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When analyzing scRNA-seq data with clustering algorithms, annotating the

clusters with cell types is an essential step toward biological interpretation of the

data. Annotations can be performed manually using known cell type marker

genes. Annotations can also be automated using knowledge-driven or data-

driven machine learning algorithms. Majority of cell type annotation algorithms

are designed to predict cell types for individual cells in a new dataset. Since

biological interpretation of scRNA-seq data is often made on cell clusters

rather than individual cells, several algorithms have been developed to

annotate cell clusters. In this study, we compared five cell type

annotation algorithms, Azimuth, SingleR, Garnett, scCATCH, and SCSA,

which cover the spectrum of knowledge-driven and data-driven

approaches to annotate either individual cells or cell clusters. We applied

these five algorithms to two scRNA-seq datasets of peripheral blood

mononuclear cells (PBMC) samples from COVID-19 patients and healthy

controls, and evaluated their annotation performance. From this

comparison, we observed that methods for annotating individual cells

outperformed methods for annotation cell clusters. We applied the cell-

based annotation algorithm Azimuth to the two scRNA-seq datasets to

examine the immune response during COVID-19 infection. Both datasets

presented significant depletion of plasmacytoid dendritic cells (pDCs),

where differential expression in this cell type and pathway analysis

revealed strong activation of type I interferon signaling pathway in

response to the infection.
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Introduction

Single-cell RNA sequencing (scRNA-seq) has facilitated the study of cellular

heterogeneity in complex tissues, enabling identification and characterization of many

cell types in various biological contexts (Eberwine et al., 2014). When analyzing scRNA-

seq data with clustering algorithms, annotating the clusters with cell types is a key step for

OPEN ACCESS

EDITED BY

Yuying Xie,
Michigan State University, United States

REVIEWED BY

Zhaoheng Li,
University of Washington, United States
Yuexu Jiang,
University of Missouri, United States

*CORRESPONDENCE

Peng Qiu,
peng.qiu@bme.gatech.edu

SPECIALTY SECTION

This article was submitted to Integrative
Genetics and Genomics,
a section of the journal
Frontiers in Systems Biology

RECEIVED 24 August 2022
ACCEPTED 12 October 2022
PUBLISHED 24 October 2022

CITATION

Xu C, Lu H and Qiu P (2022),
Comparison of cell type annotation
algorithms for revealing immune
response of COVID-19.
Front. Syst. Biol. 2:1026686.
doi: 10.3389/fsysb.2022.1026686

COPYRIGHT

© 2022 Xu, Lu and Qiu. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Systems Biology frontiersin.org01

TYPE Original Research
PUBLISHED 24 October 2022
DOI 10.3389/fsysb.2022.1026686

https://www.frontiersin.org/articles/10.3389/fsysb.2022.1026686/full
https://www.frontiersin.org/articles/10.3389/fsysb.2022.1026686/full
https://www.frontiersin.org/articles/10.3389/fsysb.2022.1026686/full
https://www.frontiersin.org/articles/10.3389/fsysb.2022.1026686/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fsysb.2022.1026686&domain=pdf&date_stamp=2022-10-24
mailto:peng.qiu@bme.gatech.edu
https://doi.org/10.3389/fsysb.2022.1026686
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org/journals/systems-biology#editorial-board
https://www.frontiersin.org/journals/systems-biology#editorial-board
https://doi.org/10.3389/fsysb.2022.1026686


downstream analysis and biological interpretations. Often, cell

type annotation is performed manually based expression of

known cell type marker genes, which can be subjective and

labor-intensive (Lahnemann et al., 2020). Motivated by this

analysis challenge, numerous computational algorithms have

been developed to automatically annotate cells (Duo

et al.,2018; Freytag et al., 1000; Kiselev et al., 2019).

Existing cell type annotation algorithms can be categorized

into either knowledge-driven or data-driven approaches,

depending on whether prior knowledge of cell type marker

genes or annotated scRNA-seq reference datasets are used to

construct models to predict cell types in a new query dataset

(Abdelaal et al., 2019). Another way to categorize cell type

annotation algorithms is whether the cell type predictions are

made for individual cells or cell clusters in a new dataset.

Majority of existing cell type annotation algorithms make

predictions for individual cells, such as Azimuth, SingleR,

Garnett, CHETAH, scMATCH, CellAssign, scmap, scPred,

and CellAtlasSearch (Alquicira-Hernandez et al., 2019;

Kiselev et al., 2018; Srivastava et al., 2018; Aran et al., 2019;

Hou et al., 2019; Jurrian et al., 2019; Pliner et al., 2019; Zhang

et al., 2019; Hao et al., 2021). Since biological interpretation of

scRNA-seq is often made on cell clusters rather than individual

cells, a few algorithms have been developed to annotate cell

clusters instead of individual cells, such as SCSA and

scCATCH (Cao et al., 2020; Shao et al., 2020). The strategy

of annotating cell clusters is intuitively appealing, because it is

more in line with how biologists interpret the data. In addition,

annotation predictions based on data of a cell cluster may be

more robust compared to making predictions based on data of

an individual cell, because expression data for an individual cell

can be noisy and sparse, whereas data of a cell cluster can define

more robust and less sparse gene expression signatures. To

evaluate whether the conceptual advantage of annotating cell

clusters translates into higher annotation accuracy, we set out

to compare two algorithms designed to annotate cell clusters

[i.e., SCSA and scCATCH (Cao et al., 2020; Shao et al., 2020)]

and three algorithms for annotating individual cells

(i.e., Azimuth, SingleR, and Garnett (Aran et al., 2019;

Pliner et al., 2019; Hao et al., 2021)), using PBMC samples

in Coronavirus disease 2019 (COVID-19) as the biological

context.

COVID-19 has triggered international concern due to its

rapid spread and mortality rate. Blood tests revealed differences

in cell indices between COVID-19 patients and healthy controls

(Chua et al., 2020; Ji-Yuan Zhang et al., 2020; Lee et al., 2020;

Wilk et al., 2020), but the underlying molecular mechanism of

such differences is not fully understood. In two pioneering

studies (Lee et al., 2020; Wilk et al., 2020), peripheral blood

mononuclear cells (PBMC) of COVID-19 patients and healthy

controls were profiled using scRNA-seq, which provided valuable

datasets that not only are suitable for testing performance of cell

type annotation algorithms, but also have the potential to

elucidate the molecular landscape of PBMCs of COVID-19

patients.

In this study, we applied five cell type annotation algorithms

to annotate the two scRNA-seq datasets of PBMC samples of

both healthy and COVID-19 patients. The annotation

performances of these tools were cross-compared. We

observed that the cell-based annotation algorithms

outperformed the cluster-based annotation algorithms. This

was somewhat counter intuitive, but pointed to an

opportunity to further develop algorithms for annotating cell

clusters. Using the cell type annotation results generated by

Azimuth, we compared the cell type composition of COVID-

19 patients and healthy controls, aiming to identify common

trends of compositional changes in both datasets, as well as genes

and pathways that exhibit cell-type-specific changes associated to

COVID-19.

Results

Compare cell type annotation algorithms
using PBMC data of COVID-19 patients

In this study, we compared five cell type annotation

algorithms. Two of these algorithms, Azimuth (Hao et al.,

2021), SingleR (Aran et al., 2019) and Garnett (Pliner et al.,

2019), make cell type annotations for individual cells in a query

dataset, based on either annotated reference scRNA-seq data or

prior knowledge of cell-type-specific marker genes. The other

two of these algorithms, scCATCH (Shao et al., 2020) and SCSA

(Cao et al., 2020), make cell type annotations for cell clusters

defined in a query dataset, by matching cluster marker genes

identified from the query data and prior knowledge of cell-type-

specific marker genes. Therefore, these five algorithms spanned

the spectrum of exiting cell type annotation algorithms, i.e., data-

driven vs. knowledge-driven, and cell-based vs. cluster-based.

scRNA-seq data of PBMC from two cohorts of COVID-19

patients and healthy controls were obtained from two previously

published studies (Lee et al., 2020; Wilk et al., 2020). Lee et al.

(2020) provided scRNA-seq data for 4 healthy controls,

5 COVID-19 patients with mild symptoms and 6 COVID-19

patients with severe symptoms. Wilk et al. (2020) provided

scRNA-seq data for 6 healthy controls and 7 COVID-19

patients with severe symptoms. To prepare the input for

cluster-based cell type annotation algorithms, cells from

different samples in the same cohort were aligned and

integrated using scTransform and CCA implemented in the

Seurat package to remove batch effect (Stuart et al., 2019).

Then, cells were clustered using Seurat, and the clusters

served as the input for SCSA and scCATCH to annotate these

clusters. For cell-based approaches, raw count data without any

preprocessing were provided to Azimuth, SingleR, and Garnett to

annotate individual cells.
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We applied the five cell type annotation algorithms on these

two datasets, and evaluated the annotation results. First, the

annotation performance was quantified by calculating the

percentage of cells being confidently annotated (Table 1). Four

of the five algorithms are able to report cells or clusters that

cannot be confidently annotated. Garnett assigns label

“unknown” to cells with low prediction scores from its elastic

net regression models. Azimuth produces probabilities for

annotating each cell to each possible cell type, and the

annotation of a cell is less confident if the highest probability

for the cell is lower than a threshold (0.75 was used in this study

which was determined based on the distribution of probabilities

across all cells). The two cluster-based algorithms provide

qualitative evaluation of Good/Uncertain/Unknown for their

annotations, depending on the marker evidence scoring

metrics in those algorithms. In our analysis, we considered

cells belonging to clusters with “Good” annotations as

confidently annotated cells. In contrast, SingleR assigns a cell

type label to every query cell with its most similar cell type in the

reference datasets, based on similarity defined by Spearman

correlation of gene expression profiles. More details about the

annotation results are described in Supplementary Table S1. The

percentages of cells confidently annotated by four algorithms

were summarized in Table 1, with SingleR listed as N/A (not

applicable) because it does not label any query cell as unknown or

uncertain. As shown in Table 1, the cell-based algorithms

(Azimuth and Garnett) were able to produce confident

annotations for much higher percentage of cells compared to

the cluster-based algorithms (SCSA and scCATCH), which

indicates that cell-based algorithms achieved a higher level of

recall by annotating more cells confidently.

We also examined the agreement among different annotation

algorithms. Since these algorithms produced cell type

annotations at different levels of granularity, we consolidated

the annotation results at a relatively low resolution. We kept

annotations of major lineages (such as DC, B, Monocytes, T,

Erythrocytes, HSPC, Lymphoid and Macrophages), and merged

detailed subtypes into the corresponding major lineages, (such as

merging B intermediate, B memory and B naïve to B cells). More

details available in Supplementary Table S1. After consolidating

the annotation results, we defined the consensus annotations of

the five algorithms. If three or more of the five algorithms gave

one cell the same annotation, we considered this cell to have a

consensus annotation from the five algorithms. If the five

algorithms failed to achieve a majority vote, i.e., the five

algorithms collective gave four or five distinct annotations for

one cell, we considered no consensus existed for this cell. If there

was a tie that two algorithms gave a certain annotation, two other

algorithms gave another annotation and the remaining algorithm

gave a third annotation, we also considered no consensus existed

for the cell. For the two datasets combined, 66.9% of the cells

received consensus annotation (other than unknown), 5.1% of

the cells were consensually annotated as unknown, and 28.0% of

the cells did not receive consensus annotation. We compared the

annotation result for each algorithm against the consensus

annotation, and calculated the percentage of cells whose

annotation from individual algorithms agreed with the

consensus. As shown in Table 2, cell type annotation results

of Azimuth, SingleR, and Garnett had a higher level of agreement

with the consensus, which means Azimuth, SingleR, and Garnett

likely achieved higher level of accuracy in their annotations.

Therefore, despite cluster-based methods’ conceptual

advantage of using more data to perform annotation, current

implementations of the cluster-based methods still need further

improvement to match the performance of state-of-art cell-based

methods, such as Azimuth and Garnett. Since Azimuth provided

finer annotations with more detailed cell types, our subsequent

explorations of the COVID datasets were based on the

annotation results generated by Azimuth.

Cellular composition differences
associated to COVID-19

We examined the cellular composition of various samples

based on the annotation result of Azimuth. Comparisons of the

cellular compositions between COVID-19 patients and healthy

subjects revealed COVID-19 associated changes in the cell type

proportions. In the Lee et al. dataset, compared to COVID-19

patients with mild symptoms, COVID-19 patients with severe

symptoms showed significant depletion of multiple immune cell

types (Figure 1), such as CD4+ naïve T-cells, CD4+ T-cell subsets

(TCM and TEM), CD8+ TCM, regulatory T-cells (Tregs),

CD16 monocytes, CD56 bright natural killer (NK) cells,

cDC2 dendritic cells, γδ T-cells, and plasmacytoid dendritic

cells (pDCs) (p-value<0.05). Among these immune cell types,

only CD8+ T central memory (TCM) cells and γδ T-cells were

significantly exhausted in COVID-19 patients with mild

symptoms when compared to healthy controls (Figure 1).

These observations were consistent with a previous study

TABLE 1 Percentage of cells being confidently annotated.

Dataset SCSA scCATCH Azimuth Garnett SingleR

Lee et al dataset 17.9 45.8 78.8 74.3 N/A

Wilk et al dataset 19.9 47.1 68.9 81.5 N/A
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which showed that the frequency of NK cells was significantly

lower in severe COVID-19 cases when compared to mild cases

and healthy controls, implying that lower NK cell counts are

associated with greater COVID-19 severity (Li et al., 2020). The

previous study also found that the cellular compositions of CD4+

T-cells, CD8+ T-cells and NKT cells were considerably lower in

severe cases than in mild cases. In addition, another study also

linked SARS-CoV-2 infection and impairment of NK cellular

functions as well as the innate and cell-mediated immune

responses (van Eeden et al., 2020).

The Wilk et al. dataset allowed us to compare the immune

cell types’ proportions between healthy controls and COVID-19

patients with severe symptoms. As shown in Figure 2, innate

lymphoid cells (ILC), mucosal associated invariant T-cells

(MAIT) and plasmacytoid dendritic cells (pDCs) (p-value <
0.05) presented significant depletion in the COVID-19

patients. It has been reported that MAIT cells are associated

with COVID-19 severity due to their activation function on ILCs,

proinflammatory cytokines, and interleukin (IL)-18 (Flament

et al., 2021). Consequently, the frequency of differentiated

ILCs drops remarkably in patients. Furthermore, a relevant

study found some ILC subsets, like ILC1, ILC2, and ILC

precursors, reveal a dysregulated expression of chemokine

receptors involved in the activation response (Garcia et al.,

TABLE 2 Agreement among different annotation algorithms.

Dataset SCSA scCATCH Azimuth Garnett SingleR

Lee et al. dataset 12.6 17.5 67.0 64.2 66.1

Wilk et al. dataset 10.3 23.4 65.6 56.4 64.5

FIGURE 1
Cellular compositions of PBMC samples from healthy controls and COVID-19 patients in Lee et al. dataset. Dots and boxes of different colors
represent samples from samples groups of normal, mild COVID-19 and severe COVID-19, respectively. The Y axis represents the cellular fractions of
cell types. The p_values were calculated from t-test.
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2020). Thus, we can conclude that alteration or depletion of

MAIT cell functions might be responsible for disease severity.

When comparing the analysis result of the Lee et al.

dataset and the Wilk et al. dataset, it is worth noting that

pDCs presented significant depletion in COVID-19 patients

in both studies (Figures 1, 2). pDCs are primarily responsible

for the production of Type I and III interferons (IFN-I/λ),
which are critical antiviral mediators against SARS-CoV-

2 infection. A previous study showed that activation of

pDCs is negatively associated to the severity of COVID-19,

and some of the severe cases presented damage of the pDC

response pathway (Venet et al., 2021). The previous study is

consistent with our observation that mild patients in the Lee

et al. dataset showed less depletion of pDCs compared to

severe patients. SARS-CoV-2 infection and the triggered

inflammation may have an influence on the frequency and

functioning of different pDC subpopulations and their

corresponding regeneration capacity (Venet et al., 2021).

Furthermore, higher expression of pro-apoptotic molecules

was found in pDCs from severe COVID patients (Saichi et al.,

2021), which may explain their massive cellular depletion in

both datasets.

Gene profile alteration of pDCs during
COVID-19 infection

As pDCs was the only cell type that exhibited significant

depletion in both datasets, we focused on the pDCs to examine

genes and pathways that showed differential expression for this

specific cell type between COVID-19 patients and healthy

subjects.

Differential expression analysis revealed that IFI44L,

IFI27, MX1, XAF1, and STAT1 were the most

differentially expressed genes of pDCs between COVID-19

patients and healthy subjects, as shown in Figure 3A. Our

observations were consistent with a previous study which

compared SARS-CoV-2-induced acute respiratory illnesses

(ARIs) and non-viral ARIs, and showed that interferon

pathway genes, such as IFI44L and IFI27, were most

FIGURE 2
Cellular compositions of PBMC samples from healthy controls and COVID-19 patients in Wilk et al. dataset. Dots and boxes of different colors
represent samples groups of healthy vs. COVID. The Y axis represents the cellular fractions of cell types. The p_values were calculated from t-test.
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significantly upregulated in COVID-driven ARIs (Mick et al.,

2020). Both IFI44L and MX1 are antiviral associated genes

(Pekayvaz et al., 2022), and MX1 could function to generate

an antiviral response, showing higher expression in COVID-

19 patients in a previous study (Bizzotto et al., 2020). XAF1 is

known to interact with interferon regulatory factor-1 (IRF-1)

as a positive feedback loop, where IRF-1 stimulates its

transcription, which further stabilizes and activates IRF-1

(Jeong et al., 2018). This pathway is frequently triggered

under stressful conditions, accompanied by increasing

cellular apoptosis, which might be another reason

explaining the significant exhaustion of pDCs in infected

samples of the Lee et al. and Wilk et al. datasets. STAT1 acts

as a downstream effector of interferon signaling. Its

upregulation was reported to be positively correlated with

the severity of COVID-19 patients (Rincon-Arevalo et al.,

2022). The differential expression of STAT1 in pDCs

observed in our analysis aligned well with its function to

amplify IFN-mediated signals.

Gene set enrichment analysis revealed pathways enriched in

those COVID-19 associated differentially expressed genes in

pDCs, where we observed a strong IFN-I/λ activation pathway

triggered by SARS-CoV-2 infection, as shown in Figure 3B. The

enriched pathways pointed to a biologically coherent

mechanism, where pDCs could be differentiating into various

subgroups with different functions and efficacy levels to initiate

FIGURE 3
(A) Top-ranked differential genes in pDCs of COVID-19 patients and healthy controls. (B) Pathways enriched by these differential genes.
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type I interferon signaling pathway (Venet et al., 2021), which

further stimulated high cellular response and defense response to

virus.

Discussion

In this study, we compared five cell type annotation

algorithms, which cover the spectrum of knowledge-driven

and data-driven approach to annotate either individual cells

or cell clusters. Using two scRNA-seq datasets of PBMC

samples of COVID-19 patients and healthy subjects, we

demonstrated that the annotation performance of methods

that annotated clusters (scCATCH and SCSA) were relatively

poor compared to methods that annotated individual cells. This

is somewhat counter intuitive. The strategy of annotating cell

clusters has the potential to be more robust and accurate, because

expression data of cell clusters is less noisy and less sparse

compared to expression data of individual cells. Such a

counter intuitive result pointed to an opportunity to further

develop algorithms for annotating cell clusters. In fact, both of

the cluster-based annotation methods examined here (scCATCH

and SCSA) are knowledge-driven, aiming to match marker genes

of cell clusters with prior knowledge of cell type marker genes.

Data-driven designs of annotation algorithms for cell clusters

may be a promising direction to better realize the potential of the

strategy of annotating cell clusters, and hence a possible future

direction for development cell type mapping algorithms.

Among the five annotation algorithms compared here,

scCATCH and SCSA were designed to annotated clusters.

Since they require pre-defined cell clusters as part of their

input, their performances depend on the quality of the pre-

defined clusters. In this study, we defined clusters using the

Seurat clustering pipeline with default parameters, because it is

the most popular clustering analysis pipeline widely used in the

literature. We also examined these two algorithms using clusters

defined with different Seurat parameter, in particular, the

resolution parameter. When the number of clusters was too

small, cluster-based cell type annotation performed poorly

which was expected. When the resolution parameter was large

to over-cluster the data, the cell type mapping performance also

decreased. Overall, we observed that the pre-defined clusters

using default Seurat worked very well with the two cluster-based

cell type annotation algorithms.

The sample sizes of the two datasets are small, which limit the

statistical power for consistently identifying biological signals.

Some cell types showed similar trend but did not achieve

statistical significance in both datasets. For examples, CD4+

TEM, Tregs, Monocytes and CD56bright natural killer (NK)

cells were significantly depleted in the Lee et al. dataset. The

alteration in the Wilk et al. dataset was not significant, even

though similar depletion trend could be observed. On the other

hand, MAIT was significantly depleted in the Wilk et al. dataset,

while did not pass the significant test in the Lee et al. dataset.

Given this observation, the power of applying single cell RNA

sequencing and automated cell type annotation for defining

cellular alteration during immune response was proved. If the

sample size could be larger, the agreement would be better.

Materials and methods

All analyses were performed using the R statistical computing

environment. SCSA, scCATCH, SingleR, and Garnett were

download following instructions in their original publications

(Aran et al., 2019; Pliner et al., 2019; Cao et al., 2020; Shao et al.,

2020). Azimuth was performed using its online portal (https://

azimuth.hubmapconsortium.org/).

PBMC scRNA-seq data of healthy controls and COVID-19

subjects were obtained from two published datasets, Lee et al.

(2020); Wilk et al. (2020). The datasets are available from GEO

with accession number GSE149689 (Lee et al. dataset) and

GSE150728 (Wilk et al. dataset).

In order to prepare input for cluster-based annotation

algorithms, we used Seurat with default parameters to cluster

the cells. Preprocessing parameters included min. cells = 3, min.

features = 200 and percent. mt < 20 for quality control filtering of

cells and genes. SC Transform and CCA were performed to

reduce batch effect. In the dimension reduction step by principle

component analysis (PCA), 10 principle components (PCs) were

chosen. For the clustering analysis by community finding, the

clustering resolution was set as 0.5.
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