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In the context of high-throughput data, the differences in continuous markers between two
groups are usually assessed by ordering the p-values obtained from the two-sample
pooled t-test or Wilcoxon–Mann–Whitney test and choosing a stringent cutoff such as
10–8 to control the family-wise error rate (FWER) or false discovery rate (FDR). All markers
with p-values below the cutoff are declared to be significantly associated with the
phenotype. This inherently assumes that the test procedure provides valid type I error
estimates in extreme tails of the null distribution. The aforementioned tests assume
homoscedasticity in the two groups, and the t-test further assumes underlying
distributions to be normally distributed. Cao et al. (Biometrika, 2013, 100, 495–502)
have shown that in the context of multiple hypotheses testing the approach based on FDR
may not be valid under non-normality and/or heteroscedasticity. Therefore, having a test
statistic that is robust to these violations is needed. In this study, we propose a robust
analog of Behrens–Fisher statistic based on trimmed means, conduct an extensive
simulation study to compare its performance with other competing approaches, and
demonstrate its usefulness by applying it to DNA methylation data used by Teschendorff
et al. (Genome Res., 2010, 20, 440–446). An R program to implement the proposed
method is provided in the Supplementary Material.
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1 INTRODUCTION

In the context of genetic analysis, it is quite common to compare hundreds of thousands of genetic
features such as gene expressions or DNAmethylations between cases and controls. The well-known
two-sample t-test or its robust analog Wilcoxon rank sum test has been commonly utilized to obtain
p-values for comparing genetic features between the two groups at each locus. These p-values are
then ordered and chosen to control the family-wise error rate (FWER) or false discovery rate (FDR)
based on a cutoff; all p-values below that threshold are declared to have significantly different genetic
features between two groups, for example, see Hochberg and Tamhane (1987), Storey (2002), and
Benjamini and Yekutieli (2007). The validity of this approach is based on two underlying
assumptions: 1) the p-values under the null hypothesis would be uniformly distributed, whereas
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the p-values under alternative hypothesis would tend to have
values closer to 0; 2) the null distribution of the test statistic is well
controlled even for stringent levels of α. However, Robins et al.,
(2000) have shown that the p-values will be uniformly distributed
under H0 (null model) only when the test statistic T generating
the p-values consists of a single distribution. On the other hand, if
the null distribution of T depends on the nuisance parameters,
then the p-values will not be uniformly distributed.

When a study involves testing the differences between several
thousands of genes between cases and controls, then it may be
reasonable to assume that the sample size would be fixed for all
comparisons. However, the p-values for comparing a gene
expression profile between the two groups would still be
affected by the effect size (standardized difference in the mean
expression levels), underlying distributional assumptions (usually
normality), and inequality of the variances for the two groups. In
the context of a multiple-hypotheses setting, it is clear that
FDR(u), where u denotes the cutoff based on the test statistic,
must be an increasing function in u, and Cao et al. (2013) have
shown that this monotonicity assumption could be violated and
could lead to misleading results when the underlying
distributions are not normal and/or have significantly different
variances.

In the parametric setting, it is well known that the pooled two-
sample t-test is optimal for comparing the two means when the
underlying distributions are normal and have equal variances.
When the variances are not equal, then one uses the
Behrens–Fisher statistic with the Satterthwaite approximation;
see Welch (1937) and Satterthwaite (1946).

However, it is also well known that these assumptions are
rarely met in practice, and an alternative is to use non-parametric
approaches that impose fewer conditions on the underlying
distributions. For the two-sample location problem, one is
often interested in comparing the medians of the two
populations, and the widely used Wilcoxon–Mann–Whitney
(WMW) test is distribution-free, if the two distributions are
continuous and have the same shape. Pratt (1964) has shown
that the test does not maintain type I error if the variances are
different. Fligner and Policello (1981) proposed a modified
WMW statistic for unequal variances but assumed the two
populations to be symmetric. Brunner and Munzel (2000) and
Neubert and Brunner (2007) further extended the non-
parametric statistics to more general situations by further
relaxing the underlying assumptions.

In general, it is well recognized, for example, Hampel et al.
(1986) showed that the parametric tests would be optimal, that is,
they would be valid and have the optimal power, when the
underlying assumptions are satisfied. On the other extreme are
the non-parametric tests that have minimal assumptions on the
underlying distribution, but a price is paid in terms of loss of
power. However, when there are modest departures from the
target family (usually normal), robust methods serve as a viable
alternative as they provide significant gain in power while
maintaining the type I error control. In the context of the
two-sample problem, assuming the underlying distributions to
be in the neighborhood of the normal family with equal variances,
Srivastava et al. (1992) and Mudholkar et al. (1991) have

proposed robust test procedures based on L-statistics. In
particular, the approach based on trimmed means, which is
based on the concept of trimming the extreme observations,
seems appealing and has shown better operating characteristics
particularly for the distributions that are heavier tailed than
normal.

It would be a daunting task to test the underlying
distributional assumption and the homogeneity of variances at
each locus and then use the appropriate test statistic based on the
results of those tests. Even if one performed that, one will have to
account for the increased number of tests being performed and
the conditional nature of the p-values in the second stage. Pounds
and Rai (2009) adopted the concept of an assumption adequacy
averaging approach, which incorporates an assessment of the
assumption of normality and weighs the results of the two
alternative approaches based on whether the assumption of
normality is satisfied or not. However, their approach does not
extend to the situations where the assumptions of normality and
homoscedasticity may be violated simultaneously.

The hallmarks of a “good” robust procedure should be that
which is able to control the type I error rate and provide
significant gain in power when the underlying assumptions are
violated. Also, it should be able to maintain the type I error
control with minimal loss in power when the underlying
assumptions hold. The literature is filled with robust test
procedures proposed for comparing two populations, and it is
worthwhile to note that majority of them assess the type I error
control at the traditional level of α = 0.05, with few exceptions, for
example, see Lee (1995). Fagerland and Sandvik (2009) compared
the robustness of five two-sample location tests for skewed
distributions and concluded that the tests conducted at α �
0.01 were less robust than those conducted at α � 0.05.
However, it may be noted that in the context of testing
multiple hypotheses or in the context of controlling FWER, it
is essential that the performance of a test procedure be evaluated
at more stringent type I error rates such as 0.001, 0.0001, or even
lower as we are looking for p-values in the tail of the distribution.
It is also seen that in the context of designing genomic studies,
often the sample size justification uses more stringent level of α
such as 10–4 or 10–5, as seen in Chow et al. (2008) and Kang et al.
(2009). It is not difficult to visualize that, in this context, a test that
is valid (could be somewhat conservative without significant loss
in power) at stringent levels of α is likely to give fewer false
positives than the tests that are unable to control the type I error.
Thus, in conducting genetic analysis, one must ensure that the
test statistic used is not only robust to the violations of the
underlying model assumptions but also exhibits good operating
characteristics even at stringent levels of type I error.

In this study, we propose a robust analog of the
Behrens–Fisher statistic based on trimmed means that is
robust to the violations of underlying assumptions of
normality and homogeneity. We use the asymptotic normality
of trimmed means, derived by Huber (1970), to obtain the
asymptotic distribution of the proposed test statistic. Then,
using the first two moments of the proposed test statistics and
regression methods, we obtain finite sample approximations to
make the statistics useful in small sample sizes. The proposed
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statistic provides for a robust alternative for comparing two
distributions that may not be normal and may be
heteroscedastic. It is interesting to note that the proposed test
statistic has the best performance for skewed distributions as well.
However, in the context of high-throughput studies, the results
based on the p-value approach will also be affected by the
correlations among the test statistics by virtue of the
correlation among genes. In this development, we focus our
attention on developing a test statistic that will provide valid
p-values when the assumptions of normality and
homoscedasticity are violated with the understanding that one
could use the approaches described in Benjamini and Yekutieli
(2007) or Sun and Cai (2009) to conduct inference with correlated
p-values. In Section 2, we provide the details of the motivating
example. In Section 3, the background information regarding
trimmed means and their asymptotic properties are discussed. In
Section 4, a brief account of the Behrens–Fisher statistic for two
samples is provided. In Section 5, we propose the new test
statistic and obtain null distribution approximations for the
proposed test statistic for finite samples. In Section 6, the
details of the simulation study to evaluate the performance of
the proposed test statistic in terms of type I error control and
power properties and its comparison with the existing approaches
are provided. In Section 7, the usefulness of the proposed test
procedure is demonstrated by applying it to the DNA
methylation data. Section 8 is dedicated to discussions and
miscellaneous comments.

2 MOTIVATING EXAMPLE

Teschendorff et al., (2010) conducted a study to investigate the
mechanism of diabetic nephropathy by comparing 27580
markers from a genome-wide methylation array between cases
and controls. These data were submitted by the authors to the
NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/
geo) under accession nos. GSE20067 and can be easily
downloaded. There were 97 cases who had type 1 diabetes
(T1D) and nephropathy and 98 controls who had T1D but
with no evidence of renal disease. The purpose of this study
was to identify the markers that would be differentially expressed
between the two groups. Cao et al. (2013) used the two-sample
t-test and converted them to p-values to identify the proportions
of DNAmethylations that were different between the two groups.
They further showed that the monotonicity assumption required
for the validity of the FDR-based approach was violated when the
underlying assumption of normality and/or homoscedasticity
underlying the two-sample t-test did not hold.

Cao et al. (2013) used the raw proportions of methylation
which range between 0 and 100%. However, in practice, the logit
transformation is often used before applying any test procedure.
The benefit of using this transformation is that it transforms the
proportions on a scale that ranges from −∞ to ∞ and possibly
achieves variance stabilization; see Box (1953). We checked the
assumption of normality in cases and controls and equality of
variances between the two groups for all markers using Shapiro
and Wilk (1965) and the F-test (Box, 1953) at different

significance levels on the raw and logit-transformed
methylation data. The results for the logit transformation
(raw) are reported, and the results for the raw data were
slightly worse.

At the conventional level of α � 0.05, there were 88% (92%) of
markers that failed the normality test in either cases or controls or
had unequal variances between cases and controls, and 30%
(46%) of markers failed the normality test for both cases and
control and also failed the equal variance test between them. At a
more stringent level of α � 10−4, 68% (78%) of the markers failed
the normality test in either cases or controls or had unequal
variances, and 4% (13%) of the markers failed the normality test
for both cases and controls and had unequal variance.

Thus, it is obvious that the assumption of normality and/or
equality of variance, in general, is questionable, and robust
methods that are robust to such violations should be used. In
the following section, we provide the background of the trimmed
means and their asymptotic distribution.

3 TRIMMED MEANS AND ASYMPTOTIC
RESULTS

3.1 Trimmed Means
In the univariate case for one sample problem, let
X1 <X2 < . . . <Xn be the order statistics of a random sample
from a location scale population with the symmetric distribution
function F((x − θ)/σ). For an integer, g< n denotes δ− trimmed
mean, δ � g/n, by the following equation:

~X � (Xg+1 + . . . +Xn−g)/(n − 2g), (1)
where g is the number of observations trimmed from each end.
Tukey and McLaughlin (1963) were the first to propose a robust
analog of Student’s t-test by studentizing given by:

~t � ( ~X − θ)/~sTM, (2)
where

~s2TM � [(g + 1)(Xg+1 − ~X)2 + (Xg+2 − ~X)2 +/

+ (g + 1)(Xn−g − ~X)2]/h(h − 1) , (3)

is the Winsorized variance, and h � (n − 2g) represents the
“effective number of observations” obtained by trimming g
observations from each end of the ordered observations. They
proposed to approximate the null distribution of ~t by Student’s t
distribution with (h − 1) degrees of freedom (df).

3.2 Asymptotic Results
Huber (1970) justified the studentization in light of the
asymptotic normal distribution of the trimmed means.
Specifically, he showed that when the underlying distribution
F is symmetric, continuous with mean θ, and variance σ2 and
strictly increasing at points ±ξ, then asymptotically n → ∞:


n
√ ( ~X − θ)→ N(0, σ2(δ)), (4)
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where δ � F(−ξδ) is the limit of the fraction g/n, and

σ2(δ) � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ ∫ξδ
−ξδ

x2dF + 2δξ2δ
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦/(1 − 2δ)2 � b2(δ)σ2, (5)

It may be noted that σ2(δ) is nothing but a function in δ
multiplied by σ2 that can be explicitly evaluated for a given F.
Huber also showed that as n → ∞, then:






n − 1
√ (~s2 − b2(δ)σ2)→ N(0, R2(δ)σ4), (6)

where ~s2 � [(g + 1)(Xg+1 − ~X)2 + (Xg+2 − ~X)2 +/+
(g + 1)(Xn−g − ~X)2]/n(1 − 2δ)2, and R2(δ) can be written as
follows:

R2(δ)(1 − 2δ)4σ4 � ∫ξδ
−ξδ

x4dF + 2δ(ξ2δ + 2δξδ
f(ξδ))

2

− ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ ∫ξδ
−ξδ

x2dF+2δ(ξ2δ + 2δξδ
f(ξδ))⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

2

.

Now, if we fix the distribution F � Φ, where Φ represents the
normal cumulative distribution function (cdf), then Eqs. 4, 6 can
be written as follows:


n
√ ( ~X − θ)→ N(0, b2Φ(δ)σ2), (7)






n − 1
√ (~s2 − b2Φ(δ)σ2)→ N(0, R2

Φ(δ)σ4), (8)
where b2Φ(δ) and R2

Φ(δ) are functions of δ alone and relatively
complex expressions, but they can be very accurately
approximated by cubic polynomials. We computed these
expressions over a fine grid of δ from 0 to 0.25, with a step
size of 0.01, and used regression methods to find the best
polynomial fits. We approximated the functions b2Φ(δ) and
wp

Φ(δ) � b4Φ(δ)/R2
Φ(δ), since R2

Φ(δ) appears only indirectly in
calculation through wp

Φ(δ). Hence, we have:

b2Φ(δ) ≈ 1 + 0.48δ + 1.21δ2, (9)
wΦ(δ) � (n − 1)wp

Φ(δ)
� (n − 1)b4Φ(δ)/R2

Φ(δ) ≈ (n − 1)(0.5 − 1.62δ + 1.91δ2

− 1.85δ3).
(10)

Using the aforementioned asymptotic theory, Mudholkar et al.
(1991) refined the approximation for one-sample trimmed t-test
and proposed a two-sample pooled trimmed t statistic as a robust
analog of the two-sample pooled t-test. Now, we provide a brief
account of the Behrens–Fisher statistic.

4 TWO-SAMPLE BEHRENS–FISHER
TRIMMED t STATISTIC

In the univariate setting for the two-sample problem, let
X11 <X12 < . . . <X1n1 and X21 <X22 < . . . <X2n2 be the order

statistics from two random samples from a location/scale
population with a symmetric distribution function
Fi((x − θi)/σ i) for i � 1, 2, respectively. Under the assumption
of normality, F � Φ, the well-known Behrens–Fisher statistic is:

tBF � [( �X1 − �X2) − (θ1 − θ2)]/ 











s21/n1 + s22/n2√

, (11)
where s21 and s

2
2 are the sample variances and estimates σ21 and σ

2
2,

respectively. Now, let R � σ21/σ
2
2, C � (σ21/n1)/(σ21/n1 + σ22/n2),

and fi � (ni − 1) for i � 1, 2, then it is well known that the
rejection region is a function of R and C, and many test
procedures to conduct the test have been proposed, for
example, see Welch (1937, 1947, 1949), Satterthwaite (1946),
Lee and Gurland (1975), Cochran and Cox (1950), Wald (1955),
and Pagurova (1968). However, the most commonly
implemented test procedure is due to Satterthwaite, which
approximates the distribution of the Behrens–Fisher statistic in
(11) with a t-distribution with f̂ degrees of freedom (df),
given by:

1

f̂
� Ĉ

2

f1
+ (1 − Ĉ)2

f2
, (12)

where Ĉ is obtained by substituting s2i , the sample variance in
place of σ2i , where i � 1, 2. Now, utilizing the background
information presented in Sections 3, 4, we present the
derivation of the robust Behrens–Fisher statistic.

5 TRIMMED t STATISTIC AND ITS NULL
DISTRIBUTION

5.1 Trimmed t Statistic
For the two-sample problem discussed in Section 4, Yuen (1974)
substituted trimmed means and Winsorized variances in place of
means and variances in (11) and proposed a robust analog of the
Behrens–Fisher statistic as:

~tY,BF � ( ~X1 − ~X2) − (θ1 − θ2)











~s21/h1 + ~s22/h2√ ,

where ~Xi for i � 1, 2 are the δi−trimmed means for the two
samples obtained using (1), and their corresponding Winsorized
variances (~s2i ) are obtained using (3) suggested to approximate it
with a t-distribution with the df obtained in a manner analogous
to (12) with fi replaced by (hi − 1), for i � 1, 2.However, in their
simulation studies, they assumed equal amount of trimming for
both samples, and the simulation studies were limited to smaller
sample sizes; the performance of the null distribution was
evaluated at nominal levels of α � 0.01, 0.05, and 0.10.
However, as noted before, it is important, particularly in the
context of analyzing genomic expression data, that a good robust
test should be able to maintain good type I error control even at
more stringent levels of α, such as α � 10−4 or 10−5. It is also
critical in the context of developing robust procedures that the
test performs optimally when the underlying assumptions are not
violated. That is, the test should have well-controlled type I error
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when the normality assumption holds true. The performance of
the proposed statistic to Yuen’s statistic was evaluated
(Supplementary Table S1) and will be discussed later, but it
was seen that when the underlying distribution is normal, Yuen’s
test statistic cannot control type I error for stringent levels of
α � 10−3and 10−4. Also, its performance was quite poor for
skewed distributions. Thus, it is important to obtain a test that
is valid at stringent levels of α and valid for a wide variety of
underlying distributions including skewed distributions. We
carried out that by modifying the test statistic and obtaining a
better null distribution approximation for the proposed test
statistic.

Now, assuming the underlying distribution to be normal, that
is, F � Φ, the analogs of Eq. 7 and 8, after suppressing Φ, can be
written as:



ni
√ ( ~Xi − θi) → N(0, b2(δi)σ2

i ), i � 1, 2, (13)





ni − 1

√ (~s2i − b2(δi)σ2
i ) → N(0, R2(δi)σ4i ), i � 1, 2. (14)

Then, using wi obtained from Eq. 10 and the asymptotic
normality result from Eq. 14, one can approximate the
distribution of

2wi~s
2
i /b2i (δi)σ2 ~ χ22wi

, (15)
which reduces to (ni − 1)s2i /σ2i ~ χ2ni−1 when there is no trimming,
that is, δi � 0. Then, using the results of the asymptotic theory as
stated in Eqs. 13, 14 and in a manner analogous to Yuen (1974)
but replacing (hi − 1) by (2wi + 1), we propose the refined two-
sample robust Behrens–Fisher statistic based on trimmed
means as:

~tBF � ( ~X1 − ~X2) − (θ1 − θ2)












~s
2
1

(2w1+1) +
~s
2
2

(2w2+1)

√ , (16)

where ~Xi, ~s
2
i , and wi, i � 1, 2 are obtained using Eqs. 1, 3, and 10,

respectively. It may be noted that, unlike Yuen, in our
development, equal amount of trimming for the two samples
is not required.
Remark: It may be noted that in the aforementioned derivation,
the underlying distribution is fixed to normal, that is, F � Φ, to
obtain the asymptotic distribution of the proposed test statistic,
but the resulting test procedure is robust to the violations of the
underlying assumptions of normality and homoscedasticity.

5.2 Null Distribution Approximation
In this section, we have combined the large sample theory of
Section 3 and the results of a Monte Carlo study to develop a
scaled Student’s t approximation for the distribution of ~tBF given
in (16). Again, we have assumed that the underlying populations
are normally distributed.

Furthermore, by dividing the numerator and denominator of
(16) by































{b21σ21/(2w1 + 1)} + {b22σ22/(2w2 + 1)}

√
, we get the

numerator to be approximately N(0, 1), and approximating
the denominator within the square root sign by a chi-square
variate divided by its degrees of freedom leads to the following
approximation:

[{~s21/(2w1 + 1)} + {~s22/(2w2 + 1)}][{b21σ2
1/(2w1 + 1)} + {b22σ2

2/(2w2 + 1)}] ≈
Wp

dfWp

, (17)

whereWp is the chi-square variate with degrees of freedom dfWp

such that E(Wp/dfWp ) � 1 and Var(Wp/dfWp ) � 2/]p. Then,
following the logic of Satterthwaite approximation, the
Var(Wp/dfWp ) can be shown to be, after some algebraic
simplification, the following:

Var( Wp

dfWp

) �
{ R2

1σ
4
1b

4
1

(2w1 + 1)2(n1 − 1)b41
+ R2

2σ
4
2b

4
2

(2w2 + 1)2(n2 − 1)b42
}

( b21σ
2
1

(2w1 + 1) +
b22σ

2
2

(2w2 + 1))
2 ,

�
( b21σ

2
1

(2w1 + 1))
2
1
w1

+ ( b22σ
2
2

(2w2 + 1))
2
1
w2

( b21σ
2
1

(2w1 + 1) +
b22σ

2
2

(2w2 + 1))
2 ,

� λ2

w1
+ (1 − λ)2

w2
,

where λ � [b21σ21/(2w1 + 1)]/[b21σ21/(2w1 + 1) + b22σ
2
2/(2w2 + 1)].

Then, equating Var(Wp/dfWp ) to 2/]p and ]p we obtain:

2

]�
p � λ̂

2

w1
+ (1 − λ̂)2

w2
, (18)

where λ̂ � [~s21/(2w1 + 1)]/[~s21/(2w1 + 1) + ~s22/(2w2 + 1)] is an
estimate of λ. Then, for moderate to large samples, the test
statistic in (16) can be approximated by a Student’s t
distribution with ]̂p degrees of freedom obtained in (18). It
may be noted that when there is no trimming, that is, δ1 � δ2 �
0 or g1 � g2 � 0, the statistic reduces to the usual Behrens–Fisher
statistic in (11) and the df to f̂ in (12).

In order to render ~tBF usable in small samples, a finite sample
approximation to its null distribution was obtained by
approximating it by a scaled Student’s t distribution, that is,
by Apt]̂p . This was done using an extensive simulation study in
which two independent samples of sizes n1 and n2 ranging from
10 to 100 in increments of 10 with same means but different
variances in the ratio of 0.1, 0.25, 1, 4, and 10 from normal
populations were generated. Then, for each combination of
sample sizes, variances, and each combination of δ1 and δ2,
ranging from 0–25%, one hundred thousand samples were
generated to obtain the empirical estimate of the variance of
Apt]̂p . The scaling factor was then obtained by equating the
empirical variances of ~tBF with the variance of Apt]̂p , which is
Ap2]̂p/(]̂p − 2). Regression methods were used to model the
scaling factor Ap as a function of δ � (δ1 + δ2)/2 and ]̂p given
in (18). The regression equation was obtained with the boundary
condition that Ap → 1 as either δ → 0 or ]̂p → ∞ . Among
various models considered, the following was found preferable
on the grounds of accuracy and simplicity:

Ap � 1 − 77
δ

]̂p
+ 1216

δ

]̂p2
− 7186

δ

]̂p3
+ 17525

δ

]̂p4
− 14881

δ

]̂p5
.

(19)
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That is, the test statistic (16) can be approximated by:

~tBF ≈ Apt]̂p . (20)
However, based on the simulations, it was seen that with the

finite sample correction in (20) the strict type I error control
could not be achieved; see Table 2 (Column 8).

Then, using simulation studies and the logic that a slightly
conservative test can be obtained by making the degrees of
freedom smaller (the tails would become a little bit heavier),
we obtained the modified degrees of freedom ]m using the
following equation instead of (18):

1

]�m

� λ̂
2

w1
+ (1 − λ̂)2

w2
. (21)

Then, obtain the scalar Am using the approach described before,
as follows:

Am � 1 − 29
δ

]̂m
+ 215

δ2

]̂m
− 835

δ3

]̂m
− 273

δ

]̂p5m
+ 263

δ2

]̂p2m
. (22)

That is, the test statistic in (16) can be approximated by :

~tBF ≈ Amt]�m
. (23)

The performance of the test statistic (16) using the null
distribution approximations given in (20) and (23) were
evaluated using extensive simulation studies described in the
next section.

6 SIMULATIONS

6.1 Simulation Setup
Extensive simulation studies were performed to evaluate the
performance of the proposed test statistics ~tBF in (16), denoted
by TRIM, in terms of the type I error and power, and compared
to the alternatives including the two-sample Behrens–Fisher test
statistic denoted by tBF and ~tY,BF corresponding to Yuen’s test
statistic; the non-parametric analog of Behrens–Fisher statistic
(modified Mann–Whitney–Wilcoxon test), proposed by Fligner
and Policello (1981) and denoted by mMWW; the non-
parametric asymptotic statistics by Neubert and Brunner
(2007) denoted by TA

NB and its permutation version denoted
by TP

NB; the traditional two-sample t-test denoted by t; and the
two-sample rank-sum test denoted by W. Various trimming
proportions, such as 0.05, 0.10, 0.15, and 0.20, were
considered, and the trimmed t-tests (~tBF) corresponding to
different trimming proportions were denoted by
TRIM0.05, TRIM0.10, TRIM0.15, and TRIM0.20, respectively,
for the approximation given in (20) and by
mTRIM0.05, mTRIM0.10, mTRIM0.15, and mTRIM0.20,
respectively, for the approximation given in (23). Similarly,
~tY,BF for different trimming proportions were denoted by
~tY,BF(0.05),~tY,BF(0.10),~tY,BF(0.15), and ~tY,BF(0.20), respectively.

It may be noted that the mWMW or its generalizations
proposed by Neubert and Brunner (2007) test the general
hypothesis of P(X<Y) � 0.5. However, the results from these

tests can be interpreted as test of medians when the two
underlying distributions are identical, except for the shift in
location. Furthermore, it is not difficult to see, as noted by
Neubert and Brunner’s (2007), that testing of the
aforementioned hypothesis would be consistent with testing
equality of two means when the underlying distributions are
symmetric with possibly different variances.

Simulations were conducted where a single hypothesis was
simulated and examined at increasingly stringent significance
levels of α to mimic the situation of testing multiple hypotheses
but assuming the underlying distribution to be same for the two
groups. Five families of distributions were considered: normal,
contaminated normal, combined normal and uniform
(contaminated with normal/uniform distribution), cauchy (all
symmetric continuous distributions), and transformed beta
(skewed continuous distribution). Although, the theory and
derivation of the test statistic in (16) assumes the underlying
distributions to be symmetric, it may be argued that, after
appropriate trimming, the “middle” of the skewed distribution
may also resemble the “middle” of the normal distribution, and it
may be reasonable to apply and evaluate the performance of the
trimmed test statistic for skewed distributions as well. In addition,
in situations where hundreds and thousands of gene expressions
are compared, it is likely that some underlying distributions may
be skewed in real-life setting. So we included beta distribution in
our simulation studies to mimic such a situation.

An independent simulation study was undertaken to compare
the type I error control of ~tY,BF and mTRIM at levels of α �
0.05, 0.01, 0.001, and 0.0001 by simulating two samples from
normal, contaminated normal, combined normal and uniform,
cauchy, and beta distributions of various sample sizes, n1 and n2,
varying from 20, 50, and 100, and the estimate of type I error
estimates were obtained based on 106 replicates. A selection of the
results in presented in Supplementary Table S1).

From Supplementary Table S1, it is clear that Yuen’s
approach, based on the Welch-type approximation, cannot
control type I error for normal distribution at stringent levels
of α. For example, when α � 0.0001, for various sample sizes and
for 15% and 20% trimmings from the two samples the range of R
for mTRIM is (0.01, 0.04), whereas for ~tY,BF, it is (1.10, 2.20),
resulting in twice as many false positives than expected. This
finding is consistent with Lee’s (1995) observation that Welch’s
approximation results in significantly higher percentage errors
than that of Welch–Aspin (Welch (1947); and Aspin (1948)) or
Lee–Gurland (Lee and Gurland (1975)) approximations for
comparing means of two normal populations with unequal
variances.

For beta distribution (skewed), neither mTRIM nor ~tY,BF can
control the type I error, but it is also very clear that mTRIM
performs significantly better compared to ~tY,BF. For example, for
the choice of scale and shift parameters as specified in the table,
for 15% and 20% trimmings from the two samples, the range of R
is (0.35, 2.90) and (8.10, 17.0), corresponding to mTRIM and
~tY,BF, respectively.

The results for the contaminated normal and combined
normal and uniform suggest that both methods are
conservative with mTRIM being somewhat more conservative
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than ~tY,BF. This could be because of our fine tuning of the null
distribution to obtain a better control of the null distribution
when the underlying populations are normal. These simulations
suggest that ~tY,BF may be a reasonable alternative to the
Behrens–Fisher statistic in the presence of heterogeneity when
the tests are conducted at typical levels of α such as 0.05 or 0.01.
However, more refined approximation, such as the one proposed
in this study, for the null distribution would be needed when the
focus is on conducting the tests at more stringent levels of α such
as 10−4 or 10−5. Since the performance of ~tY,BF was not
satisfactory in controlling type I error at stringent levels of α,
it was not included in further simulation comparisons.

In another independent simulation study, from each of the
distributions mentioned before, random samples of sizes n1
(cases) and n2 (controls) we simulated, n1 and n2 varied from
20 to 100 and type I error estimates were estimated based on 105

replicates. The significance levels considered for our evaluations
were α = 0.05, 0.01, 0.005, and 0.001. To estimate the power, 105

replicates were simulated for each case-control data. The
empirical type I error rates and power estimates were
calculated as the proportion of replicates with p-values less
than α. Extensive simulation studies corresponding to various
combinations of parameters listed in Table 1 were conducted.

To further evaluate the performance of the tests three possible
scenarios arise for various combinations of σ1 and σ2 for normal,
contaminated normal and contaminated with normal/uniform
distributions as described later.

6.1.1 Normal
Scenario I: σ1 = σ2 represents the case of two normal distributions
with equal variances.

Scenario II: σ1 < σ2 represents the case where variance of the
second population is larger, and in evaluating power, it
corresponds to the situation that the variance is larger for the
second population with larger mean, that is, μ2 > μ1 � 0

Scenario III: σ1 > σ2 represents the case where variance of the
first population is larger, and in evaluating power, it corresponds
to the situation that the variance is smaller for the second
population with larger mean (μ2 > μ1 = 0).

6.1.2 Contaminated Normal
Scenario I: σ1 = σ2 represents the case of two normal distributions
with unequal variances (no contamination).

Scenario II: σ1 < σ2 represents the situation that the variance
of the contaminated part of the distribution is larger, that is,
contamination with the normal distribution with “outliers”.

Scenario III: σ1 > σ2 represents the situation that the variance
of the contamination part of the distribution is smaller, that is,
contamination with the normal distribution with “inliers”.

6.1.3 Combined Normal and Uniform
Scenario I: σ1 = σ2 represents the case of two contaminated
normal distributions, contaminated with normal/uniform (N/U)
distribution, with equal variances.

Scenario II: σ1 < σ2 represents that the variance of
contamination part of the distribution with N/U is larger, that
is, contamination is done with “outliers” coming from N/U
distribution.

Scenario III: σ1 > σ2 represents that the variance of
contamination part of the distribution with N/U is smaller,
that is, contamination is done with “inliers” coming from N/U
distribution.

For cauchy and transformed beta, the distributions were
simulated for the parameters given in Table 1.

6.2 Simulation Results
For ease of readability, we have reported the ratio of empirical
estimate of type I error/expected level of significance, that is,
R � α̂/α, for all tables and figures reporting type I error results so
that for a well-controlled test the ratio should be close to 1.

TABLE 1 | Parameter setups for simulation studies.

Distribution Formula Parameters for type I
error

Parameters for power

Normal X1 ~ N (μ1, σ1) μ1 = μ2 = 0 μ1 = 0, μ2 = 0.25, 0.5, 1
X2 ~ N (μ2, σ2) σ1 = 1, 0.1, 0.25, 4, 10 σ1 = 1, 0.1, 0.25, 4, 10

σ2 = 1 σ2 = 1

Contaminated normal X1 ~ 0.8 × N (μ1, σ1) + 0.2 × N (μ1, σ2) μ1 = μ2 = 0 μ1 = 0, μ2 = 0.25, 0.5, 1
X2 ~ 0.8 × N (μ2, σ1/τ) + 0.2 × N (μ2,σ2/τ) σ1 = 1, 0.1, 0.25, 4, 10 σ1 = 1, 0.1, 0.25, 4, 10

σ2 = 1 σ2 = 1
τ = 0.1, 0.25, 1, 4, 10 τ = 0.1, 0.25, 1, 4, 10

Cauchy X1 ~ Cauchy (μ1, γ1) μ1 = μ2 = 0 μ1 = 0, μ2 = from 0.2
X2 ~ 4 × Cauchy (μ2, γ1) γ1 = 1 to 1 with increment by 0.1

Combined normal and uniform X1 ~ 0.8 × N (μ1, σ1) + 0.2 × N (μ2, σ2/τ)/unif (0,1) μ1 = μ2 = 0 μ1 = 0, μ2 = from 0.5 to 1 with increment by 0.1
X2 ~ 0.8 × N (μ2, σ1/τ) + 0.2 × N (μ2, σ2/τ)/unif (0,1) σ1 = 1, 0.1, 0.25, 4, 10 σ1 = 1, 0.1, 0.25, 4, 10

σ2 = 1 σ2 = 1
τ = 0.1, 0.25, 1, 4, 10 τ = 0.1, 0.25, 1, 4, 10

Transformed betaa X1 ~ Beta(2, 5) × scale1 + shift1 μ1 = 1, μ2 = 1 μ1 = 1, μ2 = 0.5, 1.5, 2, 2.5, and 3
X2 ~ Beta(2, 5) × scale2 + shift2

aScale1 and scale2 ϵ {62.61, 25.04, 6.26, 1.57, 0.63} and their corresponding shift1 and shift2 ϵ {−16.89, −6.16, −0.79, 0.55, 0.82}, that is, if scale1 = 62.61, then its corresponding shift1 =
−16.89 so that μ1 = 1, and μ2 = 1
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Based on our extensive simulation studies, it is clear that for all
the distributions under study, the empirical type I error rates were
better controlled for both trimmed tests, TRIM and mTRIM,
corresponding to 15% trimming proportions
(TRIM0.15, mTRIM0.15) compared to other trimming
proportions (data not shown). In addition, from Table 2 (α =
0.001) and for α = 0.05 (data not shown), it is clearly seen that the
type I error control for normal distribution forTRIM0.15, mMWW,
t, andW are not maintained, and they get progressively worse with
increasing stringent levels of α. Therefore, for all figures evaluating
type I error and power properties, for the five distributions, we only
included mTRIM0.15 and its competitors tBF, TA

NB, and TP
NB.

Remark: In practice, the choice of trimming proportions would be
critical. Our recommendation, supported by our simulation
studies, is to use 15% trimming proportions because trimming
less than that provides results that would be similar to the normal
setting (type I error control often not maintained) and trimming
more than that results in more conservative tests and loss of
power. In general, higher proportion of trimming would be
recommended for settings where the underlying distribution
may be very heavy tailed. However, this would not be known
a priori and would be a daunting task to check at each loci,
particularly, in the context of high-throughput data, but a 15%
trimming provides a balance between not trimming enough to
trimming too much and generally provides reasonably good
results for all underlying distributions (including asymmetric
distribution) studied in our simulation studies.

It may also be noted that we compared the null distributions at
two levels of α � 0.05 and α � 0.001. We wanted to compare the

performance of the test procedures at more stringent levels of α in
the range of 10−4and 10−5, but this was not feasible for the
permutation test as that would have required us to generate
millions of samples to get reasonable estimate of type I error.
However, we did estimate type I error control at stringent levels of
α for mTRIM0.15and found that the type I error control was
strictly maintained for all the symmetric distributions and was
somewhat conservative (data not shown).

Extensive simulations studies corresponding to all
combination of parameters mentioned in Table 1 were
conducted, and the results were very similar, so a summary
of the simulation results for each distribution, corresponding
to a specific parameter combination, is discussed below. It is
worth noting that the performance of the test procedures is
relatively good for α � 0.05, but it gets progressively worse as
the type I error becomes more stringent. Thus, we discussed
the results corresponding to α � 0.001 only. The results
corresponding to α = 0.05 for the same parameter
combinations are available from the authors on request.
Also, the results corresponding to contaminated normal and
combined normal and uniform were similar, so we chose to
report the results corresponding to the combined normal and
uniform distribution.

6.2.1 Normal Distribution
Null Distribution: As seen from Figure 1A, it is clear that, in
general, the type I error control at α � 0.001 is well maintained
with mTRIM0.15 and TP

NBbeing on the conservative side and
TA
NBbeing somewhat anti-conservative.

TABLE 2 | omparison of the ratios for the eight methods under normal distribution σ2 � 1 and α � 0.001.

n1 n2 σ1 t W mMWW tBF TRIM0.15 mTRIM0.15 TA
NB TP

NB

Scenario I

20 20 1 0.90 1.10 3.50 0.90 0.80 0.20 1.70 1.10
50 50 1 1.00 0.80 1.50 1.00 1.00 0.30 0.70 0.70

Scenario II

20 20 0.1 1.80 5.20 4.70 1.30 0.10 0.20 1.60 0.00
20 50 0.1 0.00 0.00 2.20 1.10 0.80 0.20 0.60 0.20
50 50 0.1 1.50 4.00 2.00 1.20 1.30 0.40 0.70 0.50
50 100 0.1 0.00 0.50 1.70 1.10 1.00 0.20 0.40 0.50

20 20 0.25 0.90 3.00 3.70 0.90 0.50 0.30 1.60 0.40
20 50 0.25 1.10 0.10 1.30 1.10 0.90 0.20 0.50 0.20
50 50 0.25 1.10 2.50 2.40 1.10 1.50 0.50 0.90 0.60
50 100 0.25 1.50 0.30 1.50 1.50 0.60 0.10 0.70 0.50

Scenario III

20 20 4 1.40 2.90 3.20 1.40 0.50 0.30 1.40 0.50
20 50 4 1.40 10.40 3.20 1.40 0.30 0.30 1.30 0.30
50 50 4 1.30 2.70 1.90 1.30 1.50 0.10 0.60 0.50
50 100 4 1.00 8.80 1.80 1.00 1.20 0.20 0.60 0.30

20 20 10 1.20 5.90 4.10 1.20 0.30 0.30 1.60 0.20
20 50 10 1.20 14.30 5.00 1.20 0.30 0.30 1.50 0.00
50 50 10 1.20 4.20 1.60 1.20 1.30 0.10 0.30 0.30
50 100 10 1.10 14.90 1.70 1.10 1.30 0.30 0.40 0.30
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Power Properties: For Scenario I, with σ1 � σ2 � 1 and
α � 0.001(data not shown), it is seen that power for tBF and
TA
NB are quite comparable with having slight advantage, as

would be expected. TP
NB does slightly worse followed by

mTRIM0.15,particularly when the sample size for one of the
groups is smaller. For Scenario II, Figure 1B, taking σ1 � 0.1

FIGURE 1 | (A) Plot of ratio R � α̂/α for normal distributions (α = 0.001).
(B). Empirical power for normal distributions (Scenario II). (C). Empirical power
for normal distributions (Scenario III).

FIGURE 2 | (A) Plot of ratio R � α̂/α for the combined normal and
uniform distribution for τ = 4 and α = 0.001. (B) Empirical power for the
combined normal and uniform distribution (Scenario II). (C) Empirical power for
the combined normal and uniform distribution (Scenario III).
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and σ2 � 1 and α � 0.001, once again the performance of tBF and
TA
NB are quite comparable with tBFdoing slightly better. The

performance of TP
NBand mTRIM0.15 are comparable with

mTRIM0.15 doing slightly better than TP
NB. For Scenario III,

Figure 1C, taking σ1 � 4 and σ2 � 1 and α � 0.001, the power
for all tests is very low but tBF clearly dominates all other tests,
and the performance of mTRIM0.15 is the worst, but not
by much.

6.2.2 Combined Normal and Uniform
Null Distribution: From Figure 2A, it is clear that
mTRIM0.15 has the best type I error control as the
percentage of times R > 1.5 among all cases for the tests.
mTRIM0.15, tBF, TA

NB and TP
NB are 0.89, 3.91, 20.89 and 6.40,

respectively, when the true nominal level is α � 0.001.Power
Properties: For Scenario I, assuming σ1 � σ2 � 1, τ � 4 and
α � 0.001, (data not shown), the performance of mTRIM0.15

was comparable to TP
NB with slight advantage for TP

NB. The

power estimates are higher for TA
NB, but it fails to control type

I error. The performance of tBF is the worst. For Scenario II,
Figure 2B, σ1 � 0.1, σ2 � 1, τ � 4 and α � 0.001, it is seen that,
in general, mTRIM0.15 has more power than tBF andTP

NB and
is comparable to TA

NB but TA
NB does not control type I error

well. For Scenario III, Figure 2C, σ1 � 4, σ2 � 1, τ � 4, and
α � 0.001, the inliers problem, the trimmed test does worse
than TA

NB and but the power, in general, is low. One should
also keep in mind that the problem of “inliers” is less common
in practice, and the trimmed test is designed to provide
protection against “outliers” ; in the presence of outliers,
the trimmed test performs well.

6.2.3 Cauchy Distribution
For cauchy distribution, from Figure 3A, it is very clear that
mTRIM0.15, TP

NB and tBF are conservative but TA
NB could be

anti-conservative particularly for small sample sizes. From
Figure 3B for power estimates, it is clear that the

FIGURE 3 | (A) Plot of ratio R � α̂/α for the cauchy distributions α = 0.001. (B) Empirical power for cauchy distributions α = 0.001.
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performance of tBF is the worst, and the performances of
mTRIM0.15 and TP

NB are comparable with having a slight
advantage. TA

NB performs the best but one must keep in mind
that often the type I error is not controlled, especially for smaller
sample sizes.

6.2.4 Skewed Transformed Beta
For skewed transformed beta distribution, from Figure 4A, it is
very clear that none of the four tests can control type I error well.
The percentage of times the type I errors exceeds 1.5 threshold for
mTRIM0.15, tBF, TA

NB and TP
NB are 34.44, 50.00, 100.00, and

47.78, respectively. It may be noted that the percentage of times
the type I errors exceeds the threshold of 2 for
mTRIM0.15, tBF, TA

NB and TP
NB are 14.44, 31.11, 93.33, and

33.33, respectively However, from Figure 4B, it is very clear
that the performance ofmTRIM0.15 and tBF are very comparable
with tBF performing slightly better than mTRIM0.15, which is
consistent with the observation noted in Fagerland and Sandvik
(2009). It may be noted that bothTA

NB andT
P
NB have higher power

estimates, but the type I error is poorly controlled.

7 APPLICATION TO DNA METHYLATION
DATA

We downloaded the data from the NCBI Gene Expression
Omnibus website and applied all the approaches discussed
before to the example to evaluate their relative performances.

Figure 5 shows the histogram of p-values with the density
estimates and the estimated FDR as a function of p-value cutoffs.
The estimated non-null proportion are 0, 0.09, 0.28, 0.00005, and
0 corresponding to mTRIM0.15, tBF, mMWW, TA

NB andTP
NB,

respectively. From Figure 5, it is clear that the estimated FDRs for
mMWW and tBF are not monotone functions of the p-value
cutoff. Thus, conclusions drawn from such analysis would be
misleading. The estimated FDRs of TA

NB and TP
NB are 1 for all

p-value cutoffs, but TA
NB and TP

NB output 24 and 17 p-values of
exactly 0. For the DNAmethylation data, if we set the significance
level at α = 0.0001, then the number of SNPs identified to be
significantly associated with the phenotype were 6, 7, 1, 24, and 17
corresponding to mWMW, tBF, mTRIM0.15, TA

NB and TP
NB,

respectively. A histogram of the five most significant

FIGURE 4 | (A) Plot of ratio R � α̂/α for transformed beta distribution α = 0.001. (B) Empirical power for transformed beta distributions for N � n1 + n2 � 100 + 50.
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biomarkers for the two groups obtained based on mTRIM0.15 is
presented in Figure 6 to visually examine if the distributions of
these markers can be perceived to be significantly different. For
the marker cg15121304, it is clear that both distributions are
skewed and probably no outliers, then based on our simulations
results, we would expectmTRIM0.15 and tBF to perform similarly

as seen with p-values of 3 × 10−5 and 1.49 × 10−5, respectively.
Furthermore, we expect TA

NB and TP
NB to produce highly

significant p-values as they are not able to control type I error,
which is confirmed with p-values of 0 for both tests. The
distributions for the 4th and 5th marker (cg00491404 and
cg16098170) are highly skewed and possibly have outliers, and

FIGURE 5 | Results of the gene methylation array data corresponding to the five methods.

FIGURE 6 | Histograms of logistic transformedmethylation data for the five most significant markers based on the mTRIM0.15 method and corresponding p-values
for all the five methods.
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in such situations, as seen from simulations, the p-values based on
TA
NB and T

P
NB tests are essentially 0 as we expected as they cannot

control type I error rate (false positives), whereas those based on
mTRIM0.15 and tBF are not significant at level 10−4 suggesting
that the results based on these two methods are similar and
probably more conservative and believable. Of course, realizing
that, in general, the tBF test would have significantly lower power
than mTRIM0.15, when the underlying assumptions are violated.

8 DISCUSSION

The proposed trimmed analog of the Behrens–Fisher statistic is
robust in the sense that it can strictly maintain the type I error rate
compared to the alternatives currently available in the literature
and at the same time can provide significant gain in power when
the underlying distributions may be in the neighborhood of
normal with possibly unequal variances. However, it is
possible that for some other underlying distributions and for
some parameter combinations, other test procedures may
outperform mTRIM0.15. However, based on the simulation
studies, which include a broad range of symmetric heavy-
tailed and skewed distributions, the example mTRIM0.15

clearly outperforms its competitors in controlling the type I
error rate, even at very stringent levels of α, and has shown
comparable power properties for a broad range of distributions.
Thus, it provides for a viable alternative for comparing two
distributions even when the assumption of normality or
homoscedasticity may not hold. In the context of multiple
hypotheses, it may not be feasible to test the assumption of
normality and homoscedasticity simultaneously for all the
hypotheses and then appropriately incorporate the findings in
testing the hypothesis of interest using the most appropriate test.
Thus, a procedure that can be implemented in broad settings that
has reasonable robustness properties is needed and, we feel that
the proposed trimmed statistic mTRIM0.15 meets that need.
Although, our simulation studies have focused on testing
single hypothesis at stringent levels of α, but since our test is
on the conservative side (without much loss in power), it is not
hard to visualize that by using the proposed test statistic one
should be able to minimize false discoveries in the context of
multiple hypotheses setting. It may be noted that the
implementation of the trimmed test is straightforward and
quick since we can use the well-known t-distribution with
modified degrees of freedom. The computing time for
mTRIM0.15, tBF, TA

NB,and TP
NB (based on 10,000

permutations) were 0.001995087, 0.00199604, 0.009974957,
and 9.892611 s, respectively, for one marker with 98 controls
and 97 cases.

In a genome wide association study of a continuous outcome,
often, we are interested in testing if the continuous outcomes
corresponding to three genotypes are same or not. Furthermore,
in a gene expression analysis of k samples, based on multiple dose
levels, we could be interested in knowing if the gene expressions

among k-sample are different or not. To address these issues, the
commonly used parametric method will be ANOVA analysis if
the data follow normal distribution; otherwise, the alternative of
ANOVA will be the Kruskal and Wallis, 1952. However, similar
to the two-sample comparison discussed in the study, it may be
perceived that the two most popular methods may not be able to
maintain type I error rate at a given significance level and may
lose significant statistical power when the underlying
distributions may not be normal and possibly heteroscedastic.
We are currently in the process of investigating it and extending
our approach to k-sample heteroscedastic case.

Often, the comparison in the two-sample case or k-sample
case needs to be adjusted for covariates of interest that may be
associated with the phenotype of interest. We are currently in the
process of developing approaches that would provide robust
comparisons after adjusting for the covariates.

Although the motivation and presentation of the method lies
in identifying genetic features different between two groups, it is
also readily applicable to any epidemiology studies of comparing
continuous variables between two groups and any clinical trial of
comparing continuous responses for two treatments. We have
implemented the proposed method in R program
(Supplementary Note S1). The method can be easily applied
to compare the continuous variables between two groups from
one to hundreds of thousands of tests.
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