FDR-
significant pathways included: innate immunity, complement and
coagulation and integrins. The only FDR significant pathway for
KEGG (Figure 6C) is complement and coagulation cascades.

Pathway signatures that showed FDR-adjusted p
values ≤0.05 for both the human and mouse datasets are shown
in Table 6. It is important to highlight that extracellular matrix
pathways and integrin-related pathways were dysregulated in both
the human and mouse data.

4 Discussion

Our study focused on statistical approaches to reduce the
dimensionality and address the collinearity of “omic” data,
specifically proteomic data, in order to compare and contrast
across species at the level of individual proteins and biological
pathways. Proteomic samples obtained from individuals
diagnosed with Alzheimer’s disease and controls were compared
with samples from mouse models of AD where the contrast was
between mice with a genetic mutation that accelerates the
development of AD-related neuropathology and control mice.
There were two aims to this study; first to compare statistical
methods for addressing the collinearity and high dimensionality
of the data for cross-species comparisons, and second to assess the
species differences and similarities at the protein and pathway levels.
We completed a comprehensive comparison of LASSO regression
and Partial Least squares discriminant analysis (PLS-DA) for the

TABLE 5 The top 20 human and mouse genes from the PLS-DA’s VIP results.

Human Coefficient SE Mouse Coefficient SE

COL23A1 0.0476 0.015 APOE 0.036 0.0159

MDK −0.036 0.0108 Nnt 0.0244 0.0128

COL1A1 0.0343 0.012 Ngef 0.0215 0.0104

COL1A2 0.0342 0.012 Igh 0.0215 0.0093

NTN1 −0.0267 0.0076 C 0.019 0.0073

PRPH −0.0245 0.0087 Ahsg 0.0161 0.0075

BGN 0.0242 0.0087 Pzp 0.0155 0.0045

COL2A1 0.0115 0.0096 Hba 0.0149 0.0046

KRT86 0.0231 0.0078 Fgg 0.0143 0.0043

SMOC1 −0.0222 0.0056 Hbb.b.1 0.0139 0.0042

HP −0.0213 0.0074 Cox7a21 −0.028 0.0169

TAGLN 0.0193 0.007 G1b 0.0132 0.0014

IGHA1 −0.0192 0.0079 Hbb.b.1 0.013 0.0038

TPM2 0.0179 0.0062 Fga 0.012 0.0046

GSTM1 0.0177 0.015 Fgb 0.0113 0.0043

NPTX2 0.0176 0.0034 Hebp 0.0112 0.006

APCS −0.0169 0.005 Mpst −0.0128 0.006

APP −0.0156 0.0054 Pomc −0.0131 0.0231

SLC38A2 −0.015 0.0037 Htra −0.0206 0.0095

COL14A1 0.0147 0.0058 Apoe −0.0254 0.0114

FIGURE 2
Biological pathway enrichment analysis for the human data. The top 20 proteins identified from the differential protein abundance analysis were
used as the input dataset. Each plot shows the proportions of overlapping proteins (proteins that overlap with the proteins in the specific gene set list), -
log10 of the enrichment p-value (from the hypergeometric test, adjusted for false discovery rate) and identity of proteins that are overlapping with the
tested gene sets. The panels are derived for each of the Gene Ontology (GO) gene sets/pathways Reactome or KEGG pathway database. (A) GO
Biological Functions, (B) GO Cellular Components, (C) GO Molecular Functions, (D) KEGG.
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analysis of multivariate, high dimensionality datasets with high
collinearity. The PLS-DA provided the better statistical
performance. The major biological finding of the study was that
extracellular matrix proteins and integrin-related pathways were
dysregulated in both the human and mouse data. These findings
were observable at both the individual protein and pathway levels.
The signals in the CVN-AD model that were related to reactive
oxygen species (ROS) and innate immunity may reflect adjustments
made by the mouse genome to accommodate the loss of Nos2, which
is central to both the innate immune response and the generation of
ROS species. Likewise, the signal in amyloid clearance could reflect
adjustments to the elevated levels of amyloid precursor protein
expression in this model, which is estimated to be ca. 1.5X the
normal level because it expresses both the human form, at ~0.5X the
mouse level, and mouse App.

The morphogenesis of the CNS and the successful
differentiation of all the cell types within it depend on regulatory
interactions between the cells and their environments. The
extracellular matrix plays an essential role in this
communication, and is involved in bidirectional signaling, in-out
as well as out-in, from guiding cells and axons during the elaborate
processes of developing nerve connections to maintaining tissue
homeostasis and regulating cell function, based on ‘nearest
neighbors’ signaling. Prior research has suggested the
involvement of extracellular matrix (ECM) and integrins in the
physiological processes involved in the development of AD. A recent
review provided details on the specific ECM proteins that are
modulated in the neuropathology of AD (58). Interestingly, the
ECM has roles both in regulation of beta amyloid through
modulation of amyloid precursor protein (Small et al., 1993;
Beyreuther et al., 1996; Ma et al., 2020) and neuroprotection
(Cheng et al., 2009; Conejero-Goldberg et al., 2014; Suttkus et al.,

2016). ECM substrates fibronectin and vitronectin, but not laminin,
promote microglial activation and increased expression of several
integrins, cytokines and ECM that are involved in regulation of
microglial activity (Milner and Campbell, 2003).

The extracellular matrix (ECM) is comprised of numerous
cellular components including proteoglycans, glycosaminoglycans,
proteins, proteinases, and cytokines. ECM components are
synthesized by both neurons and astrocytes and play an
important role in the formation, maintenance, and function of
synapses in the central nervous system (CNS) (Dzyubenko et al.,
2016). In the CNS, the ECM contains the basement membrane
(basal lamina), perineuronal nets, and the neural interstitial matrix
(Lau et al., 2013; Mouw et al., 2014; Ma et al., 2020). The ECM is
intimately involved in the regulation of beta amyloid. Elastin and
heparan sulfate proteoglycans are involved in the upregulation of
extracellular Ab. Collagen VI and laminin have been shown to
interact with Ab peptides, possibly having an effect on Ab clearance.
Our results from the human data show that numerous collagen
proteins in addition to amyloid precursor protein are differentially
expressed in AD brains in contrast to cognitively normal. Consistent
with prior reports, the positive regression coefficients show that
concentrations of the collagen proteins were upregulated in the
human AD samples relative to cognitively normal (Kalaria and Pax,
1995; van Horssen et al., 2002; Bourasset et al., 2009; Cheng et al.,
2009; Tong et al., 2010).

Prior evidence supports the involvement of integrin signaling
pathways in the development of AD (58). Studies have suggested the
involvement of both the ECM proteins and integrins in modulation
of neuroplasticity (Chelyshev et al., 2022), synapse formation (Park
and Goda, 2016) and axon regeneration (Pfundstein et al., 2022). It
has been suggested that integrins undergo plasticity including
clustering through interactions with ECM proteins, modulating

FIGURE 3
Biological pathway enrichment analysis for the human data for the Reactome pathway database. The top 20 proteins identified from the differential
protein abundance analysis were used as the input dataset. The plot shows the proportions of overlapping proteins (proteins that overlapwith the proteins
in the specific gene set list), - log10 of the enrichment p-value (from the hypergeometric test, adjusted for false discovery rate) and identity of proteins that
are overlapping with the tested gene sets.
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ion channels, intracellular calcium and protein kinases signaling,
and reorganization of cytoskeletal filaments (Wu and Reddy, 2012).
Integrins are also involved in regulation of synapse formation,
working with glial signals and neurotransmitter receptor
dynamics to regulate synaptic plasticity (Park and Goda, 2016).
Integrins also interact with the amyloid precursor protein (APP)
(Pfundstein et al., 2022). APP regulates integrin-mediated adhesion
and β1-integrins in turn regulate the processing of APP.

This study focused exclusively on analysis of proteomics data.
This is in contrast to studies that focus on analysis of mRNA data,
either from bulk brain tissue or single cell analysis. There are also
studies that have analyzed both proteomics and multilayered
omics data. Key findings from one recent study included
identification of modules including MAPK/metabolism and
matrisome that were associated with AD neuropathology

(Johnson et al., 2022). The matrisome module was influenced
by the APOE ε4 allele but was not related to the rate of cognitive
decline after adjustment for neuropathology (Johnson et al.,
2022). The MAPK/metabolism module was strongly associated
with the rate of cognitive decline (Johnson et al., 2022). Relevant
to our study, the matrisome module consists of a collection of
ECM-associated proteins and glycosaminoglycan-binding
proteins.

Our study has several strengths. First, two alternative statistical
methods for addressing the high collinearity of the proteomic
measures were compared with results from each approach
reported. Multi-collinearity and dimensionality reduction are
common issues for omics studies and this study addressed the
question in context of cross-species analysis. For the pathway/
signature analysis, well established databases including GO and

FIGURE 4
Biological pathway enrichment analysis for the mouse model data for the GO Biological Function database. The top 20 proteins identified from the
differential protein abundance analysis were used as the input dataset. The plot shows the proportions of overlapping proteins (proteins that overlap with
the proteins in the specific gene set list), - log10 of the enrichment p-value (from the hypergeometric test, adjusted for false discovery rate) and identity of
proteins that are overlapping with the tested gene sets.
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reactome were used to enable replication studies and other future
work. We used a mouse model that reflects the human innate
immune response and that leads to age-dependent tau pathology
and neuron loss. Careful mapping of mouse to human protein
nomenclatures was performed for the proteomics results to allow
cross-species comparison. For the mouse model, proteomic
determination of both mouse and human APOE concentrations
based on specific peptides was performed.

Other statistical methods that address translation between AD
mouse models and human data, primarily transcriptomic data, have
been published. Some of these approaches share similar a similar
statistical basis to our study. Lee et al. presented an approach,
“Translatable Components Regression” (Brubaker et al., 2020)
that concurrently analyzed transcriptomic data from human brain
andADmousemodels to identify pathway-level signatures present in

the human data that were predictive of mouse model disease status
(Lee et al., 2021). For this approach a principal component analysis
(PCA) space for human data is derived and projected in a mouse
dataset (Lee et al., 2021). Importantly, this work also utilized linear
models to differentiate disease-specific effects from aging and
demonstrated that the analysis framework identified cross-species
signatures that do not necessarily dominate in at least one of the
datasets separately (Lee et al., 2021). Other approaches have focused
on cross-species gene set analysis (Miller et al., 2010; Burns et al.,
2015), network analysis (Zhang et al., 2013; Mostafavi et al., 2018; Bai
et al., 2020; Wang et al., 2020) and meta analyses of co-expression
data (Friedman et al., 2018; Wan et al., 2020b). Of particular note are
approaches that utilize ultra-deep level proteomics analysis coupled
with integrated systems-biology analysis (Bai et al., 2020; Wang et al.,
2020; Bai et al., 2021).

FIGURE 5
Biological pathway enrichment analysis for the mouse data for the Reactome pathway database. The top 20 proteins identified from the differential
protein abundance analysis were used as the input dataset. The plot shows the proportions of overlapping proteins (proteins that overlapwith the proteins
in the specific gene set list), - log10 of the enrichment p-value (from the hypergeometric test, adjusted for false discovery rate) and identity of proteins that
are overlapping with the tested gene sets.

FIGURE 6
Biological pathway enrichment analysis for the mouse model data. The top 20 proteins identified from the differential protein abundance analysis
were used as the input dataset. The plot shows the proportions of overlapping proteins (proteins that overlap with the proteins in the specific gene set list),
- log10 of the enrichment p-value (from the hypergeometric test, adjusted for false discovery rate) and identity of proteins that are overlapping with the
tested gene sets. The panels are derived for each of the Gene Ontology (GO) gene sets/pathways Reactome or KEGG pathway database. (A) GO
Cellular Components, (B) GO Molecular Functions, (C) KEGG.
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Our study also has several limitations. The sample size for the
mouse study is relatively small; a larger sample would increase
statistical power to detect differences between the CVN-AD and
control mice. The comparison between the mouse and human
results at both the individual protein and pathway levels are
based on single datasets with comparisons to prior literature for
the statistically significant proteins and pathways. Future studies
could be planned to replicate the mouse, human and combined

results using independent datasets. Finally, we used empirical
thresholds of 20 proteins for inclusion in the pathway analysis
and an FDR significance level of 0.05 for selection of pathways.
Alternative analytical approaches and different thresholds may
provide additional insight about these datasets.

Future work will assess the impact of age, sex and APOE
genotype on the within-species and cross-species comparisons
using approaches including the gene set enrichment likelihood

TABLE 6 Comparison of human and mouse model signatures.

GeneSet of human signatures Category of human
signatures

adjP of human
signatures

adjP of mouse
signatures

GO_EXTRACELLULAR_STRUCTURE_ORGANIZATION GO_bp 5.10E-04 8.22E-03

GO_COLLAGEN_CONTAINING_EXTRACELLULAR_MATRIX GO_cc 1.01E-09 5.02E-06

GO_EXTRACELLULAR_MATRIX GO_cc 6.21E-09 2.14E-05

GO_ENDOPLASMIC_RETICULUM_LUMEN GO_cc 5.69E-05 5.20E-04

REACTOME_EXTRACELLULAR_MATRIX_ORGANIZATION Curated_gene_sets 7.30E-06 1.68E-02

PID_INTEGRIN1_PATHWAY Curated_gene_sets 1.84E-04 8.17E-03

REACTOME_INTEGRIN_CELL_SURFACE_INTERACTIONS Curated_gene_sets 3.40E-04 1.11E-02

REACTOME_BINDING_AND_UPTAKE_OF_LIGANDS_BY_SCAVENGER_RECEPTORS Curated_gene_sets 1.73E-03 9.56E-05

REACTOME_EXTRACELLULAR_MATRIX_ORGANIZATION Reactome 2.78E-06 1.68E-02

REACTOME_INTEGRIN_CELL_SURFACE_INTERACTIONS Reactome 2.06E-04 7.37E-03

REACTOME_BINDING_AND_UPTAKE_OF_LIGANDS_BY_SCAVENGER_RECEPTORS Reactome 1.14E-03 9.56E-05

REACTOME_SCAVENGING_BY_CLASS_A_RECEPTORS Reactome 1.23E-02 1.94E-02

REACTOME_PLATELET_AGGREGATION_PLUG_FORMATION Reactome 4.35E-02 2.90E-03

GeneSet of human signatures Genes of human signatures Genes of mouse
signatures

GO_EXTRACELLULAR_STRUCTURE_ORGANIZATION COL2A1:COL1A1:APP:COL23A1:COL1A2:
COL14A1:BGN

HTRA1:COL1A1:APOE:
FGB:FGG

GO_COLLAGEN_CONTAINING_EXTRACELLULAR_MATRIX APCS:MDK:COL2A1:SMOC1:NTN1:
COL1A1:COL23A1:COL1A2:COL14A1:BGN

HTRA1:PZP:COL1A1:
APOE:AHSG:FGB:FGG

GO_EXTRACELLULAR_MATRIX APCS:MDK:COL2A1:SMOC1:NTN1:
COL1A1:COL23A1:COL1A2:COL14A1:BGN

HTRA1:PZP:COL1A1:
APOE:AHSG:FGB:FGG

GO_ENDOPLASMIC_RETICULUM_LUMEN COL2A1:COL1A1:APP:COL23A1:COL1A2:
COL14A1

COL1A1:C3:APOE:
AHSG:FGG

REACTOME_EXTRACELLULAR_MATRIX_ORGANIZATION COL2A1:COL1A1:APP:COL23A1:COL1A2:
COL14A1:BGN

HTRA1:COL1A1:FGB:FGG

PID_INTEGRIN1_PATHWAY MDK:COL2A1:COL1A1:COL1A2 COL1A1:FGB:FGG

REACTOME_INTEGRIN_CELL_SURFACE_INTERACTIONS COL2A1:COL1A1:COL23A1:COL1A2 COL1A1:FGB:FGG

REACTOME_BINDING_AND_UPTAKE_OF_LIGANDS_BY_SCAVENGER_RECEPTORS HP:COL1A1:COL1A2 HBB:HBA1:COL1A1:APOE

REACTOME_EXTRACELLULAR_MATRIX_ORGANIZATION COL2A1:COL1A1:APP:COL23A1:COL1A2:
COL14A1:BGN

HTRA1:COL1A1:FGB:FGG

REACTOME_INTEGRIN_CELL_SURFACE_INTERACTIONS COL2A1:COL1A1:COL23A1:COL1A2 COL1A1:FGB:FGG

REACTOME_BINDING_AND_UPTAKE_OF_LIGANDS_BY_SCAVENGER_RECEPTORS HP:COL1A1:COL1A2 HBB:HBA1:COL1A1:APOE

REACTOME_SCAVENGING_BY_CLASS_A_RECEPTORS COL1A1:COL1A2 COL1A1:APOE

REACTOME_PLATELET_AGGREGATION_PLUG_FORMATION COL1A1:COL1A2 COL1A1:FGB:FGG
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ratio test which quantifies gene set enrichment accounting for
covariate effects at the gene set level (Bryan et al., 2021), and it
will involve additional mouse models of AD that incorporate known
genetic risk factors, such as APOE4, and that are created by targeted
replacement of the endogenous mouse gene with the hetrospecific
isofunctional human homolog, to avoid potential non-specific effects
that can blur transgenetic manipulations. A high research priority of
the NIH is the development of improved mouse models of
Alzheimer’s disease to improve reproducibility, transparency and
translatability (https://www.model-ad.org/), and a number of new
models have been developed (https://www.alzforum.org/news/
research-news/cornucopia-loads-new-mouse-models-available). To
identify the most translatable models, comparisons with human
data bases, as we have done, will be essential. The intentional
incorporation of alterations to the ECM and integrins along the
lines discovered here might be a useful approach. In any event, the
application of methods we developed here will be helpful in guiding
new model development.

In summary, this study addressed several of the critical issues
involved in cross-species comparisons of omic data, specifically
proteomic data. In addition to providing guidance on alternative
statistical approaches to analyze the data, the approach may help
inform the development of mouse models that are more relevant to
the study of human late-onset Alzheimer’s disease and provide
insight about specific biological pathways identified as
differentially regulated in individuals with AD and in AD mouse
models. The biological results from the cross-species analysis point
to specific protein targets that involve the extracellular matrix and
integrin pathways. These results can be used to plan future, focused
studies on longitudinal changes of these proteins and pathways in
context of the development of Alzheimer’s Disease.
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