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Solid tumours develop much like a fortress, acquiring characteristics that

protect them against invasion. A common trait observed in solid tumours is

the synthesis of excess collagen which traps therapeutic agents, resulting in a

lack of dispersion of treatment within the tumour mass. In most tumours, this

results in only a localised treatment. Often the tumour quickly recovers and

continues to invade surrounding regions. Anti-tumour viral therapy is no

exception to this rule. Experimental results show collagen density affects

virus diffusion and inhibits cell infection; therefore, accurately modelling

virus dispersion is an important aspect of modelling virotherapy. To

understand the underlying dynamics of viral diffusion in collagen, we derive

a novel non-Fickian diffusion term from first principles. We demonstrate that

this diffusion term captures experimentally observed virus dispersion in cancer-

associated collagen, unlike the standard diffusion term, commonly used in

virotherapy models. Then, using a system of partial differential equations, we

explore virotherapy in relation to collagen density. We show that our model can

predict therapy outcome in relation to collagen density. The results also suggest

thatmodifications in virus performance, such as increased virus infectivity, is not

effective in dense collagen; therefore, reducing collagen, might be the best

approach when dealing with collagen-rich tumours. We also investigate

virotherapy in relation to collagen structures and find that size of collagen

deposits are as important to outcome as collagen density. Together, these

results demonstrate that understanding virus diffusion in oncolytic virotherapy

is a crucial step in capturing tumour response to treatment.
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1 Introduction

Oncolytic virotherapy is a cancer treatment where viruses are used to infect and kill

cancer cells (Fountzilas et al., 2017). These anti-tumour viruses preferentially infect and

replicate in cancer cells. Infected cells die when the new virus population bursts from the

cell, a process known as lysis. Although treatment using viral vectors has shown promising

results, there are still many challenges ahead before oncolytic virotherapy can gain
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widespread approval as a therapeutic approach. These challenges

include delivery strategies, dose safety and lack of efficacy due to

the tumour microenvironment (Jin et al., 2021; Moaven et al.,

2021). A major factor contributing to the lack of success in solid

tumours is the over-expression of extracellular matrix (ECM)

components. There are many ways in which ECM protects

tumours against treatment while promoting tumour growth.

Here, we focus on how excess ECM creates a physical barrier

and significantly hinders virus dispersion in the tumour

environment (Choi et al., 2013; Zheng et al., 2019). An

integral component of ECM in many tumours is collagen

fibres, often synthesised by cancer-associated fibroblast cells

(Li et al., 2019) or secreted by cancer cells (Gladson, 1999;

Bellail et al., 2004). The formation of large and dense collagen

regions in the tumour is also known as desmoplastic reaction.

This reaction is a dynamic event as the collagen is continuously

remodelled by cancer cells at different stages of tumour

progression (Ueno et al., 2021).

To understand the relationship between collagen and virus

spread, McKee et al. (2006) conducted a series of experiments

imaging virus dispersion in collagen. Mice with human

melanomas, known to have varying collagen concentrations,

were injected with replication incompetent, oncolytic herpes

simplex virus (HSV). By measuring virus distribution after

30 min using multiphoton images, they demonstrated that

increased fibrillar collagen corresponds to a sharp decrease in

viral penetration and observed an inverse correlation between

collagen density and viral particles, see Figure 1. In another

experiment, Choi et al. (2010) investigated viral infectivity in

relation to tumour density. They found that treatment with a

virus expressing decorin (a proteoglycan that can reduce the

diameter of collagen fibrils) significantly increases virus infection

of tumour cells. In comparison, a tumour treated with a standard

adenovirus, resulted in minor cell infection, with infected cells

appearing in small clusters. In addition, Dmitrieva et al.

(Dmitrieva et al., 2011) degraded the ECM in glioblastoma

spheroids and found a significant improvement in virus

spread and anti-tumour efficacy. These results demonstrate

that there is an important relationship between viral spread

and collagen density.

Conventionally, virus spread in tumours is modelled using a

variation of the advection-diffusion equation

zc

zt
� ∇ · D∇c( ) − ∇ · vc( ) + R, (1)

where c represents the concentration of viruses. The first term,∇ ·
(D∇c), is Fickian diffusion and D represents the diffusivity of

viruses in the tumour environment. Depending on the model, D

can be constant or vary spatially. The second term, ∇ · (vc),
describes virus advection, where v is the interstitial fluid velocity.

Here, R describes the source or sink terms related to virus

binding, internalisation or degradation.

The Fickian form of diffusion is the standard and accepted

description of viral spread. For example, Kim et al. (2014)

investigate the co-injection of Chondroitinase ABC (an ECM-

degrading enzyme) in oncolytic virotherapy of glioblastoma to

find optimal outcomes in treatment. The model uses Fickian

diffusion, where the diffusion coefficient is a function of local

ECM density. Diffusion decreases at higher ECM concentrations.

The authors use this model to recreate the experiments from

Dmitrieva et al. (2011) and suggest an optimal strategy for

treatment.

In another paper, Alzahrani et al. (2019) adopt a multiscale

approach to investigate tumour-virus interactions. The authors

use two approaches to model virus spread in solid tumours. In

the first approach, they only consider virus motility in the form

of Fickian diffusion, where the diffusion coefficient is a

constant. In their second approach, the effect of the ECM is

captured using a taxis term towards ECM gradients. The

authors assume that although ECM usually acts as a barrier

against virus motility, in regions of lower ECM density, the

virus could potentially interact and infect a larger number of

accumulated cells. The ECM-virus dynamics are therefore

modelled using a reaction-advection-diffusion equation. In

comparing the two approaches, the authors find that the

virus under diffusion-advection is significantly more

successful at spreading and infecting tumour cells. Other

spatio-temporal models, investigating the dynamics of viral

spread in relation to tumour cells, immune cells and

adjuvant treatment can be found in (Camara et al., 2013;

Malinzi et al., 2017; Friedman and Lai, 2018; Lee et al., 2020;

Simbawa et al., 2020; Jenner et al., 2022); however, these models

do not consider the mechanisms that drive the clustering

behaviour of viruses in collagen. Understanding the

FIGURE 1
A reproduction of the results from Mckee et al. (McKee et al.,
2006, Figure 1). Mice with Mu89 melanomas were injected with
HSV-1 non-replicating virus. Virus distribution (green) in collagen
(pink) is visualised using pixel analysis 30 min after
intratumoral injection. Results show that the virus is concentrated
in the low-collagen region of the melanoma (right of origin). The
values are estimated using the online tool WebPlotDigitizer
(Rohatgi, 2022).
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relationship between collagen and virus spread is an integral

part of modelling virotherapy in dense tumours.

In this paper, we investigate the mechanisms that drive viral

diffusivity in collagen from first principles. Beginning with a

random walk, we derive diffusion terms that cannot be

expressed in the form of Eq. 1. We then compare how virus

spread under Fickian diffusion compares with our non-Fickian

diffusion. Referring to experimental observations, we propose

that simple Fickian diffusion does not accurately capture viral

dispersion in dense tumours. Using a system of partial

differential equations that includes populations of tumour

cells, virus and collagen, we validate our model against

experimental results and show that our model can predict

treatment outcome in different collagen densities. The

sensitivity analysis suggests that response to treatment for

collagen-dense tumours, cannot be improved with increased

virus infectivity alone; therefore, reduction in collagen density

may be a necessary strategy to improve treatment. In the final

section, we show that configuration of collagen is also linked to

tumour response. The model suggests that tumours with

immature collagen formation are sensitive to collagen

density, responding to treatment only at low collagen levels.

On the other hand, tumours with mature collagen, where

collagen fibres are finer, will respond well to treatment even

at dense collagen concentrations. Overall, we demonstrate that

virus diffusion is an important indicator of virotherapy success

and its form needs to be carefully considered in modelling

collagen-dense tumours.

2 Methods

2.1 Experimental procedure

To determine how virus diffusion affects virotherapy

outcome, we use the following series of experiments

performed by McKee et al. (2006) to inform our model:

1) Virus distribution in collagen-dense tumour. In this experiment,

106 viral transducing units of non-replicating HSV-1 virions

were directly injected into human melanoma tumours (Mu89),

grown in SCIDmice (mice that lack both T and B lymphocytes).

These tumours were known to contain regions of high and low

collagen. In vivo, multiphoton imaging was conducted 30 min

after the injections. Viral distribution was quantified using pixel

analysis (second-harmonic generation). Results recreated in

Figure 1 show that the virus (in green) moves to regions of

low collagen density.

2) Effect of collagenase on oncolytic virotherapy. In this series of

experiments, the authors compared the effect of virotherapy

alone against coinjection of collagenase and virus.

Collagenase is a metalloproteinases that degrades collagen.

Human melanoma tumours were established in SCID mice.

When tumours reached a volume of 100 mm3, the mice were

randomised into four groups. The first group is the control,

treated with 10 μL of phosphate buffered saline (PBS) only.

The second group received 0.1 μg/μL of collagenase. The third

group received 106 trasducing units of replication-competent

oncolytic herpes simplex viral particles (HSV) in PBS. The

fourth group received both collagenase (0.1 μg/μL) and HSV

(106 trasducing units). Injections were given intratumorally

on day 0 and day 2 of the experiment. The authors measured

tumour fold increase, the ratio of tumour volume at time t to

initial tumour volume. The results showed a significant

improvement when collagenase is coinjected during

virotherapy.

2.2 Random walk to diffusion

To describe virus dispersion in dense collagen, we derive

three diffusion terms from first principles, adopting a similar

approach to the volume-filling effect used by Painter and Hillen

(2002) and Wang and Hillen (2007). Using one-dimensional

Cartesian geometry, let V (x, t) represent a virus at position x at

time t. Discretising time and space with step sizes Δt for time and

Δx for space, we assume that viral particles follow a random walk

upon injection into a tumour. We also assume that the

probability a virus moves from one location to another

depends on a probability p, which we call the squeeze

probability, that is a function of collagen density (to be

defined). We consider three cases, and each case leads to a

different expression for virus diffusion as we move to a

continuous system by taking the limit of Δt and Δx to zero.

Details of the derivation for each case can be found in

Supplementary Section S1.

• Case 1: In this case, we assume the ability of virus to

move depends on the collagen density at its current

location. In other words, if the collagen density is high

at the virus’s current location, the virus has a low

probability of movement. This assumption leads to the

following PDE:

Vt � D pVx + pxV( )x. (2)

• Case 2: In this case, we assume the ability of virus to move

depends on the collagen density at the location it is trying

to enter. In other words, if the collagen density is high at a

location adjacent to the virus, the virus has a low

probability of moving there. This assumption leads to

the following PDE:

Vt � D pVx − pxV( )x. (3)

• Case 3: The Fickian case. Fickian diffusion is derived with

the assumption that the ability of virus to move depends on
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the average collagen density between its current location

and the location the virus wants to enter. This assumption

leads to the Fickian diffusion PDE:

Vt � D pVx( )x. (4)

The cases given above, can easily be extended into higher spatial

dimensions. Note, if collagen density is constant throughout the

given domain, then the results from Eqs 2, 3 will not differ from

the classical case as px = 0 and we have Vt � D(pVx)x. However,

if the collagen density in the domain is inhomogeneous, the non-

Fickian cases 1 and 2 will provide different solutions to the

classical case 3. In the next section, we define the squeeze

probability function p and outline the procedure to simulate

virus dispersion in collagen for the three diffusion cases.

2.3 Comparing diffusion cases to
experimental observations

We now simulate the three diffusion cases described in Eqs

2–4, and identify the diffusion term that best describes the

experimental observation of virus moving from regions of

high to low collagen. In order to simulate the cases, we first

define a function that describes the collagen concentration in

Figure 1. In this figure, collagen concentration is measured as

average pixel value. We normalise this data, dividing each data

point by the maximum pixel value. Letting C(x) represent the

ratio of collagen density to collagen carrying capacity, we fit C(x)

to the normalised collagen data. For these simulations, collagen

density is a function of x only, as we assume that there is no

significant change in collagen in the 30-min duration of the

experiment.

We also define the squeeze probability p(x) as a function of

collagen density C(x). Mackee et al. proposed a decreasing

relationship between viral diffusion and collagen density, so

we let p take the form

p x( ) � 1 − C x( )( )n. (5)
For this first series of simulations, we assume a simple

relationship, where n = 1, such that squeeze probability

decreases linearly as collagen density increases. Once we have

identified the diffusion term that qualitatively matches the

observed dynamics, we then calibrate n to experimental data

in Section 2.4. Since there is no change in the density of collagen

in time, our squeeze probability is also a function of x only. We

use a timescale of seconds and length scale of μm.We also need to

estimate the diffusion coefficient D for virus spread. There is a

lack of experimental data measuring D in collagen-rich tumours.

Hence, we use the value from Friedman et al. (2006), which

estimated virus diffusion at D = 3.6 × 10–2 mm2 h−1 = 10 μm2 s−1.

However, we note that in their model, the authors did not

account for collagen density, making their estimate potentially

inaccurate for our model. Therefore, in Section 3.4, we conduct a

broad sensitivity analysis of our model with respect to this

parameter.

We inject the virus into the centre of our domain where there

is a rapid change in collagen density, so the initial virus

population V0 = 1 virus/mm at − 10 μm ≤ x≤ 10 μm and

zero otherwise. Our domain matches the experimental size, −

60 μm ≤ x≤ 60 μm and we use no-flux boundary conditions. We

run our simulations for 30 min, in line with the experimental

procedure. For all simulations, we use the ‘pdepe’ solver in

MATLAB R2021a to estimate the solutions to our model. We

simulate all three cases and choose the most appropriate

diffusion term for virus dispersion.

2.4 Estimating squeeze probability with
respect to collagen density

In the last section, for simplicity, we used the linear function

p = 1 −C to connect squeeze probability and collagen density. We

simulated the three diffusion cases described by Eqs 2–4 and

identified the diffusion term that qualitatively matches

experimental results. Let Dvf represent the chosen diffusion

term for virus. From this point, we disregard the other

diffusion cases and continue the analysis using Dvf for virus

diffusion.

We now consider the generalised form of Eq. 5 and fit n to

virus data to obtain a better estimate of squeeze probability in

relation to collagen. If we assume the virus population has

reached steady state by the end of the experiment (30 min),

we can use the result in Supplementary Section S2.1 showing that

the steady-state virus profile V(x) = Ap(x), where A is a constant

and p(x) is the squeeze probability. This means that the virus

profile reaches a scaled version of the squeeze probability. Using

the virus data fromMckee et al. in Figure 1 and assuming squeeze

probability takes the form in Eq. 5, we simulate virus diffusion

using the chosen diffusion term Dvf, where virus is initially

injected in the region −10 μm ≤ x≤ 10 μm at concentration V

(x, 0) = 1 virus/mm. We optimise n and A using MATLAB’s

built-in solver “lsqnonlin”. For this fit, we only consider data

points between −60 μm ≤ x≤ 40 μm, because at x > 40 μm the

virus population begins to increase even though the collagen

concentration remains almost constant, and we hypothesise this

effect may be due to other biological factors. We also note that

changing the initial concentration of virus only affects the scaling

factor A.

2.5 Virotherapy model

We now outline the model that investigates oncolytic

virotherapy in tumours with varying collagen densities. To do

this, we move from Cartesian to spherical geometry. We consider
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a spherical tumour with radial symmetry. Let r denote distance

from the centre of the tumour. Our model consists of four

populations: Uninfected tumour cells U (r, t), free virus

particles V (r, t), infected tumour cells I (r, t) and collagen

(ratio of collagen density to maximum collagen density) C (r, t).

This model is an extension of our previous work in Pooladvand

et al. (2020), where we investigated behavioural changes in

tumour load due to perturbations of parameters. In our

previous model, diffusion of the virus followed a simple

Fickian diffusion with no explicit consideration of the tumour

stroma or collagen density. In this work, the evolution of

population densities is as follows:

zU

zt
� Du

r2
z

zr
r2
zU

zr
( ) + ruU 1 − U + I

k
− aC( ) − βUV, (6)

zV

zt
� Dvf − β U + I( )V + αδII − δvV, (7)

zI

zt
� Du

r2
z

zr
r2
zI

zr
( ) + βUV − δII, (8)

zC

zt
� rc

Um

Km
c + Um

C 1 − U + I

k
− aC( ), (9)

where p = 1 − (C (r,t))n is the squeeze probability described in Eq.

5, transformed to spherical geometry and β = β*(1 − C (r, t)).

Eq. 6 models the change in uninfected tumour cells. The cells

diffuse at rate Du and have a maximum growth rate ru. Tumour

growth is dependent on cell density and collagen concentration

as can be seen by the logistic growth term, where k represents

tumour cell carrying capacity and a is the collagen competition

strength parameter. The infection of tumour cells is modelled

using the mass-action term βUV. We assume that collagen can

also hinder infection (Wojton and Kaur, 2010); therefore,

infection rate β is a decreasing function of collagen density.

We use a simple linear relationship between β and C but

recognise that this is an area for further investigation.

Eq. 7 describes the change in free virus population. The first

term, Dvf, represents the virus diffusion term chosen in Section 3.1

that best describes virus dynamics in collagen. Note, this diffusion

term has been transformed to spherical geometry (details in

Supplementary Section S3). Parameter Dv is the diffusion

constant for virus. We assume viruses internalise into uninfected

and infected cells at mass-action rate β(U + I)V. This means our

model accounts for multiple infection of cells by viruses which has

been observed experimentally (Jung et al., 2002; Chen et al., 2005).

Further, as cells express an abundant number of receptors used by

viruses to initiate infection (Cohen, 2016), we allow for large

numbers of virus infections per cell. There are several other

mathematical models that also account for multiple infections

(Dixit and Perelson, 2005; Phan and Wodarz, 2015; Lee et al.,

2020). HSV viruses, used in the experiments described in Section 2,

can also internalise into cells using the endocytotic pathway which

means they have multiple modes of entry (Karasneh and Shukla,

2011). When an infected cell dies, new viruses are introduced into

the system at rate αδII, where α is the viral burst size per cell and δI is

the death rate of infected cells. Virus decays at rate δvV.

Eq. 8, models infected tumour cells. We assume that virus

infection does not change the morphology or migratory

properties of the cells; therefore, the diffusion coefficient, Du,

of infected cells is the same as for uninfected cells. This

assumption has been used in other mathematical models

(Boemo and Byrne, 2019; Lee et al., 2020). The infected cell

population grows due to infection at rate βUV and dies due to

lysis at rate δII.

Finally, Eq. 9 describes collagen production. Collagen fibres

provide scaffolding upon which cells and tissue are organised.

Further, within the tumour environment, collagen deposits are

not only increased, but they are also stiffened due to remodelling

(Pickup et al., 2014). Therefore, we assume collagen does not diffuse

into surrounding regions. It has been shown that cancer cells and

cancer-associated fibroblasts both produce significant amount of

collagen in the tumour environment (Li et al., 2014; Xiong et al.,

2020). We assume collagen production depends on the uninfected

tumour cell population.We adopt theMichaelis-Menten expression

fromKim et al. (2014), where rc is the collagen growth rate andm is a

Hill-type exponent. This means collagen growth saturates at high

tumour density. Collagen growth also depends on tumour cell

density and collagen density as can be seen in the logistic growth

term. The squeeze probability p depends on the ratio of collagen

density. This function changes the behaviour of Dvf.

The interactions between the populations are illustrated in

Figure 2. For all simulations we use no-flux boundary conditions

and assume there are no infected tumour cells initially, i.e., I (r,

0) = 0, where r ∈ [0, L).

FIGURE 2
Interactions between populations. Tumour cells follow the
logistic growth rate ruU (1 − (U + I)/K − aC). Virus infects uninfected
tumour cells at rate βUV and internalises into infected cells at rate
βIV, where β(C) is a decreasing function of collagen density.
The virus decays at rate δvV. Infected tumour cells die at rate δII and
α new viruses per cell are released into the free virus population.
Collagen inhibits virus diffusion by reducing the probability of virus
spread, modelled using a squeeze probability p(C), which is a
decreasing function of collagen density, C. Collagen growth
depends on the density of uninfected tumour cells and collagen.
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2.6 Parameter estimates

We estimate some parameter values based on research

literature and optimise the rest to experimental data from

Experiment 2, described in Section 2.1.

We set the carrying capacity k for tumour cells at 106

cells mm−3 (Lodish et al., 2008). The diffusion coefficient for

melanoma cells is estimated to be in the range of 0.002 and

0.07 mm2 day−1 (Tjia and Moghe, 2002). We use the average of

these values and set Du = 0.036 mm2 day−1. Workenhe et al.

(Workenhe et al., 2014) measured HSV wild type viral burst size

at 157 ± 23.4 per cell.We set α = 150 viruses cell−1. Virus diffusion

rate Dv is fixed as before at 10 μm2 s−1 = 0.864 mm2 day−1. The

infected cell death rate δI is estimated at 0.288 days−1 in (Kim

et al., 2014) and 1.33 days−1 in (Friedman et al., 2006). We set δI =

1 day−1. For collagen growth, we fix rc, the Hill-type exponent m

and Hill-type coefficient Kc at 0.1, 1 and k respectively, as

estimated in (Kim et al., 2014). Letting Kc = k means that

when tumour cells are at carrying capacity, the growth rate

saturates at rc/2. The list of parameters and their estimated

values can be found in Table 2.

2.7 Parameter optimisation

We optimise the tumour proliferation rate ru, collagen

competition parameter a, infection rate β* and virus decay rate δv
to the virotherapy results from McKee et al. (2006) outlined in

Experiment 2, Section 2.1. Parameters ru and a are optimised

simultaneously to tumour growth data without virus treatment.

This data measures tumour fold change in time for treatment with

PBS or collagenase. Parameters β* and δv are optimised

simultaneously to tumour growth data with virus treatment. This

data measures tumour fold change in time for treatment with virus

alone or treatment with virus-collagenase. This information is

outlined in Table 1. We optimise our fit using MATLAB’s built-in

solver “lsqnonlin”.Total populations forU and I at time t, in spherical

coordinates, can be tracked by using the triple integral formula

P t( ) � k∫π

0
∫2π

0
∫L

0
r2Q r, θ, ϕ( )sin ϕ dr dθ dϕ,

where Q = U or I. Given that we assume spherical symmetry, the

above can be simplified to

P t( ) � 4πk∫L

0
r2Q r( ) dr. (10)

We use Eq. 10 to calculate the total number of tumour cells in the

domain 0 ≤ r ≤ Lmm at each time step. The parameter L

represents maximal tumour radius. The tumour fold change is

then calculated as the ratio of tumour cells at time t, to the initial

number of tumour cells (P(t)/P (0)).

To fit our parameters, we need to simulate two initial

scenarios: tumour with dense collagen (when collagenase is

not used) and tumour with reduced collagen (when

collagenase is used). Therefore, we need to define initial

distributions for collagen and uninfected tumour cells.

Collagen formation can differ from tumour to tumour. A

good representation of this can be found in (Abyaneh et al.,

2020, Figure 5). For this investigation, we consider the case where

collagen is distributed in regular intervals between cancer cells,

modelled by the initial collagen density

C r, 0( ) � w 0.15 sin 5r( ) + 0.75( ), for 0≤ r≤ L mm, (11)

where w = 0.9 when collagen is at high density (no collagenase is

administered) and w = 0.3 when collagen is at low density

(collagenase is administered). The initial tumour radius r0 =

3 mm is chosen to represent a spherical tumour with volume

100 mm3 in line with Experiment 2.1. The maximum domain

length of L = 15 mm is chosen large enough to avoid artefacts

from boundary conditions. The representation of collagen in Eq.

11means collagen is present in the entire domain.We believe this

assumption is reasonable as tumours can be surrounded by

collagen.

In the experimental procedure outlined in Experiment 2,

only the collagen is reduced when collagenase is injected;

therefore, for the purpose of these simulations, we assume

that the tumours contain the same number of uninfected cells

in both scenarios. We use

U r, 0( ) � k 1 − wp 0.15 sin 5r( ) + 0.75( )( ), for r≤ 3 mm,
0, for r> 3 mm,

{
(12)

where w* = 0.9. The initial conditions ensure that we begin below

carrying capacity. Where virotherapy is administered, we inject

106 viral particles on day 0 and day 2, in line with experiments.

We assume the initial virus injection radius is 1 mm, giving a

virus injection dose of V (r, 0) = 106/(4/3π(1)3) ≈ 2.4 × 105 viruses

mm−3 for r ≤ 1 mm and 0 otherwise. The conditions described

can be seen in Figures 3A,B. We note that adopting radial

symmetry means the tumour contains regions of cells and

collagen in almost concentric spherical shells. Although this

kind of symmetry is idealised, we believe it is a good starting

point. We study other types of collagen distribution in

Section 2.10.

2.8 Sensitivity analysis

To better understand how changes in parameters affect

tumour outcome, we perform a global sensitivity analysis. We

use Latin Hypercube Sampling to generate 500 samples from the

parameter space over the range ±50% of basal values, given in

Table 2. We then simulate our model and calculate the Spearman

rank correlation coefficient (SRCC) between each parameter and

total fold change in tumour volume integrated over the time
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TABLE 1 Parameters optimised simultaneously to experiments from (McKee et al., 2006) outlined in Experiment 2, Section 2.1.

Parameter Description Optimised to experiment

ru Tumour growth rate PBS and collagenase

a Collagen competition parameter PBS and collagenase

β Cell infection rate Virus alone and virus with collagenase

δv Virus clearance rate Virus alone and virus with collagenase

FIGURE 3
Initial conditions for a tumour with (A) high collagen or (B) low collagen. For readability, populations U and V are scaled by 106 and 2.4 × 105

respectively.

TABLE 2 Parameter estimates for virotherapy model.

Symbol Definition Value References/CI

k Tumour carrying capacity 106 cells mm−3 Lodish et al. (2008)

w Scaling factor for initial collagen density 0.04–0.9 varied

rc Collagen growth rate 0.1 day−1 Kim et al. (2014)

Du Tumour diffusion coefficient 0.036 mm2 day−1 Tjia and Moghe (2002)

Dv Virus diffusion coefficient 0.864 mm2 day−1 Friedman et al. (2006)

α Viral burst size 150 viruses cell−1 Workenhe et al. (2014)

δI Infected cell death rate 1 day−1 Friedman et al. (2006)

m Hill-type exponent for collagen growth 1 Kim et al. (2014)

Kc Hill-type coefficient for collagen growth k Kim et al. (2014)

L Maximal tumour radius 15 mm estimated

n Squeeze probability exponent from (5) 0.2916 [0.0940, 0.4146]

A Scaling factor for virus density 2.4614 [2.3628, 2.5599]

a Collagen competition parameter 0.2440 [0.1747, 0.3133]

rU Tumour growth rate 0.2107 days−1 [0.1949, 0.2266]

β* Cell infection rate 4.009 × 10–8 mm3 virus−1 day−1 [3.5177, 4.5011] × 10–8

δv Virus clearance rate 0.0941 days−1 [0.0698, 0.1184]
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interval [0, tend]. As P(t) (given in Eq. 10) represents the total

population of tumour cells at time t, then the total tumour

population from t = 0 to t = tend is

Ptotal � ∫tend

0
P t( ) dt.

This metric is used to neutralise the effect of oscillations. For

these simulations, we give a single virus dose of 2.4 × 105 viruses

mm−3 for r ≤ 1mm at t = 0, as defined in Section 2.7. We calculate

the SRCC short term (tend = 5 days) and long term (tend = 20

days).

We also run this analysis for a tumour with an exponentially

decreasing initial collagen profile, C (r, 0) = we−qr and compare

the SRCC results between a high collagen tumour and a low

collagen tumour. The equation for initial tumour cell population

is U(r, 0) � k(1 − 0.9e−qr), for r ≤ 3 and zero otherwise. The

initial collagen distribution exponent q is fitted to Experiment

2 data from Section 2.1. The parameter w is 0.1 for a low collagen

tumour and 0.85 for a high collagen tumour.

2.9 Tumour growth and virus infection
rate in low and high-collagen tumours

Next, we perform a local sensitivity analysis to investigate

how perturbations in two of our sensitive parameters, selected

from SRCC analysis, affect tumour response in low and high

collagen. We choose one parameter that promotes tumour

growth and one parameter that promotes tumour hindrance.

We begin with the initial conditions for tumour cells and collagen

as described in Section 2.7, namely, Eq. 11 for collagen and Eq. 12

for uninfected tumour cells. We administer a single virus dose V

(r, 0) = 2.4 × 105 viruses mm−3 for r ≤ 1 mm and 0 otherwise. We

vary the parameters ±50% about the basal values and track

tumour fold change over 50 days. All other parameter values

are fixed, as given in Table 2. We track tumour fold change in

time over 50 days. If the tumour reaches a 10-fold increase, we

terminate treatment. This is the tumour size where the mice

either died or were euthanised, as outlined in experimental

procedure.

FIGURE 4
Initial populations for different desmoplastic reactions. (A) Schematic diagram of initial collagen distribution. The parameter d represents the
thickness of tumour cell regions and h represents the thickness of collagen regions. (B) Initial tumour cell and collagen density for a mature
desmoplastic reaction, (C), intermediate desmoplastic reaction and (D), immature desmoplastic reaction.
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2.10 Tumours with different collagen
structures

In this section we explore the success of virotherapy in

relation to desmoplastic reaction in tumours. Desmoplastic

reaction is the growth of fibrous tissue around cancer cells.

The aim is to understand how virotherapy will perform in

clinically observed collagen formations. Clinical trials

performed by Ueno et al. (Ueno et al., 2004, 2015, 2021)

investigated the link between the stage of collagen formation

and patient survival. In these trials, patients received surgical

adjuvant chemotherapy. Desmoplastic reaction was

characterised in three phases: mature desmoplastic reaction,

intermediate desmoplastic reaction and immature

desmoplastic reaction. These phases correspond to early,

intermediate and late stage formations of collagen respectively.

Consider a section of a large tumour with uninfected cells

and collagen. We use a series of Heaviside step functions

f r( ) � ∑n
i�1

H r − id + i − 1( )h( )( ) −H r − id + ih( )( )[ ],

to describe initial collagen and cell densities, as in Figure 4A,

where d represents the thickness of tumour cell region and h

represents the thickness of collagen region (or thickness of

collagen fibres). The initial collagen density

C0 � C r, 0( ) � w f r( ) + q( ),
where w is the scaling factor and q is the centre line. The initial

tumour cell population is

U r, 0( ) � k 1 − C0( ),

so that the total initial tumour and collagen populations fill the

space up to carrying capacity.

We consider three initial populations for cells and collagen,

as described in Ueno et al. (Ueno et al., 2021). The cases are as

follows:

• Mature desmoplastic reaction, as in Figure 4B. In this case,

tumour cells are well distributed in collagen and the

collagen fibres are fine. For this case d = h and the

populations are relatively well mixed.

FIGURE 5
(A) Estimating collagen concentration C(x) by fitting a sigmoidal function (18) to the collagen data from (McKee et al., 2006, Figure 1B). Fit
conducted using MATLAB’s Curve Fitting Toolbox. Goodness of fit: sum-of-squares estimate of errors (SSE) = 0.6498 and R2 = 0.9318. (B–D)
Simulating experimental results from McKee et al. (2006). The diffusion of virus in an inhomogeneous collagen environment for 30 min. In all three
cases the virus is initially injected in the region − 10 ≤ x ≤ 10. Collagen density C(x) (pink line) changes dramatically about x = 0. Case 1 Viral
motion depends on collagen density in the current location, as in Eq. 2. Case 2: Viral motion depends on collagen density in adjacent locations, as in
Eq. 3. Case 3: Spread of viruses under Fickian diffusion as in Eq. 4. Case 2 best describes experimental observation where virus moves to regions of
low collagen density.
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• Intermediate desmoplastic reaction, as in Figure 4C. In this

case, collagen fibres are thicker and the collagen

distribution is wider. The tumour cells are distributed in

smaller regions such that d < h.

• Immature desmoplastic reaction, as in Figure 4D. In this case,

regions where collagen deposits exist is increased further so

that there is an even smaller number of tumour cells, d ≪ h.

We inject a viral dose of 2.4 × 105 viruses mm−3 for r ≤ 1 mm,

as before. Note, collagen maximum (0.84) and minimum (0.04)

values are the same in each case.

3 Results

3.1 Results for comparing diffusion cases
to experimental observations

We simulate the three diffusion cases described by Eqs 2–4

and identify which diffusion term best describes the experimental

observation that virus moves to regions of low collagen density.

To do this, we simulate the scenario from McKee et al. (2006) as

outlined in Section 2.3. Our aim is to find a virus dispersion

profile that matches the experimental observation from McKee

et al. (2006), recreated in Figure 1. In this figure, the virus profile

reaches a sigmoidal shape after 30 min.

We first define a function for collagen concentration by

fitting C(x) to the normalised collagen data as in Figure 5A,

obtaining a sigmoidal curve of the form

C x( ) � b1
1 + e−b2x

+ b3, (13)

where b1 = −0.5574, b2 = 0.3198 and b3 = 0.778.

We now simulate virus dispersion for virus under each

diffusion term in Eqs 2–4. Figures 5B–D show virus diffusion

in 30 min for Cases 1, 2 and 3 respectively. The pink solid line

represents collagen density C(x). Clearly, we see that Case

1 cannot describe virus diffusion in collagen as the majority

of virus has moved into the collagen dense region in 30 min,

represented by the solid green line. In Case 2, we see that virus

diffuses much faster in the region with low collagen (x > 0). There

is also bulk motion across the boundary at x = 0 so that the virus

population migrates from left to right. The end result at 30 min is

consistent with the sigmoidal shape observable in the results

from Mackee et al., Figure 1. Importantly, once the virus moves

into the low collagen region it will remain in this region. In

Supplementary Section S2.1, we confirm that this profile is the

steady state solution to 3) for any diffusion coefficientD(x), when

no-flux boundary conditions are applied.

In Case 3, the Fickian case, the virus initially diffuses faster in

the lower collagen region; however, at t = 30 the virus has reached

a homogeneous state, distributed evenly in collagen. Importantly,

this result demonstrates that Fickian diffusion does not describe

virus distribution in relation to collagen density and is, therefore,

not a good candidate for virus diffusion in collagen-dense

tumours. In Supplementary Section S2.2, we also show that

under Fickian diffusion, the steady-state solution with any

diffusion coefficient D(x) and no-flux boundary conditions

will be constant.

The simulations in this section highlight that preferential

virus diffusion to regions of low collagen density only occurs in

Case 2 and Case 3 (Fickian case). However, Case 2 is the only

scenario where the virus remains in the low-collagen region.

Since Case 2 is the scenario that best describes experimental

observations, we disregard the other cases and build a

virotherapy model using Eq. 3 as our virus diffusion term.

FIGURE 6
Optimal fit to virus data from Mckee et al. (McKee et al., 2006). (A) Virus diffusion in 30 min is modelled by (5) using a linear squeeze probability
with n = 1 (dashed line) and a nonlinear squeeze probability with n = 0.2916 (solid line). (B) The plot for Eq. 5 with n = 0.2916 suggests a significant
reduction in virus diffusion even at low collagen levels.
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3.2 Results for estimating squeeze
probability with respect to collagen
density

In the previous section we used a linear equation to describe the

relationship between squeeze probability and collagen density. Now

that we have identified the diffusion term that qualitatively matches

experimental results, we consider the generalised form of Eq. 5 and

fit n to virus data, Mckee et al. Figure 1, to obtain a better estimate of

squeeze probability in relation to collagen. In Figure 6A, we have the

optimal fits for the linear squeeze probability, where A is fitted and

n = 1, and the nonlinear squeeze probability, where bothA and n are

fitted. From these results, we choose the nonlinear squeeze

probability to describe the change in diffusion as collagen

changes. The optimal fit for n at 0.2916 suggests that changes in

virus diffusion with respect to collagen density is not a simple linear

relationship. With n set at this value and plotting Eq. 5 in Figure 5B,

we see that collagen concentration, even at low levels, can greatly

impact virus diffusion. For example, at 20% collagen (to maximum

collagen density), the squeeze probability reduces to approximately

0.4. Note, using the fitted value for n, will not change the qualitative

behaviour observed in Figure 5. From here, we set n to the fitted

value.

3.3 Parameter optimisation results

Before we optimise some of the parameters from the

virotherapy model described in Section 2.5, we first generalise

the derivation of Eq. 3 to three dimensions, then transform this

equation to spherical geometry with radial symmetry. Therefore,

the virus diffusion term in Eq. 7 is

Dvf � Dv

r2
z

zr
r2 p

zV

zr
− V

zp

zr
( )( ). (14)

The derivation for this term can be found in Supplementary

Section S3.

We first fit tumour proliferation rate ru and competition

parameter a to the tumour growth data treated with PBS or

collagenase. In both data sets, there is no virus treatment, so we

set initial virus population V (r, 0) = 0, and there are no infected

cells, so I (r, 0) = 0. Our system reduces to

zU

zt
� Du

r2
z

zr
r2
zU

zr
( ) + rUU 1 − U

k
− aC( ). (15)

The optimal fit for ru and a can be seen in Figure 7A (PBS

treatment where collagen is high) and Figure 7B (collagenase

treatment where collagen is degraded).

FIGURE 7
Model parameters fitted to the results from (McKee et al., 2006), Experimental procedure 2 in Section 2.1. We fit ru and a simultaneously to
tumour fold change data when treated with (A) PBS or (B) collagenase. We fit β and δv simultaneously to tumour fold change data for (C) virus
treatment alone or (D) virus treatment with coinjection of collagenase. Results from the fits are outline in Table 2.
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Next, we fit the virus infection rate β* and virus decay rate δv
simultaneously to virus treatment alone and virus treatment with

coinjection of collagenase. The initial conditions for the tumour

and collagen remain the same. The model fit to data for

virotherapy in high collagen (no collagenase) and low collagen

(coinjection of collagenase) can be seen respectively in Figures

7C,D. These results clearly demonstrate that our model can

successfully describe virotherapy outcome with respect to high

and low collagen tumours. The model shows that high-density

collagen reduces virus diffusion and infection, overall reducing

virus efficacy.

All estimated and optimised parameters (including 95%

confidence intervals) can be found in Table 2. Using a profile

likelihood approach, Simpson et al. (Simpson et al., 2020)

investigated practical identifiability of a spatio-temporal,

biological model. We also perform a practical identifiability

analysis for our optimised parameters, following the approach

described in (Eisenberg and Jain, 2017), where the likelihood

profile is defined as the minimum sum of squares. The details of

this analysis can be found in Supplementary Section S4. The

likelihood profiles in Supplementary Figure S2, Supplementary

Section S4, clearly indicate that the parameters are identifiable.

3.4 Sensitivity analysis results

We now run a global sensitivity analysis to investigate how

changes in parameters affect tumour outcome. The results from

the Spearman rank correlation coefficient (SRCC) analysis are

presented in Figures 8A,B. At t = 5 days, the tumour outcome is

primarily driven by tumour growth ru. Longer term, t = 20 days,

infection rate β*, viral burst size α and tumour carrying capacity k

emerge as drivers in the system. The results from the two chosen

time-points suggest that during the early phase of treatment,

tumour size is determined by tumour growth rate and not by the

parameters that control treatment, that is, α and β. Interestingly,

the carrying capacity k has a negative effect on tumour size. This

is because our initial tumour density, Eq. 12, is scaled by k so that

as k increases we have a larger uninfected cell count at t = 0. This

increases cell infection and overall virus activity, as a result,

tumour size is reduced. The SRCC and p-values for Figure 8 can

be found in Table 3.

Next, we run this analysis for a tumour with an

exponentially decreasing initial collagen profile, and compare

the SRCC results between a high collagen tumour and a low

collagen tumour. In this scenario, tumour cells and collagen are

denser in the centre, and collagen density decays in the

direction of tumour boundary. Using this initial profile, we

see different responses in high and low collagen tumours. Early

in the treatment at t = 5 days, tumour growth rate drives the

system in both low and high collagen tumours (results not

shown). At t = 15 days, the low collagen tumour begins to show

sensitivity to virotherapy parameters, β and α, Figure 8C. The

high-collagen tumour remains insensitive to these parameters,

as in Figure 8D. At t = 30 days, the SRCC analysis between the

low and high collagen tumour begin to look similar (results not

shown), with both tumours showing sensitivity to treatment

parameters β and α. This result indicates that low-collagen

tumours respond earlier and more efficiently to treatment than

high-collagen tumours. The lack of virus dispersion and uneven

distribution in high-collagen tumours greatly reduces the

efficacy of treatment.

3.5 Results for tumour growth and virus
infection rate in low and high-collagen
tumours

Using the SRCC analysis above, we now select two

parameters that drive tumour response and perturb these

parameters in high and low collagen to see if there is a

difference in response. We choose one parameter that

promotes tumour growth, ru, and one parameter that

promotes tumour hindrance, β*. Figures 9A,B show the

tumour fold change as ru is perturbed in low and high

collagen respectively. In low collagen, the single virus dose

causes a reduction back to the original size at around day 20.

This result occurs for all tested growth rates. Slower growth rates

continue to remain well below 10-fold increase by the end of

50 days. In high collagen, there is an almost monotonic growth at

all growth rates, demonstrating a lack of response to treatment.

The analysis suggests that virotheapy may not be effective in

high-collagen tumours, regardless of tumour growth rate. Figures

9C,D describe a scenario where virus infectivity is enhanced.

Similar to results for tumour growth rate, low-collagen tumour

responds well to a single treatment at all infection rates with the

exception of the lowest rate. Notice that the time to initial

response decreases as infection rate is increased. The high-

collagen tumour does not respond at low infection rate and

only partially responds with higher infection rates. The results

here suggest that only minor improvements may be achieved in

high-collagen tumours by increasing the infectivity of virus.

One limitation of the model is the lack of data measuring

virus diffusion in the context of a collagen-rich tumour;

therefore, we investigate the sensitivity of our model results

with respect to virus diffusion constant Dv. The results for

this analysis can be seen in Supplementary Figure S3,

Supplementary Section S5. As Dv is increased, the collagen-

dense tumour does not change its response. The low-collagen

tumour will respond better to treatment as virus diffusion rate is

increased; however, at very high diffusion rates, virus efficacy

significantly decreases as the virus moves too quickly out of the

tumour sphere, where cancer cells reside, before a significant

number of cells are infected. These results are qualitatively

similar to what we obtained before, showing that our model

predictions qualitatively remain the same over a wide range ofDv.
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3.6 Results for tumours with different
collagen structures

We now investigate virotherapy in relation to clinically

observed collagen formations. We consider mature,

intermediate and immature desmoplastic reactions. The result

in Figure 10A suggests that treatment using virotherapy is most

successful in mature collagen, where collagen fibres are finer than

in intermediate or immature collagen. This is in agreement with

the observations fromUeno et al. Since in all three cases, collagen

density begins in the same range, the difference between cases is

in the thickness of collagen region. For the mature collagen, the

virus is successful at killing the tumour at approximately day 30

(result not shown). In Figures 10B,C, we see very different virus

profiles at day 25 of treatment between mature and immature

desmoplastic reactions. Figure 10B shows that the virus in

immature collagen is trapped in a low collagen region, while

Figure 10C shows that the virus in mature collagen, is spreading

efficiently in the tumour environment. Interestingly, although we

begin with a much smaller cell count in immature collagen, the

virus is not able to control tumour growth.

FIGURE 8
Spearman ranked correlation coefficients (SRCC) betweenmodel parameters and total tumour volume integrated over the time interval [0, tend]
for (A) tend = 5 days and (B) tend = 20 days. SRCC analysis at tend = 15 days for (C) low collagen tumour (w = 0.1) and (D) high collagen tumour
(w = 0.85).

TABLE 3 Spearman ranked correlation coefficient (SRCC) between
model parameters and total tumour population over the time
interval [0, tend].

tend = 5 tend = 20

Parameter SRCC p-value SRCC p-value

Kc 0.0207 0.6440 -0.0464 0.3003

w -0.1253 0.0050 -0.0223 0.6194

a -0.1082 0.0155 0.0890 0.0468

m 0.0025 0.9555 0.0843 0.0597

k -0.0537 0.2307 -0.5098 0.0000

n 0.0134 0.7641 -0.0281 0.5303

β* 0.0255 0.5697 -0.5738 0.0000

δI -0.0351 0.4337 -0.1564 0.0005

δv 0.0427 0.3410 0.0244 0.5867

rc 0.0164 0.7138 -0.0343 0.4439

ru 0.9516 0.0000 0.4201 0.0000

α 0.0004 0.9933 -0.5019 0.0000

Dv -0.0310 0.4884 -0.0420 0.3480

Du 0.0958 0.0323 0.2748 0.0000

Frontiers in Systems Biology frontiersin.org13

Pooladvand and Kim 10.3389/fsysb.2022.903512

https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2022.903512


We also investigate how changes in collagen density alter

treatment results. In Figure 11A, we show how reducing the

maximum collagen density for the immature collagen scenario

changes treatment outcome. Holding the minimum collagen

value at 0.04, we see that reducing the maximum collagen can

increase virus efficacy. For the mature collagen bundles, where

collagen fibres are finer, we find that increasing minimum

collagen density, while holding the maximum at 0.84, does

not significantly change viral efficacy, as in Figure 11B. The

results indicate that finer collagen fibres, even at higher densities,

may still respond well to treatment. Overall, the model suggests

that collagen orientation and density both contribute to tumour

response.

4 Discussion

The lack of virus diffusion in collagen-dense tumours is a

major challenge in oncolytic virotherapy. Putting other factors

aside, this therapy requires a relatively homogeneous distribution

of virus in the tumour environment. Experiments have shown

that viral vectors move to regions of low collagen density and this

behaviour significantly contributes to lack of efficacy; therefore,

an accurate depiction of virus diffusion with respect to collagen

density is an important aspect when modelling virotherapy.

In this paper, we aimed to find a diffusion term that

successfully describes virus dispersion in collagen. Beginning

with a random walk, we derived three possible diffusion terms

for virus dispersion. One of these terms (Case 3) is the Fickian

diffusion term, commonly used in spatial virotherapy models.

The other two are nonstandard, non-Fickian diffusion terms.

Simulating virus propagation in collagen for each diffusion

term, we found that Case 2, described by Eq. 3, experienced bulk

motion in the direction of low collagen density, as in Figure 5C.

This result is in good agreement with experiments by Mackee

et al. (McKee et al., 2006). Case 3, where virus dispersion is

modelled under Fickian diffusion, resulted in initially faster

spread into regions of low-collagen density; however, this

behaviour is transient and virus will always move to a

homogeneous steady state, spreading evenly in the tumour

environment regardless of collagen density, as in Figure 5D.

We then explored the tumour response to virotherapy by

using a PDE system of reaction-diffusion equations, where virus

diffusion is described by the diffusion term in Eq. 14, the

spherical transformation of Eq. 3. The model successfully

captured the changes in treatment outcome between collagen-

dense and collagen-sparse tumours. Using a global sensitivity

analysis we found that the parameters driving treatment, namely

infection rate, β, and viral burst size, α, do not become significant

until around 20 days, as in Figures 8A,B. This sensitivity also

FIGURE 9
Local sensitivity analysis for tumour growth rate ru and infection rate β in relation to tumour fold change. Varying ru in (A) low collagen and in (B)
high collagen. Varying β in (C) low collagen and in (D) high collagen. Dotted line represents the maximum allowable tumour size.
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depends on the initial collagen distribution. For example, as we

saw in Figures 8C,D tumour with a dense centre and sparse

boundary will have an early response to treatment if collagen

density is low.

Next, we did a local sensitivity analysis, taking a closer

look at the difference in response between high and low-

collagen tumours. We used two of the most sensitive

parameters, one that drives tumour progression, ru, and

FIGURE 10
Single virus injection in tumour with mature collagen, intermediate collagen and immature collagen. (A) Results show that immature and
intermediate collagen do not respond well to treatment. (B) Population profiles at day 25 for virotherapy in immature collagen. The virus (green) is
trapped in a low collagen region. (C) Population profiles at day 25 for virotherapy in mature collagen. Virus is spreading efficiently in the tumour
environment.

FIGURE 11
Varying initial collagen density for immature and mature desmoplastic reaction. (A) Decreasing initial maximum density for immature collagen
from 0.84 to 0.44, while holding minimum density at 0.04. Lower densities respond to treatment. (B) Increasing initial minimum density for mature
collagen from 0.04 to 0.54, while holding maximum density at 0.84. Even at higher densities the tumour responds to treatment.
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one that drives tumour hindrance, β. The analysis showed that

low-collagen tumours respond much more robustly to

treatment, even at higher tumour growth rates and lower

infection rates, as in Figure 9. This result suggests that

degradation of collagen in dense tumours might be the

only viable approach to reducing tumour size as

modifications in other parameters, such as increased

infectivity or changes aimed at slowing cell doubling rate,

do not seem to be effective.

Lastly, we looked at how changes in collagen structure

alter treatment outcome. We found that tumours with finer

sections of collagen (mature collagen) respond much better to

treatment than tumours with thicker sections of collagen

(intermediate and immature collagen), as in Figure 10. This

result is in agreement with experimental findings from Ueno

et al. (Ueno et al., 2004; Ueno et al., 2015; Ueno et al., 2021).

We also investigated how changes in collagen density affect

treatment of tumours with immature and mature collagen

profiles. Interestingly, we found that although tumours with

immature collagen become more responsive as collagen

density is decreased, tumours with mature collagen

continue to respond to treatment even at high collagen

levels, as in Figure 11. This result shows that collagen

structure in the tumour environment is as important to

treatment outcome as collagen density.

Collectively, the results in this paper, highlight the

importance of accurately modelling the interaction

between treatment, in this case virotherapy, and tumour

stroma such as collagen. A good extension of this work

would be to include tumour-infiltrating immune cells. It is

well documented that virotherapy can activate an

immune response which can be harnessed to kill cancer

cells (Gujar et al., 2018; Russell et al., 2019).

Collagen density has been shown to reduce immune cell

infiltration. In their experiments Kuczek et al. (2019) found

a significant reduction in infiltrating CD8+ T cells when

collagen density was increased in mammary tumours.

Including the dynamics of T-cells, tumour cells and

collagen would be a natural extension and could help in

identifying combinations of characteristics that hinder

treatment outcome.

Finally, lack of dispersion of nanoscale particles in

collagen-rich tumours is not unique to virotherapy and is

a common problem in many types of cancer treatments

(Henke et al., 2020). We believe that our novel

diffusion term can easily translate to models investigating

other modes of therapy. Overall, our model demonstrates

that the effect of collagen on therapy dispersion may be

significant to treatment outcome and should be considered

when modelling treatment of collagen-dense tumours.
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