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Single-cell RNA sequencing (scRNA-seq) data often contain doublets, where a
doublet manifests as 1 cell barcode that corresponds to combined gene
expression of two or more cells. Existence of doublets can lead to spurious
biological interpretations. Here, we present single-cell MOdel-driven Doublet
Detection (scMODD), a model-driven algorithm to detect doublets in scRNA-seq
data. ScMODD achieved similar performance compared to existing doublet
detection algorithms which are primarily data-driven, showing the promise of
model-driven approach for doublet detection. When implementing scMODD in
simulated and real scRNA-seq data, we tested both the negative binomial (NB)
model and the zero-inflated negative binomial (ZINB) model to serve as the
underlying statistical model for scRNA-seq count data, and observed that
incorporating zero inflation did not improve detection performance, suggesting
that consideration of zero inflation is not necessary in the context of doublet
detection in scRNA-seq.
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1 Introduction

Advances in single-cell RNA sequencing technologies have enabled gene expression
quantification at the resolution of individual cells. However, during the library preparation
process of encapsulating cells in droplets or separating cells into wells, two or more cells may
be captured in the same droplet or well, resulting in doublets or even multiplets. In the subsequent
sequencing and data processing, a doublet will produce a gene expression profile that corresponds
the combination of gene expression profiles of the cells forming the doublet, and may lead to
spurious biological interpretations. Doublets can be generally divided into two types, heterotypic and
homotypic. A heterotypic doublet is formed by 2 cells of distinct cell types, and a homotypic doublet
is formed by 2 cells of the same cell type. Existence of doublets, especially heterotypic doublets, will
impair the quality control (QC) process of scRNA-seq data (Luecken and Theis, 2019), and confuse
downstream clustering analysis and interpretations of the data. Several experimental protocols have
been developed to identify and remove doublets using multiplexing techniques, such as Demuxlet
(Kang et al., 2018) and Cell Hashing (Stoeckius et al., 2018). However, these experimental protocols
have critical limitations. For example, Demuxlet uses SNPs to detect doublets formed by cells from
differential samples with distinct genotypes, but is unable to detect doublets formed by cells from the
same sample.Motivated by the question of doublet detection, many computational methods have
been developed, such as cxds (Bais and Kostka, 2020), scDblFinder (Germain et al., 2022), solo
(Bernstein et al., 2020), scrublet (Wolock et al., 2019), DoubletFinder (McGinnis et al., 2019a),
DoubletCells (Lun et al., 2016), DoubletDetection (Gayoso and Shor, 2018). Majority of these
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existing methods are data-driven approaches, training machine learning
classifiers or neural networks to detect doublets. Although these data-
driven approaches have shown high sensitivity and accuracy in doublet
detection, we decided to develop a model-driven algorithm for doublet
detection, which is an alternative strategy that may lead to complimentary
statistical insights for modeling scRNA-seq count data.Given the high
sparsity of scRNA-seq count data, there has been numerous discussions
on appropriate statistical models to characterize the distribution of
scRNA-seq data, and the two most widely used models are the
Negative Binomial (NB) model and the Zero-Inflated Negative
Binomial model (ZINB). Due to ZINB model’s capability in describing
excessively high sparsity in scRNA-seq data, many computational
methods have incorporated the ZINB model for dimension reduction
(Pierson and Yau, 2015; Risso et al., 2018), de-noising (Eraslan et al.,
2019), data integration (Lopez et al., 2018), etc. In the meantime, multiple
published studies have shown that the NBmodel is sufficiently capable of
modeling the sparsity of scRNA-seq data, and the zero inflation
consideration may not be necessary (Kim et al., 2020; Qiu, 2020;
Svensson, 2020; Jiang et al., 2022).In this study, we developed single-
cell MOdel-driven Doublet Detection (scMODD), a model-driven
algorithm for doublet detection in scRNA-seq data, and examined its
performance in comparison with existing data-driven algorithms for
doublet detection. When implementing scMODD, we tested both the
NBmodel and the ZINBmodel to serve as the underlying statisticalmodel
for scRNA-seq count data, which enabled an evaluation of these two
statistical models in the context of the doublet detection problem.

2 Materials and methods

2.1 scMODD overview

The schematic overview of scMODD is shown in Figure 1. Given a
scRNA-seq gene-cell count matrix as input data of scMODD, standard
data pre-processing and cell clustering are performed, including library
size normalization, log-transformation, selection of highly-variable genes,

principle component analysis (PCA) for dimension reduction, and
community finding to identify cell clusters. Under the assumption that
none of the cell clusters are dominated by doublets, scMODD constructs
one singlet model to statistically describe the raw count data for each cell
cluster. After that, for each pair of cell clusters, artificial doublets are
simulated by sampling cells from the two clusters, which produces data to
construct one doublet model to statistically describe the count data for
doublets formed by the 2 cell clusters. If the clustering analysis produces
K cell clusters, scMODD constructs a total of K singlet models and
K(K−1)/2 doublet models. All cells in the input data and simulated
doublets are evaluated against all K + K(K−1)/2 models, which produces
probability values to train a classifier that aims to distinguish singlets and
doublets. Finally, the classifier is applied to all “cells” in the input data to
detect doublets.

2.2 Data preprocessing and clustering

The input data is preprocessed with the Scanpy package in Python.
Starting from the raw gene-cell count matrix, library size
normalization is performed to scale the total counts of each cell to
be 10,000, followed by log-transformation. The top 2000 highly-
variable genes (HVG) are selected, based on which principle
component analysis (PCA) is performed to reduce the
dimensionality down to 50. Based on the dimension reduced data
in the PCA space, the community finding algorithm Leiden (Traag
et al., 2019) (with resolution value .8) is performed to cluster the cells.

2.3 Simulating doublets

For each pair of cell clusters, 500 artificial doublets are simulated. One
artificial doublet is simulated by combining the raw count data for 2 cells,
each randomly sampled from the two clusters respectively. These
500 artificial doublets collectively form a doublet cluster of a particular
heterotypic type. If the clustering analysis produces K cell clusters, the

FIGURE 1
Schematic Overview of scMODD.
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total number of simulated doublets is 500*K(K−1)/2, which can be
considered as K(K−1)/2 doublet clusters of various heterotypic doublet
types.

2.4 Singlet and doublet models based on
negative binomial

For each singlet cluster or doublet cluster, scMODD constructs a
statistical model to describe the raw count data of the cluster. The
statistical model can be formulated based on the Negative Binomial
(NB) model, which has been frequently used to model the distribution
of single-cell count data. For each gene i, the NB model is defined as
below:

fNBi xi; μi, θ( ) � Γ xi + θ( )
Γ xi + 1( )Γ θ( )

θ

θ + μi
( )

θ
μi

θ + μi
( )

xi

(1)

where xi is a random variable that describes gene i’s count data across
cells in this cluster, Γ represents the Gamma function, μi is the gene-
specific mean value of the counts, and θ is a shared dispersion
parameter among all genes. To obtain the model parameters, μi is
estimated by the mean counts of gene i across cells in the cluster, and θ
is obtained by curve-fitting using the following relationship:
μ2i ~ θ(σ2i − μi), where σ2i is the gene-specific variation of the
expression. Here, the index of genes i runs from 1 to 2000,
corresponding to the 2000 highly-variable genes. Therefore, for
each cell cluster or doublet cluster, scMODD estimates 2000 NB
models, one for each highly-variable gene, and use the joint
probability of these 2000 NB models to describe the cluster.

2.5 Singlet and doublet models based on
zero-inflated negative binomial

The statistical models that scMODD constructs can also be
formulated using Zero-Inflated Negative Binomial (ZINB). The
ZINB model is an extension of the NB model to account for the
excessive sparsity that NB model may not be able to explain. Given the
high sparsity of scRNA-seq count data, the ZINB model has been
widely adopted in scRNA-seq analysis (Risso et al., 2018)(Tian et al.,
2019)(Tian et al., 2021). For each gene i, the ZINB model is defined as
below:

fZINBi xi; μi, θ, πi( ) � πiδ xi( ) + 1 − πi( )fNBi xi; μi, θ( ) (2)
where xi, μi and θ carry the same definition as in the NB model, πi
represents the sparsity of count data for gene i and is estimated by
computing the proportion of zeros of gene i, and δ(·) represents the Dirac
function. Similar to above, the ZINB model parameters are estimated for
each of the top 2000 highly-variable genes. For each cell cluster or doublet
cluster, scMODD uses the joint probability of the ZINBmodels of the top
2000 highly-variable genes to describe the cluster.

2.6 Likelihood of an individual cell against
singlet and doublet models

Given the probability functions and parameters of the singlet and
doublet models constructed based on either NB or ZINB, we can

compute the log-likelihood of one individual cell against each of the
models. Using the notation based on NB as an example, the log-
likelihood of 1 cell j belonging to the model k can be written as:

log Pj,k Xj( ){ } � ∑2000
i�1

log fNBi,k
xi,j; μi,k, θk( )( ) (3)

where i is an index for the 2000 highly variable genes, j is an index
representing individual cells, and k represents either singlet or doublet
models constructed by scMODD. Xj represents the gene expression
counts for cell j, and xi,j represents the count value of gene i in cell j. If
the clustering analysis produces K cell clusters, Eq. (3) enables
calculation of K + K(K−1)/2 likelihood values for an individual cell,
which represent the likelihood of this individual cell belonging to each
of the K singlet models and the K(K−1)/2 heterotypic doublet models.

2.7 Binary classification and doublet detection

To construct a model for detecting doublets, scMODD trains a
binary classifier with features being the probabilities based on the
singlet models and the doublet models in previous subsections. Given
an scRNA-seq data set, scMODD first considers all cell barcodes in the
data as one class and all simulated artificial doublets as another class,
and then use the probabilities from the singlet and doublet models as
features to train a classifier to distinguish the real data and the
simulated doublets. After that, the trained classifier is applied to
evaluate each cell barcode in the scRNA-seq data set, which
produces a score for each cell barcode, estimating its probability of
being a doublet. The classifier used in scMODD is the Multi-layer
perceptron (MLP) classifier, implemented as the MLPClassifier from
“sklearn” package in Python with “relu” as activation function, one
hidden layer, hidden layer size being 100, “max _iter” being 300 and
“learning_rate” equals to 10–3.

3 Results

3.1 Doublet percentage and formation of
doublet-dominated cell clusters

Since scMODD builds singlet models based on cell clusters generated
by scRNA-seq clustering analysis, scMODD implicitly assumes that all
cell clusters are dominated by singlets, whereas the doublets do not form
their own clusters but are embedded into singlet-dominated clusters. This
is an important assumption that needs to be justified. Therefore, we
performed simulation experiments to examine the relationship between
the prevalence of doublets and formation of doublet-dominated cell
clusters in standard clustering analysis. Here, singlet-dominated
clusters and doublet-dominated clusters are distinguished by whether
the proportion of artificial doublets in a cluster is ≥50%.

Two scRNA-seq data sets were used to construct our simulation
experiments to examine when doublets might form their own clusters in
cell clustering analysis. The two scRNA-seq data sets were PBMC3k data
set, and mouse kidney data set (Bernstein et al., 2020). Since it has been
previously reported that the doublet percentage in an scRNA-seq data set
could be as high as 40%, we generated simulated data sets where the
doublet percentage varied from 1%, 2%, 3%, all the way to 40%. For
example, if the doublet percentage was 10% and the scRNA-seq data set
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contained 2,700 cells, 300 artificial doublets were generated and inserted
to the data set, so that the doublet percentage in the resulting data set was
10%. To generate one artificial doublet, 2 cell types in the scRNA-seq data
set were randomly selected according to their proportions, 1 cell from
each of the two selected cell types were randomly picked, and the sum of
their gene expression counts was used to represent the artificial doublet.
Figure 2 shows the UMAP (McInnes et al., 2018) visualizations of two
examples of simulated data sets, each based on one real scRNA-seq data
set, both with doublet percentage being 6%.

For each of the two real scRNA-seq data sets and each of the
40 choices of doublet percentage values, we generated 100 simulated
data sets. Therefore, a total of 8,000 simulated data sets were
generated. Each simulated data set was processed and clustered
using the pipeline described in Section 2.2. For each resulting cell
cluster, we computed the proportion of artificial doublets to examine
whether it is dominated by doublets. Figure 3 showed the relationship
between percentage of simulated artificial doublets and the percentage
of doublet-dominated cell clusters, where we observed that doublet-
dominated cell clusters were very rare when the percentage of doublets
was under 9%. This results indicated that for scRNA-seq data set with
realistic heterogeneity and up to 9% doublets, it is reasonable for
scMODD to assume that cell clusters defined by clustering analysis are
all dominated by singlet cells.

3.2 Comparison with existing methods based
on simulated data

To compare scMODD with existing doublet detecting
algorithms, we generated 20 data sets based on PBMC3k data,

with simulated artificial doublet percentage varying from 2%, 4%,
all the way to 40%. For each of the simulated data sets, we applied
scMODD with NB or ZINB to detect doublets. We also compared
with two state-of-art doublet detecting algorithms, DoubletFinder
(McGinnis et al., 2019a) and scDblFinder (Germain et al., 2022).
The doublet detection performance of each algorithm on each
simulated data set was quantified by the area under curve (AUC)
of the receiver operating curve (ROC). As shown in Figure 4,
scMODD with NB and scMODD with ZINB achieved almost
identical doublet detection performance. The performance of
scMODD was consistently higher than DoubletFinder on all
20 simulated data sets, and slightly lower than scDblFinder.
Interestingly, although Section 3.1 showed that when doublet
percentage was greater that 9%, clustering analysis produced
doublet-dominated clusters, which violated scMODD’s
assumption and might impair scMODD’s performance, scMODD
showed consistent doublet detection performance for all simulated
data sets with doublet percentage ranging from 2% to 40%.

In an attempt to further improve the doublet detection
performance, we combined the probability features in scMODD
with NB and the features defined in scDblFinder, and trained a
doublet detection classifier using the gradient boosted tree (GDBT),
which was also used in the scDblFinder algorithm. Unfortunately,
combining scMODD and scDblFinder did not lead to improved
doublet detection performance in these simulated data sets,
compared to separate application of these two algorithms.

Overall, this comparison based on simulated data showed that the
model-based scMODD algorithm was able to achieve comparable
performance compared to scDblFinder, which is the state-of-art data-
driven algorithm for doublet detection.

FIGURE 2
Examples of the simulated data. (A) UMAP of PBMC3k based simulated data with 6% artificial doublet. (B) UMAP of mouse-kidney based simulated data
with 6% artificial doublet.
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3.3 Comparison with existing methods based
on real scRNA-seq data

We compared scMODD with DoubletFinder and scDblFinder
using a collection of 16 real scRNA-seq data sets which was used in
a recent benchmarking paper for doublet detection (Xi and Li,
2021). These 16 data sets represented varying levels of
heterogeneity. Four were generated from mixtures of human
and mouse cells (hm-6k, hm-12 k, nuc-MULTI and pdx-
MULTI); three were generated from mixtures of human cell
lines (cline-ch, J293t-dm and HEK-HMEC-MULTI); six were
generated from human PBMC samples (pbmc-ch, pbmc-1A-dm,
pbmc-1B-dm, pbmc-1c-dm, pbmc-2ctrl-dm and pbmc-2stim-dm);
two were generated from human epithelial cells (HMEC-orig-
MULTI and HMEC-rep-MULTI); one was generated from
mouse kidney (Mkidney-ch). The number of cells in these data
sets also varied significantly, ranging from 500 to more than 20,000.
In addition, the ground truth annotation of doublets in these
16 datasets were defined using different techniques, including
Demuxlet(Kang et al., 2018), Cell Hashing and MULTI-seq, with
the percentage of doublets ranging from 2.51% to 37.31%.

We applied scMODD, DoubletFinder and scDblFinder to these
16 scRNA-seq data sets, and used the area under the receiver-operator
characteristic (AUROC) to quantify the doublet detection
performance of these methods. As shown in Figure 5, scMODD
with NB model and scMODD with ZINB model achieved similar
performance in all 16 data sets. In 15 of the 16 date sets, scMODD
outperformed DoubletFinder, which was considered to be the best
performer in the previous benchmarking study (Xi and Li, 2021). In
addition, scMODD achieved slightly lower but similar performance
compared to scDblFinder, which was developed after the
benchmarking study and was demonstrated to outperform
DoubletFinder (Germain et al., 2022). All these results were
consistent with the simulation analysis in the previous section, and
consistent with previously reported comparisons between
DoubletFinder and scDblFinder (Germain et al., 2022).

In one of the 16 data sets (J293t-dm), scMODD performed
significantly worse than DoubletFinder and scDblFinder. This was
likely due to the fact that the J293t-dm data set contained only
500 cells (the lowest among the 16 data sets), which might not be
sufficient for scMODD. Since scMODD built distribution
models based on cell clusters, the small data size of J293t-dm

FIGURE 3
Relationship between doublet percentage and formation of doublet-dominated cell clusters. (A) Evaluation results of simulated data sets based on the
PBMC3k data set. The horizontal axis is the simulated doublet percentage. The vertical axis is the proportion of doublet-dominated cell clusters. Relationship
Between doublet dominated cluster proportion and doublet percentage of mouse-kidney data (B) Evaluation results of simulated data sets based on the
mouse kidney data set.
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led to fewer cells in the cell clusters, which impaired scMODD’s
performance. For this data set, combining with features from
scDblFinder improved scMODD’s to comparable performance
with DoubletFinder and scDblFinder. However, in all other
15 data sets, combining scMODD and scDblFinder led to
slightly lower performance compared to separate application of
the two algorithms, which was consistent with the simulation
analysis in the previous section. This result indicated
that scMODD and scDblFinder were sensitive to similar
features for doublet detection, and hence, not complementary to
each other.

4 Discussion

In this paper we presented scMODD, a model-driven
computational algorithm that detects doublets in scRNA-seq data
sets bymodeling the distributions of count data. Compared to state-of-
art doublet detection algorithms, our model-driven algorithm
achieved similar performance. Given that the majority of existing
doublet detection algorithms are data-driven approaches, it is
interesting to demonstrate that a model-driven approach can
achieve comparable performance in both simulated and real
scRNA-seq data sets.

FIGURE 4
Comparison of scMODD and data-driven algorithms based on simulated data sets.

FIGURE 5
Results of benchmarking scMODD on 16 real scRNA-seq data set.

Frontiers in Systems Biology frontiersin.org06

Zhao et al. 10.3389/fsysb.2022.1082309

https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2022.1082309


In our simulation experiment, we observed that for simulated data
sets containing > 9% doublets, clustering analysis generated doublet-
dominated cell clusters. Since the singlet and doublet models of
scMODD are constructed based on the assumption that all cell
clusters are dominated by singlets, the performance of scMODD is
expected to deteriorate for data sets with high doublet percentages due
to the doublet-dominated cell clusters. However, in our simulation
based on scRNA-seq data sets of PBMC data and mouse kidney data,
when we generated simulated data sets with doublet percentages
ranging from 2% to 40%, we observed that scMODD showed
consistent performance even when the doublet percentage
increased well beyond 9%, which was counter intuitive. Similarly,
in the comparison based on the 16 real scRNA-seq data sets with
doublet percentages ranging from 2.51% to 37.31%, we observed that
scMODD’s performance consistently tracked the performance of
DoubletFinder and scDblFinder in 15 of the data sets. We believe
this result is because scMODD uses predicted probabilities of all
singlet and doublet models as features to train a classifier to detect
doublets. When cell clustering produced a doublet-dominated cluster
and 2 cell clusters containing the 2 cell types that made those doublets,
scMODD’s singlet model based on the doublet-dominated cluster
should be similar to scMODD’s doublet model based on the artificial
doublets simulated from the 2 cell types. Such a pattern among
scMODD’s probability features might enable the algorithm to
recognize the doublet-dominated cluster and achieve decent
performance in detecting those doublets.

The running time of scMODD is quadratic with respect to the
number of clusters generated by clustering step of the scMODD
pipeline. This is because scMODD constructs one singlet model for
each cell cluster, and one doublet model for each pair of cell
clusters. Therefore, the running time of scMODD can vary
drastically among various datasets. Among the 16 real scRNA-
seq datasets analyzed in the Results section, scMODD’s running
time ranged from 100 s to 4 h, with 1722 s being the mean running
time. In comparison, the mean running time of scDblFinder was
68 s, and the mean running time of DoubletFinder was 966 s.
Therefore, given scMODD’s longer running time and
comparable performance with respect to existing data-driven
approaches, scMODD is not the best algorthim choise from
users’ perspective. However, it is still interesting to demonstrate
that the model-driven design of scMODD is able to achieve similar
performance compared to the data-driven approach adopted by
majority of existing doublet detection algorithms.

In additoin, the model-driven design of scMODD provided a
new angle to discuss the concept of zero inflation in statistical
modeling of scRNAs-seq count data. Due to the high sparsity of
scRNA-seq data, many computational methods have been
developed based on zero-inflated statistical model for scRNA-seq
counts (Pierson and Yau, 2015; Lopez et al., 2018; Risso et al., 2018;
Eraslan et al., 2019a). However, multiple published studies
suggested that scRNA-seq count data is not zero-inflated. For
example, Svensson (2020) proposed that the excessive zeros in
scRNA-seq data are primarily driven by the biological variation and
heterogeneity among cells. Similarly, Qiu (2020) demonstrated that
the sparsity and zero/non-zero patterns in scRNA-seq data can be

used to accurately cluster cells into biologically meaningful cell
types. Kim et al. (2020) compared the sparsity in scRNA-seq data
with expected sparsity under the commonly used distribution
models and concluded that it is unnecessary to consider zero
inflation when modulating the scRNA-seq counts. Jiang et al.
(2022) provided a comphensive review of discussions regarding
zero-inflation and scRNA-seq data. In this paper, we demonstrated
that scMODD achieved almost the same doublet detection
performance regardless of whether the count data was modeled
with or without zero inflation. This study provided another piece of
evidence suggesting that zero inflation is not necessary for building
effective models for doublet detection.
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