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Genome-scale metabolic network models are of great importance in systems biology
research, as they are used in metabolic activity dynamics studies and provide the
metabolic level representation in multi-omic investigations. Especially for human,
accurate metabolic network reconstruction is important in biomedical research and
drug discovery. Today, there exist many instances of the human metabolic network as
a whole and in its tissue-specific versions. Some are improved updates of models
reconstructed from the same research team, while others are combinations of models
from various teams, in an effort to include all available information from genome annotation
and omic datasets. A major challenge regarding the human stoichiometric models in
particular is the standardization of the reconstruction methods, representation formats and
model repositories. Stoichiometric model standardization will enable the educated
selection of the model that better fits the goals of a study, the direct comparison of
results from various flux analysis studies and the identification of model sections that
require reconsideration and updating with respect to the annotation of the human genome
and proteome. Standardized human metabolic models aligned to the human genome will
be a very useful tool in multi-omic studies, enabling the direct and consistent integration of
the metabolic with the gene regulation and protein interaction networks. In this work, we
provide a thorough overview of the current collection of human metabolic stoichiometric
models, describe the current issues regarding their direct comparison and alignment in the
context of the various model repositories, exposing the standardization needs, and
propose potential solutions.
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THE IMPORTANCE OF METABOLIC MODELING IN SYSTEMS
BIOLOGY

In systems biology, cellular physiology is viewed as a complex dynamic biomolecular network of
interacting genes, transcripts, proteins, and metabolites. The interplay of biomolecular networks
describes the relationship between genotype and phenotype (Oberhardt et al., 2009). These networks
are subjected to multi-scale regulatory mechanisms (Aon, 2014), enabling the cell to optimize its
resources, to carry out its functions in an efficient manner, to interact with its environment and
respond to any perturbations exhibiting adaptability and robustness (Barabási and Oltvai, 2004;
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Abedpour and Kollmann, 2015). Thus, the individual and
integrated analysis of these networks is essential for
understanding the underlying mechanisms characterizing a
particular (patho)-physiology.

Metabolism is a significant biological process, producing all
biomolecules and energy for the cellular functions, while also
interacting with the extracellular environment. The metabolic
pathways are series of enzyme-catalyzed reactions of certain
stoichiometry. Metabolites are also regulatory molecules of
proteins, while the metabolic activity is affected by changes in
all other molecular levels of cellular function, genomic,
transcriptional and translational (Nielsen, 2017b). Thus,
elucidating the structure and regulation of metabolic pathways
is an essential objective of systems biology for obtaining a
comprehensive perspective of cellular function (Vasilopoulou
et al., 2016; Masid and Hatzimanikatis, 2021). Especially for
human, metabolic modeling is essential for the development of
methodologies for accurate and sensitive diagnosis, the design of
drugs, therapeutic treatments, nutrition and exercise regimes, and
the advancement of cell and tissue engineering.

Genome-scale metabolic network reconstruction takes
collectively advantage of the genome annotation and omic
data to identify the potentially active reactions inside a cell,
and of metabolic reaction stoichiometry information to “fill
any gaps” due to incomplete annotation (Thiele and Palsson
2010). Systemic analysis of the in vivo activity and regulation of
metabolic networks is carried out based on data from metabolic
profiling (metabolomics), quantifying free metabolite
abundances. This analysis does not require extensive
knowledge of the metabolic network, on the contrary, it
contributes data for the network reconstruction, and can be
applied under transient physiological conditions too (Nielsen
2017b). However, comparison of metabolic profiles can
provide mainly qualitative information about the in vivo
metabolic activity and pathway fluxes. The flux distribution
in a metabolic network provides a measure of the degree of
engagement of the various pathways (Klapa, 2009).
Comparative analysis of the metabolic flux distribution
under various physiological conditions can reveal metabolic
regulatory mechanisms and indicate the optimized direction
for genetic modifications. However, an accurate representation
of the metabolic reaction network is an essential part of metabolic
modeling, along with comprehensive kinetic information, in the
case of kinetic models. Extensive kinetic models are not readily
available for large complex networks, especially in human, but
rather for targeted well-studied small-scale networks, for
which in vivo kinetic information is accessible or at least good
approximations can be made. The stoichiometric metabolic
models bypass this issue, based only on the balancing of fluxes
in and out of the metabolite pools according to the stoichiometry
of the metabolic reactions. Thus, the internal fluxes are estimated
by the external metabolite net excretion rates based on the
stoichiometric (or metabolite) balances.

A major challenge regarding the stoichiometric models of
metabolic networks in general, and in human in particular, is the
standardization of the reconstruction methods, the
representation formats and the model repositories. At the

moment, direct comparison between models is not possible,
hindering the selection of the most appropriate model for a
particular application, and it is not clear how the human
metabolic network reconstruction evolves. In this perspective,
we support the importance of the standardization of
stoichiometric metabolic models, focusing on human
metabolism. We provide an overview of the current collection
of human metabolic stoichiometric models, describe the issues
regarding their direct comparison and alignment, exposing the
standardization needs, and propose potential solutions.

STOICHIOMETRIC MODELING OF
METABOLIC NETWORK ACTIVITY

Metabolic flux analysis based on stoichiometric models of
comprehensive metabolic networks was developed in the 1980s
as a methodology of metabolic engineering to analyze the
metabolic network activity and regulation and identify targets
of genetic modification, mainly in the context of industrial
microbial biotechnology (Stephanopoulos et al., 1998). Later, it
was expanded to cell culture engineering in pharmaceutical
industry (e.g. Goudar et al., 2014) and biomedical research, as
holistic network-wide analyses were promoted in the context of
systems biology and multi-omic studies and information for the
metabolic network reconstruction was becoming available from
genome sequencing and annotation (Nielsen, 2017a).

The stoichiometric model of a given metabolic network is
described by the system of the metabolite balance equations. At
metabolic steady- (or pseudo-steady-) state conditions, at which
metabolite balancing analysis is usually applied, fluxes are
estimated as the solution of a weighted least-squares problem
on the measured external metabolite net excretion rates based on
the stoichiometric and flux boundary constraints:

S · v � (rout − rin)
a≤ v≤ b

(1)

where S, v, (rout − rin) are, respectively, the stoichiometric matrix
of the metabolic network, the flux vector (constrained by α and b
vectors) and the external metabolite net excretion rate vector. It
becomes directly apparent that the accuracy of metabolic flux
analysis based on stoichiometric modeling depends on the
considered metabolic network reconstruction. It needs to be
noted that metabolite balancing based on net excretion rate
measurements can lead to the estimation of net reaction fluxes
only and the summed net flux of parallel reactions. Isotopic
(mainly 13C) labeling measurements can improve the
observability of the system regarding reaction reversibility,
parallel pathways and metabolic cycles. The model of Eq. 1 is
fully observable by a set of external metabolite net excretion rate
measurements, if the number of measurements equals that of
independent net fluxes (i.e. the rank of stoichiometric matrix S). If
more measurements are available, redundancies can be exploited
to test the consistency of measurements and the network
structure (data reconciliation analysis). If fewer measurements
are available, the system is under-determined with some free net
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fluxes. In these cases, optimization methods are used to identify
the boundaries of the system upon a selected objective function,
representing a biological objective of the system (Orth et al.,
2010). This is a linear programming problem, when the objective
is a linear function of the unknown fluxes in the context of the
linear stoichiometric constraints, known as Flux Balance Analysis
(FBA). Boundaries α and b for the unknown fluxes can be better
defined decreasing the solution space and thus reducing the
deviation between the predicted and the actual flux values, if
additional information about the system is available, as from
transcriptomic, proteomic and metabolomic/isotopomic data
(Foguet et al., 2019).

RECONSTRUCTION AND VALIDATION OF
GENOME-SCALE STOICHIOMETRIC
MODELS
When genomic information was not available, metabolic network
reconstruction was mainly based on biochemical information
about major pathways and enzyme characterization along with
experimental information about the substrates and products of
the particular biological system/organism under various growth
conditions and targeted genetic modifications. In this case, data
reconciliation analysis through redundancies was a way to
identify inconsistencies in the metabolic network
reconstruction and discover new pathways. In the post-
genomic era, genome annotation contributes to the genome-
scale metabolic network reconstruction of the target organism
(Thiele and Palsson, 2010). The nonlinear genetic information
flow between genome, transcriptome and proteome, where one
gene may correspond to multiple proteins and vice versa adds to
the complexity of metabolic network reconstruction of complex
organisms, and the human in particular. Obviously,
compartmentalized and tissue-specific metabolic networks are
an additional challenge for eukaryotic and multi-tissue
organisms, respectively. Metabolic models should follow the
updates of the genome, transcriptome and proteome
collections. As genome annotations are not complete, genome-
scale metabolic network reconstructions have usually “gaps” that
are filled based on biochemical knowledge. Most common issues
are the “dead-end” metabolites, considered to be intracellular,
which have only producing or only consuming reactions, and the
“orphan” reactions that are known or expected to exist, but the
respective gene(s) has/have not been identified on the genome.
Orphan, transport and spontaneous reactions implied from
metabolic activity data and experimental observations are then
added to the reconstruction to ensure that the model is functional
for optimization analyses. Still, genome annotation cannot
provide direct information about the direction and reversibility
of a reaction nor about its cellular or tissue localization. To gain
further insight for these, integration with enzymatic and
metabolic databases is necessary along with available omic
data at various molecular levels of cellular function. Omic data
can be used for the gap-filling process, the validation of the
current metabolic models, and the (re-) annotation of genes and
their cellular and tissue localization. Consistent integration of

omic data in the metabolic network reconstruction requires
alignment between the genome and the metabolic model.
Algorithms modifying generic metabolic models into tissue-
specific based on omic data have been proposed in the
literature (e.g. Zur et al., 2010; Agren et al., 2012; Wang et al.,
2012; Heirendt et al., 2019). However, in tissue-specific model
reconstructions, there are open questions about the transport
reactions from and into the tissue, about which molecules are
produced in other tissues and become available to the particular
tissue only through the blood and about the reversibility of the
metabolic reactions (e.g. Shlomi et al., 2008; Jerby et al., 2010). To
date, there are issues with the harmonization and interoperability
between different metabolic reconstructions of the same target
organism or tissue that limit their comparability, and with the
regular model updating along with the evolution of genome
annotation. Below, we focus on the current challenges
regarding the human metabolic stoichiometric models.

HUMAN METABOLIC STOICHIOMETRIC
MODELS AND REACTOMES

The first genome-scale human metabolic stoichiometric models
were published in 2007 by two separate efforts: the Edinburgh
HumanMetabolic Network (EHMN, Ma et al., 2007) and Recon1
(Duarte et al., 2007). These reconstructions served as basis for the
reconstruction of metabolic networks of other organisms, such as
mouse and rat, through gene orthologues. The human metabolic
models have evolved through different instances and also tissue-
specific reconstructions became available (Ferreira et al., 2021).
An overview of the human metabolic model landscape today led
to the reconstruction of the evolution and connectivity map
between the various human models since 2007, which is
shown in Figure 1. As depicted, some models have evolved
through different versions, while some others started from the
combination of existing reconstructions along with omic and
other biological data. Actually, there are four main reconstruction
lines: 1) the EHMN, which stopped its updates in 2010 after the
compartmentalized model, 2) the Recon series, which has evolved
from Recon1 to Recon3D (Brunk et al., 2018), while its Recon
2.02 version (Thiele et al., 2013) formed the basis for 3) the Recon
2.1–2.2 reconstructions (Smallbone, 2013; Swainston et al., 2016),
and 4) the HMR (Human Metabolic Reaction) models (Agren
et al., 2012; Mardinoglu et al., 2013; 2014), which evolved to
Human1 in 2020 after inclusion of tissue-specific reconstructions
(Robinson et al., 2020). The human metabolic models are
available from different portals, as the consortia behind the
main reconstruction lines have developed their own resource
(Figure 2A). Recon1 and Recon3D are available from BiGG
Models (King et al., 2016), which includes reconstructions
from other organisms too, mainly microbial. Virtual Metabolic
Human (VMH) (Noronha et al., 2019) hosts Recon 2.02–2.04
(Haraldsdóttir et al., 2014) and Recon3D models. The HMR
series and Human 1 are available fromMetabolic Atlas (Robinson
et al., 2020), which contains also reconstructions of yeast, fruitfly,
mouse, rat, zebrafish and worm metabolic networks. All portals
allow users to access and download the included instances.
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However, each portal provides different formats, hindering the
direct model comparison. Most popular formats are XML and
SBML (Figure 2B). SBML has been accepted as the default
language for biochemical reactions by consortia promoting
community-led standardization efforts in computational
biology, such as the European Infrastructure ELIXIR (https://
elixir-europe.org/) and the Computational Modeling in Biology
Network (COMBINE; https://co.mbine.org).

Recently, vaster repositories were developed, aiming at
collecting metabolic models from different resources and
organisms, and storing them in a common standardized way,
enabling their direct comparison and interoperability. Main
resource of this type is the EMBL-EBI BioModels (Glont et al.,
2018; Malik-Sheriff et al., 2020), which stores both kinetic and
stoichiometric models. Biomodels requires for a model to be
uploaded in SBML format and other formats are automatically

FIGURE 1 | Literature-deduced schematic representation of the evolution of and interconnectivity between the main reconstruction lines of human stoichiometric
models. Literature search indicated four main reconstruction lines of the generic model, depicted, respectively, in green, blue, light blue and red boxes, aligned
chronologically based on the respective publication(s). Yellow boxes are used for the tissue-specific reconstructions, which were derived and/or have been incorporated
in the generic stoichiometric models. Orange box is used to depict a model from a distinct research team from the main four, which had not published a human
metabolic stoichiometric model before. The arrows and colors of the lines between the boxes indicate the “information flow” between the models.

FIGURE 2 | (A) The presently available repositories of human metabolic stoichiometric models and their model intersections and (B) the distribution of the various
model formats. A human stoichiometric metabolic model may be available in multiple repositories and multiple formats, confounding its consistent and comparable use.
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generated from the original submission, so that the model can be
accessible by different bioinformatic tools. So far, the BioModels
team has undertaken the standardization task for the kinetic
models, however, standardization and thus direct comparability
is not yet available for the stoichiometric models, including
human. The need for stoichiometric model standardization has
been largely discussed in relevant scientific communities and
consortia. BioModels includes the EHMN (original and
compartmentalized), Recon 1, 2.02–2.03, 2.1–2.2 and all HMR
models (Figure 2A). The standardized SIB (Swiss Institute of
Bioinformatics) MetaNetX model repository and analysis tool
(Moretti et al., 2021) includes HMR2.0 and Recon3D models and
the expert curated human metabolic reactome of the extended
metabolic database, Rhea (Alcántara et al., 2012). Rhea includes
the metabolic reactions, which are likely to occur in the human
cell, based on the human proteome annotation as defined in
UniProt and the enzyme-reaction relationships defined by the
Nomenclature Committee of the IUBMB (NC-IUBMB) (https://
iubmb.qmul.ac.uk/), as stored in ExplorEnz database (McDonald
et al., 2009). The chemical species (metabolites) are extracted
from the standardized database ChEBI (Hastings et al., 2016).
Using a standardized identifier scheme enables MetaNetX to
consistently store metabolic models and reactomes, so that
they are readily comparable and interoperable.

Traditionally, human metabolic reactome collections have
been available through metabolic databases, with most popular
the Kyoto Encyclopedia of Genes and Genomes (KEGG)
(Kanehisa et al., 2019), HumanCyc, part of the BioCyc
metabolic database collection (Karp and Caspi, 2011), the
expert curated Reactome Knowledgebase (Gillespie et al.,
2022) and Rhea. All collections refer to the human genome
annotation and connect metabolic reactions to genes,
transcripts, enzymes, chemical compounds and localization
information through database cross-referencing. These
collections do not directly constitute balanced stoichiometric
models, gap-filled with transport and “technical” reactions to
enable their use in flux balance optimization studies. However,
HumanCyc, which runs pathway prediction tools based on
genome annotation, adds transport reactions, and fills pathway
gaps that are not yet supported by the human genome. Transport
reactions are also included in the Reactome Knowledgebase and
Rhea through MetaNetX to facilitate their use in stoichiometric
modeling.

STANDARDIZATION CHALLENGES IN
HUMAN STOICHIOMETRIC MODELING

The overview of the available human metabolic stoichiometric
models and reactome collections indicates a plurality of
reconstructions and utilized formats, which are not directly
comparable and interoperable. This situation may confuse a user
as to which reconstruction is the most suitable for a particular
application, as there is no clear information of their differences.
Moreover, instances of the same model in different resources and
formats might not be identical. Comparison of the same
reconstruction (Recon1) between different formats and resources

with respect to the number of the includedmetabolites indicated that
this could indeed be the case for some models (Supplementary
Table S1). Then, we compared various models in MATLAB format
with respect to the number of included reaction IDs; eachmodel was
collected from the main resource of the respective reconstruction
line (Supplementary Figure S1). We observed a small overlap
between the reconstructions, which cannot be attributed solely to
the inclusion of different reactions, but, and potentiallymainly, to the
use of different identifiers for the same reactions between themodels.
Each of the main reconstruction series shown in Figure 1 tends to
use its own IDs. The problem with different identifiers between
models was also indicated in a recent thorough comparison of the
SBML files of Recon and HMR series, HepatoNet and EHMN
models (Vieira et al., 2018). In addition, some models include the
Ensembl gene IDs of the involved enzymes instead of their Enzyme
Commission (EC) number, further hindering their direct
comparison, while alignment to more recent genome annotations
may be necessary. It becomes apparent that standardized ID systems
and direct connection of enzyme identifiers to the genome
annotation are of value for the comparability and interoperability
of the various stoichiometric models and their consistent updating
along with new genomic information. The MetaNetX framework
succeeds towards this direction using the standardized schema of
Rhea database. BridgeDb (van Iersel et al., 2010) is a tool that enables
the mapping between various biological databases, providing the
ontological framework for the direct comparison between models
and reactomes.

Challenges of the metabolic network reconstruction for
specific tissues and compartments remain the reversibility and
localization of certain reactions, and the transport of certain
metabolites through membranes (Lewis et al., 2014). The
direction of the transport reactions is also an issue.
Incorporation of omic, and when possible, isotopic labeling
data into the models could enhance our knowledge in these
matters. Reconstruction of secondary metabolism could be
challenging too. Balancing both sides of a reaction is relatively
straightforward for most reactions in primary metabolism,
however, it may be challenging for pathways involving
macromolecules with unspecified number of carbon atoms. To
avoid errors related to limited knowledge of certain parts of
secondary metabolism, stoichiometric models may be
occasionally simplified by lumping secondary metabolism into
one biomass equation, which stoichiometrically connects primary
metabolism intermediates with biomass constituents. Defining
the biomass equation in human generic and tissue-specific
models has not yet been a standardized process.

CONCLUSION AND FUTURE DIRECTIONS

Standardization of human stoichiometric models is necessary as it
will enable the consistent integration of metabolomic and
metabolic flux data with other omic and biological data.
Currently, there exist many human metabolic network
reconstructions in various repositories and multiple formats,
using different identifiers and schemas that hinder their direct
comparability and interoperability, while they cannot be readily
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updated along with the genome annotation. Standardization will
enable the educated selection of the model that better fits the goals
of a study and the direct comparison of results from various
studies. The use of standardized IDs will enable the alignment of
the existing instances with biological databases, including
genome annotation resources. In this way, we could identify
sections of the metabolic models that need reconsideration or
updating based on the genome annotation evolution, while, on
the other hand highlighting gene functions that need re-
evaluation, incorporating thus metabolic knowledge into
functional genomics. Finally, standardization of human
metabolic stoichiometric models is expected to consistently
add metabolomics and especially fluxomics in the systems
biology and medicine toolbox.
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