
Methods of quantifying
interactions among populations
using Lotka-Volterra models

Jacob D. Davis1,2, Daniel V. Olivença1, Sam P. Brown2,3 and
Eberhard O. Voit1*
1Department of Biomedical Engineering, Georgia Institute of Technology and Emory University,
Atlanta, GA, United States, 2Center for Microbial Dynamics and Infection, Atlanta, GA, United States,
3School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States

The Lotka-Volterra (LV) model was introduced in the early 20th Century to

describe predator-prey systems. Since then, the model has been expanded to

capture the dynamics of numerous types of interacting populations and to

include the effects of external factors from the environment. Despite many

simplifying assumptions, the LV approach has proven to be a very valuable tool

for gaining insights into the dynamics of diverse biological interaction systems.

In particular, recognizing the critical importance ofmicrobiomes for human and

environmental heath, LV systems have become effective tools of analysis and,

indeed, the default for quantitatively assessing interactions within these large

microbial communities. Here we present an overview of parameter inference

methods for LV systems, specifically addressing individuals entering the field of

biomathematical modeling, who have a modest background in linear algebra

and calculus. Themethods include traditional local and global strategies, as well

as a recently developed inference method based strictly on linear algebra. We

compare the different strategies using both lab-acquired and synthetic time

series data. We also address a recent debate within the scientific community of

whether it is legitimate to compose large models from information inferred for

the dynamics of subpopulations. In addition to parameter estimation methods,

the overview includes preparatory aspects of the inference process, including

data cleaning, smoothing, and the choice of an adequate loss function. Our

comparisons demonstrate that traditional fitting strategies, such as gradient

descent optimization and differential evolution, tend to yield low residuals but

sometimes overfit noisy data and incur high computation costs. The linear-

algebra-based method produces a satisfactory solution much faster, generally

without overfitting, but requires the user to estimate slopes from the time series,

which can introduce undue error. The results also suggest that composing large

models from information regarding sub-models can be problematic. Overall,

there is no clear “always-best method” for inferring parameters from data, and

prudent combinations may be the best strategy.
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Background

The Lotka-Volterra (LV) modeling framework was

introduced in the early 20th Century by biophysicist Alfred

Lotka (Lotka, 1920) and mathematician Vito Volterra

(Volterra, 1926) to describe predator-prey systems.

Throughout the years, the framework has been expanded to

capture the dynamics of numerous types of interacting

populations and also to include the effects of external factors

from the environment (Stein et al., 2013; Dam et al., 2020). The

traditional LV model structure is simple because it makes several

assumptions, which are, strictly speaking, not quite true. These

include constancy of the food supply for the prey species, lack of

(physiological or evolutionary) adaptation of all participating

populations, and initial proportionality between the size of each

population and its rate of growth, which yields exponential

growth if the population is unaffected by others. In spite of

these simplifying assumptions, the LV model has proven to be a

very valuable tool for gaining insights into the dynamics of

numerous diverse biological interaction systems, for instance,

among different mammalian or fish species (Wangersky, 1978),

bacterial lake communities (Dam et al., 2016), and freshwater

ciliates (Muhlbauer et al., 2020), to name just a few. Furthermore,

recognizing the critical importance of microbiomes in recent

years, LV systems have become an effective tool of analysis and,

indeed, the default for quantitatively assessing interactions

within these large microbial communities (Mounier et al.,

2007; Buffie et al., 2015; Dakos et al., 2020; Dimas Martins

and Gjini, 2020). LV models have moreover been proposed in

non-ecological contexts, such as physics (Nambu, 1986;

Hacinliyan et al., 2010), economics (Chiang, 2012), and to

address pollution issues (Haas, 1981; Zhou and Chen, 2006).

Finally, rigorous mathematical analysis has demonstrated that

the LV model structure, while rigid and simple, is extraordinarily

rich and indeed able to capture any differentiable nonlinearities if

sufficiently many “auxiliary” variables in LV format are

introduced (Peschel and Mende, 1986; Voit and Savageau,

1986; HernandezBermejo and Fairen, 1997). These

nonlinearities include the entire spectrum from monotonic

trajectories to bifurcations, damped and stable oscillations,

and deterministic chaos (Sprott et al., 2005; Vano et al., 2006).

Sometimes, LVmodels are considered old-fashioned and inferior

to more modern methods of systems biology. However, due to

their simplicity and intuitive structure, they are often excellent

baseline models for potential comparisons with more

sophisticated models. One might add that LV models have

been used in almost 500 PubMed-listed studies over the past

decade alone.

The generic LV system for n populations or species xi takes

the form:

dxi

dt
� xi(αi +∑n

j�1βijxj) (1)

where the non-negative parameter αi is the growth rate of species

i and each real-valued interaction parameter βij quantifies the

type and strength of the effect of species j on species i, if i≠j. If i =
j, βii reflects intraspecies interactions.

For the case of a single species (n = 1), the LV model

simplifies to the logistic equation

dx

dt
� αx + βx2 (2)

(Verhulst, 1838). The growth rate, α, is always positive. The

second parameter, β, is usually negative or zero. The two

parameters are directly related to the carrying capacity (K) of

the system, which is the maximal size of the population that the

environment can support over an extended period of time.

Specifically,

K � −β
α
. (3)

This carrying capacity term implicitly includes information

about the spatial and nutritional environment of the species. For

example, it has been shown that the amount of carbon initially

available to a bacterial culture contributes to the species’ carrying

capacity (Rattray et al., 2022).

The typical growth curve of a bacterial population in an

experimental setting has three phases (Figure 1) (Madigan, 2015).

During the initial lag phase (Lotka, 1920), the population does

not grow all that much, as the bacteria adjust to their new

environmental or experimental conditions and optimize their

metabolic responses. This lag phase is not always observed in an

experimental setting though. In the subsequent exponential phase

(Volterra, 1926), bacteria rapidly divide. This phase ends once

one of the essential nutrients is used up or some waste product

inhibits further growth. Thus, the population enters a stationary

phase (Dam et al., 2020), where the rates of growth and death of

cells are roughly equal. One could add to these phases a fourth

decline (or death) phase, where cells can no longer divide as

quickly as they die, thereby causing a decrease in population

density, which is often modeled as an exponential decay function.

This categorization into phases is somewhat simplistic, and other

phases, such as diauxic growth and different death phases, may

be observed in an actual setting (Navarro Llorens et al., 2010;

Boulineau et al., 2013).

Note that the Lotka-Volterra model does not account for the

death phase of a generic bacterial population growth curve, as it

addresses static environmental conditions. In principle, time-

dependent environmental factors, such as substrate availability,

can be incorporated in the LV equations with additional terms

(Stein et al., 2013; Dam et al., 2020), but such environmental data

are seldom experimentally available (Piccardi et al., 2019). In

practice, points during the decay phase are often ignored, though

they could be fit with some additional function. An alternative to

the Lotka-Volterra model for species growth is the Monod

equation (Monod, 1949), which incorporates a limiting
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substrate, such as a carbohydrate. The logistic equation can be

seen as a special case of this Monod equation (Kargi, 2009).

Though multi-species versions for the Monod equation exist

(Huisman and Weissing, 1999), this equation does not account

for species interactions that are not resource mediated and

requires temporal tracking of limiting resources, which is a

major practical limitation in addition to other technical

limitations of the model (Muloiwa et al., 2020).

The two-variable case (n = 2) of the Lotka-Volterra model

includes three terms for each species: one growth term (αi), one
intraspecies term (βii) and one interspecies interaction term (βij):

dx1

dt
� x1(α1 + β11x1 + β12x2) (4a)

dx2

dt
� x2(α2 + β21x1 + β22x2) (4b)

The sign of each interspecies interaction term represents the

type of relationship between the two species, which can be

categorized as presented in Table 1. The balances among all

terms in these equations determine the dynamics of the

community.

For larger communities, such as food webs and human or

environmental microbiomes, the values of these growth and

interaction parameters are typically not known, and it is often

even unclear a priori whether they are positive, negative, or

zero. However, as the nature of these interactions is needed to

understand the dynamics of a mixed community, it is often the

primary goal of a quantitative LV analysis to infer the types of

interactions among species and, thus, the signs of the

interaction parameters. The strengths of the interactions,

that is, the magnitudes of the parameter values, are

important as well, at least to some degree, because they are

used to assess system stability (Allesina and Tang, 2012). The

inference of parameter signs and values from observational data

FIGURE 1
Typical Experimental and Simulated Growth Trends of a Single Bacterial Population. Colored dots represent four replicates of a growth curve of
E. coli (see Methods). The black curve represents the fit of the data with a logistic equation (one-variable case of LV, here
dx
dt � 0.904x − 3.95*10−9x2 , x(0) � 3.96*105). Phases of bacterial growth are labeled: exponential (Lotka, 1920) and stationary (Volterra, 1926). In this
case, a lag and death phase are not included. Panel (A) has a linear y-axis, where panel (B) has a logarithmic y-axis. All data, as well as the
simulated curve, are identical in both panels.

FIGURE 2
Hemocytometer Image of a Culture of S. aureus Expressing
dsRed Fluorescent Protein. Squares are 100 × 100 μmwith a depth
of 10 μm. An average of four squares was used to calculate density
in CFU/mL.
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is computationally achieved with optimization methods of

parameter estimation. Typical methods, which are discussed

later, include grid searches, gradient descent methods, various

evolutionary algorithms, such as genetic, ant colony or swarm

algorithms, simulated annealing, as well as newer methods

based on linear algebra. For a general introduction to typical

numerical optimization methods see (Nocedal and Wright,

2006). In this paper, we provide a gentle introduction to

parameter estimation for non-linear differential equation

systems. As our main focus, we review and compare the

concepts of representative methods specifically for inferring

the parameters of LV models from observational time series

data, using microbial communities as our central target. We

also discuss preparatory data management steps that facilitate

the inference process.

Application of Lotka-volterra models to
microbial communities

The growing recognition of the importance of diverse

microbial communities has revived the interest in LV

systems. Recent work has shown that LV can be a good

approximation for both nutrient-limited and complex

microbial systems (Dedrick et al., 2022). As representative

examples, Buffie et al. used LV models to assess the

emergence of C. difficile in antibiotic treated gastrointestinal

tracts (Buffie et al., 2015); Venturelli et al. studied the

interactions in synthetic gut communities using a twelve-

species system (Venturelli et al., 2018); and Mounier et al.

inferred interactions within a community of cheese

microorganisms (Mounier et al., 2007).

Applying simple mathematical models to microbes faces

challenges associated with critical assumptions that are not

necessarily true in bacterial communities (Fort, 2020). For LV

models, these assumptions postulate that:

1. The populations are well mixed;

2. All parameters are fixed in time (i.e., no environmental

changes, physiological adaptation, regulatory shifts or

evolutionary changes are taken into account);

3. There are no higher-order interactions in a sense that, for

instance, Species three might alter the interactions between

Species one and 2.

In an experimental setting, a researcher can control for these

issues to some degree, for instance, by constantly shaking the

cultures during growth (assumption 1) or growing only two

species together (assumption 3). The environmental changes in

assumption two are potentially addressed by the use of a

chemostat, which however still allows for adaptations and

evolution (Gresham and Dunham, 2014).

Data used in this study

For this overview, we will use three datasets of a slightly

different nature that allow us to highlight various aspects of data

analysis and the inference of LV parameter values from data in an

effective manner. One consists of computationally simulated data

of a community of four species growing within the same

environment. The advantage of this dataset is that we have

complete knowledge of the interactions and can therefore

assess the efficacy of different methods most acutely. The

other two cases address real-world experimental datasets,

which allow us to explore the feasibility and applicability of

various methods in practice. First, we examine a recently-

published four-species model derived from an industrial

context (Piccardi et al., 2019); we then examine a three-

species microbial community that we experimentally

composed and studied de novo.

Synthetic microbiome

The synthetic dataset was created from a simulated LV

system and consists of trajectories of four species, with or

without superimposed noise. All parameters (growth rates,

carrying capacities, and interaction terms) were selected to fall

within the range of -2 to 2.5 (see Supplementary Table S5). The

data were designed such that all species coexist in various

scenarios.

TABLE 1 Types of interactions between two Species.

Interaction type βij βji Example

Neutralism 0 0 No interaction (the null model)

Mutualism + + Pollination of a plant (i) by a bee (j)

Commensalism + 0 Bacteria (i) living in carnivorous pitcher plants (j)

Predation + - Bear (i) fishing salmon (j)

Amensalism 0 - Penicillium (i) secreting penicillin that kills nearby bacteria (j)

Competition - - P. caudatum (i) using the same food source as P. aurelia (j)
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Four-species functional microbiome

As the first real-world application, we analyze a dataset

published recently by Piccardi et al. (Piccardi et al., 2019).

The authors co-cultured populations of four species of

bacteria capable of degrading metal working fluid (MWF), an

industrial coolant and lubricant. This fluid is interesting as it

contains both growth substrates and toxic biocides. The authors’

goal was to determine if toxicity from the fluid affects the

interactions among the species. They quantified these

interactions by comparing the growth curves of each species.

Specifically, they used as the metric for comparisons the area

under a (growth) curve (AUC), which was obtained from fitting

observations at several time points. The authors argued that a

lower AUC value of a species, grown in the presence of another

organism, compared to the AUC value during monoculture

growth would indicate a negative interaction, and vice versa.

We use for our illustrations the data from Supplementary Figure

S8 of (Piccardi et al., 2019).

Three-species microbiome

In addition to the synthetic and previously published

datasets, we composed de novo a community of three model

bacterial species, Vibrio cholerae, Staphylococcus aureus, and

Escherichia coli (Choi et al., 2005; Ibberson et al., 2016;

McNally et al., 2017) which all constitutively produce a

distinct fluorescent protein. This fluorescence permitted

hourly fluorescence tracking over three daily passages

(Figure 2). Experiments were performed in monoculture,

pairwise, and with the full 3-species community. We used an

equal ratio of 1:40 (or 1 μl per 40 μl) cells grown from each

overnight monoculture in fresh medium for pairwise

experiments; a ratio of 1:60 was used as inoculum for three-

species experiments. The data are available online at (Davis et al.,

2022).

Preliminary steps for parameter
inference

Data preparation

To extract growth and interaction parameters from a time

series dataset, it is advisable to arrange the data in a format that

facilitates computational analysis as much as feasible. The

preparation might begin with “cleaning” the data by removing

duplicates, statistically significant outliers, and dealing with

missing values, either by inferring them or removing

suspicious observations upon statistical diagnostics

(Rousseeuw and Hubert, 2011; Aggarwal, 2017). If need be,

the data must be converted into the same standard unit, such

as Colony Forming Units per milliliter (CFU/ml) in the case of

bacteria. This step often involves a calibration, as data may have

been gathered with different methods, yielding units related to

luminescence (LUX), relative fluorescence (RFU), or optical

density (OD). For most mathematical and statistical methods,

it is helpful to organize data in either matrix form or a data frame

format where the first column represents time and subsequent

columns are observations. An example is a common format such

as ###.csv or ###.txt. For a thorough review of data cleaning, see

(Van den Broeck et al., 2005).

Dealing with passaged data

Researchers Inmicrobiology are often interested in the steady

state of multiple species within the experimental system, which

consists of the absolute or relative sizes of all participating

populations in a situation where these numbers do not

change. While direct measurements of steady-state

abundances are possible in many ecological systems, in vitro

experiments pose a challenge: resources are often used up before

the species have a chance to reach this equilibrium. To overcome

FIGURE 3
Experimental Results of de novo 3-Species System. Column
panels display different combinations of co-cultured species (e.g.,
VS. = Vibrio and Staphylococcus), with each panel showing
proportions of species observed at different passages.
Passages 1, 2, and three happen at 24, 48, and 72 h, respectively.
Each passage contains 25 hourly measurements (t = 0 to t = 24).
Rows represent biological replicates of the experiment. Black lines
indicate the overall community size at different time points. The
y-axis on the left shows relative abundances, while the y-axis on
the right represents logarithms of community sizes.
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this issue, it is common practice to “passage” the cells, that is, to

take a small portion (aliquot) of the cells (generally 1–10%),

remove them from the medium, and add them to fresh medium

(Figure 3). While this procedure is helpful for keeping the

populations from decaying, it makes the modeling process

more difficult, as one must deal with a discontinuity at every

passage, which is at odds with differential equation models,

including Lotka-Volterra systems. This problem can be

addressed through event handling: In many ODE solvers,

callback functions can be implemented by stopping the

simulation at a specified condition (i.e., at a certain time or

when a variable reaches a certain value). The system can then be

modified and the simulation resumes (Figure 4).

Metrics for the goodness of fit–The loss
function

Before models can be fit to data, one must choose a metric for

deciding which of two sets of model parameters provides the

better fit for the given dataset. The main criterion is generally the

value of a loss function, which describes how different the

estimated model predictions are from the true data. According

to this metric, the optimal solution of a parameter estimation

problem is the set of parameters that correspond to a model

instantiation with the smallest loss function.

Several loss functions are in common use. Themost prevalent

defaults are the sum of squared errors, SSE, the SSE divided by

the number of parameters to be estimated, SSE/p, or the SSE

divided by the number of data points, SSE/n. Frequent

alternatives include the mean absolute error (MAE) and the

coefficient of determination (R2), which measures the proportion

of the dependent variable’s variance that can be explained by the

independent variable. (Reid, 2010).

Our analyses here will use the SSE, which is the sum of the

squared differences between each data point and the predicted

model estimate at that point:

∑(xactual − xpredicted)2 (5)

For a perfect solution, this sum equals 0, but any level of noise

will lead to a higher value. Thus, we look to determine the set of

parameters that results in the smallest residual error.

“Regularization” is a process where one or more penalty

terms are added to the loss function in order to solve ill-posed

problems or prevent overfitting of data (Neumaier, 1998). LASSO

(“L1-norm”) regularization seeks to minimize SSE, while also

minimizing the number of non-zero parameters. This task is set

up by adding a regularization hyperparameter λ, which is

multiplied by the sum of the absolute values of all

parameters (∑ |P|):

min(∑(xactual − xpredicted)2 + λ1 ∑ |P|) (6)

Lambda must be optimized, together with the other

parameters, to give an optimal fit, thereby making the

method computationally more expensive. Specifically, the

general idea behind LASSO regularization is that a small

improvement in SSE may not be worthwhile if the number

of non-zero parameters increases. In other words, the

researcher must balance two quantities that are not truly

comparable: the SSE and the number of non-zero

parameters. As a consequence of this required balancing, λ1
cannot be optimized with strictly mathematical means, but

must be based on the degrees of freedom of the problem (Zou

et al., 2007) or on information-theoretic approaches (Casella

et al., 2010). By design, the LASSO approach tends to produce

solutions with reasonable SSE and a quite small number of

parameters. This strategy can be useful for finding parameters

with strong explanatory power or to create a model with

minimal complexity.

An alternative regularizationmethod is Ridge (“L2-norm”, or

Tikhonov) regression (Tikhonov et al., 1995), where the objective

of the optimization is to balance the data fit with the total

magnitude of all parameters:

min(∑(xactual − xpredicted)2 + λ2 ∑P2) (7)

FIGURE 4
Experimental and Simulated Growth Curves of Two Bacterial
PopulationswithPassaging; from thedenovoDataset. In this example,
we passaged 2.5% of the cells at 24 h, resulting in a 1/40 reduction in
density at the 24-h time point. In the ODE solver, we programed
a callback: when the solver reached t = 24, we divided all populations
by 40. This callback allowed us to use our normal parameter
estimation methods despite the discontinuity.
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The Ridge approach tends to minimize the values of all

parameters, thus penalizing parameters with large magnitudes,

but it does not generally remove parameters from the model.

Methods have been devised to determine the optimal value of the

hyperparameter λ2 value in L2. They include the L-curve method

for balancing the size of the residuals and the magnitudes of the

parameters (Hansen and O’Leary, 1993) and generalized cross-

validation (Golub et al., 1979).

Thus, LASSO regression tends to yield sparse sets of

parameters and should therefore be used to fit large systems

with minimally complex models, while Ridge regression often

uses every available parameter but tends to avoid extreme

magnitudes of the parameter values.

The elastic net approach combines both L1 and

L2 regularizations:

min(∑(xactual − xpredicted)2 + λ1 ∑ |P| + λ2 ∑P2) (8)

While this method benefits from both, the LASSO and Ridge

regression concepts, the elastic net regression obviously requires

the optimization of two lambda hyperparameters (Zou and

Hastie, 2005). Figure 5 and Table 2 illustrate the differences

among the various alternative methods.

In the example of Figure 5, all three methods using a penalty

term have similar curves for one the species shown, but very

different parameters, both in amount and magnitude (see

Supplementary Table S1). The estimation with no penalty

term has the lowest error but appears to be overfitting the

data, based on the biological assumption that the over- and

undershoots between hours 50 and 150 are unlikely to be true,

and therefore the model fit is “chasing noise” in the data. The

LASSO and elastic net approaches shrink the number of

parameters from 20 to seven or 9, respectively. In both

estimations, all four growth terms are kept, together with β24,

β42, and β44, while the elastic net additionally keeps the β22 and

β34 parameters. Ridge regression attempts to shrink the

magnitude of parameters but does so only as well as the

LASSO method, showing that this particular approach is not

optimal for this problem. All three of the regularization methods

avoid the overfitting that the non-penalized estimation displayed.

In addition to the consideration of differences betweenmodel

and data, a possibly important additional criterion for choosing a

loss function is “normalization,” which is achieved by dividing

each residual by the value of the data point. This step can be

useful in cases where the variables operate at different orders of

magnitude, because otherwise the noise in high-valued variables

might dominate SSE, thereby leading to poor fits for low-valued

variables. It may furthermore be beneficial to weigh the

importance of outliers in the data. A good reference is

Chapter 10 of (Hastie et al., 2009).

While the SSE, with or without regularization and

normalization, is arguably the most important criterion, a

minimal residual error should not be the only criterion, for

several reasons (Voit, 2011). First, one should remember the

extreme case of a high-dimensional polynomial, which can be

constructed to fit any finite dataset perfectly (Camporeale, 2019).

While the SSE is thus 0, one problemwith this approach is that its

parameter values do not have much biological meaning. The

polynomial has two additional problems: First, the removal or

addition of even a single data point typically changes the entire

parameter set (the coefficients of the polynomial) drastically.

Second, extrapolations toward higher values of the independent

variable tend to converge to ∞ or –∞.

A somewhat related issue with sole focus on the SSE is

overfitting, which we saw to some degree in Figure 4 and

which can be caused by the use of more model parameters

than are warranted by the data. To some degree, overfitting

can be diagnosed by leaving data points out of the fitting process,

fitting again, and comparing the resulting parameter sets. If these

vary greatly, overfitting is a likely explanation. Practically, the

estimation should be performed with a percentage of the data

points (the training set) and validated against the remaining

points (the validation set) (Hasdemir et al., 2015). Numerous

other issues outside the residual error between data and model fit

should be taken into account when deciding on the “best”

solution (Voit, 2011) (Figure 5).

Local minima

It happens quite often that the parameterization of systems

yields many good solutions which, however, consist of somewhat

or even completely different parameter values, as shown in the

earlier regularization example. The reason can be the existence of

an entire solution domain with the same or very similar SSEs.

One scenario is an entire (one- or multi-dimensional) surface or

TABLE 2 Comparison of Penalties in loss functions. Here ∑ |P| is the summed total of the magnitude of all parameters in the estimation.

Regularization Hyperparameters # Non-zero parameters ∑ |P| Loss (SSE)

None None 20 0.197 1.51e16

LASSO λ � 0.01 7 0.114 2.32e17

Ridge λ � 0.01 20 0.118 2.42e17

Elastic Net λ1 � 0.005, λ2 � 0.005 9 0.113 2.44e17
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domain of solutions with exactly the same SSEs, in which a search

algorithm determines all points to be optimal solutions. It is also

possible that different parameter sets yield SSE values that are so

similar that the optimizer cannot distinguish them. Yet another

possibility is that each point (i.e., parameter set) within this

domain corresponds to an isolated local minimum, i.e., a point

with a small loss function surrounded by (slightly) larger ones,

which local optimizers tend to find. The smallest loss function

value in the entire search space is found at the global minimum,

but this exact point can often be difficult to obtain. Global

optimizers, such as evolutionary algorithms, grid searches, and

sampling methods, are designed to find the global minimum, but

they usually only reveal the neighborhood of the global minimum

by stopping before they find the exact value.

Multiple parameterizations with similar
SSEs and ensemble modeling

While mathematically intriguing, the differences between the

absolutely smallest possible SSE and parameter sets with slightly

higher values are biologically irrelevant and it might actually be

preferable to determine all parameter sets with a “sufficiently

small” SSE. After all, data with replicates or multiple scenarios are

very likely to lead to slightly different answers within the solution

domain. Thus, a modern approach to this problem is not to strive

for the absolute optimum but to identify whole clusters of

different, almost-optimal solutions. Subsequent to this

identification is the use of statistical methods to assess how

much the parameter combinations may vary without

substantially affecting the accuracy of the data fit (Figure 6).

This approach has become known as ensemble modeling (Kuepfer

et al., 2007; Lee et al., 2014).

Top down or bottom up?

One interesting estimation issue particular to mixed

community systems is the general strategy for inferring

interactions. Should one perform replicates of experiments

with all populations of interest and then estimate all

interactions at once (top-down), or should one instead

(bottom-up) create monoculture experiments to estimate

growth and saturation parameters for each species, then two-

species experiments, from which pairwise interaction parameters

are inferred, and then successively larger communities, where the

earlier parameter values are considered known from the previous

experiments? Both strategies present strong pros and cons, and

much of the answer is driven by the size of the system, which

becomes evident from a thought experiment for a moderately large

system: To infer parameters for a system with n � 10 species in a

single experiment, one would have to estimate n2 + n = 110 L V

parameters, which would have to be fitted simultaneously.

Without very substantial amounts of data, the task would be

woefully underdetermined, and there would likely be numerous

drastically different parameterizations with similar goodness of fit.

By contrast, suppose the interaction parameters for co-

cultures of two or three species at a time had been estimated

from corresponding experiments and that new experiments with

these species plus one or two new species were to be analyzed.

Given the quadratic increase in parameters characterizing a

community (n2 + n), it is tempting to build models up from

smaller ones and insert the earlier estimates as allegedly known

quantities into the larger model. Continuing the earlier example,

to estimate a ten-species community model up from the bottom

up, one would have to test every combination of species. For an

n � 10 species system, this means 10 monoculture experiments

and ( n
2
) = 45 different interaction experiments, ideally with a

sufficient number of replicates. That is a lot of experiments, but

each estimation task would be fairly simple as it involves only a

few parameters.

Thus, the bottom-up approach offers a “pro” side by

dissecting a large optimization task into smaller ones, each

having to deal with considerably fewer “free” parameters,

which would make the estimation problem much easier to

solve, requiring less computation time and minimizing

redundancies among the parameters. Also, each solution space

FIGURE 5
Comparison of RegularizationMethods in the System of Piccardi
et al. (Piccardi et al., 2019). While the estimation with no penalty is
presumably overfitted, the other three approaches produce much
smoother solutions. The data shown represent the growth of
C. testosteroni from the 4-species experiment. Three dots at each
timepoint represent three biological replicates. Results for additional
species are shown in Supplements.
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would have considerably fewer dimensions, which increases the

likelihood that a search algorithm is able to find the optimal

solution.

On the “con” side, however, the bottom-up approach may

not even be valid, mathematically or biologically. On the

mathematical side, constructing a model parameterization

from the bottom up in a stepwise manner may constrain each

of the later estimation tasks too much, ultimately yielding faulty

conclusions. Namely, if the parameter values obtained from the

smaller models are not entirely appropriate for the larger model,

the solution space will be unduly restricted and may no longer

contain the correct solution. On the biological side, even if the

correct parameter values had been obtained for intrinsic growth

rates, as an example, the interactions among the species in the

larger model could alter the growth characteristics of one or more

species (i.e. there are higher-order interactions). Moreover, the

two-species interaction terms could possibly be altered in

value—or even sign—in a three-species model. Such effects

are a problem when higher-order interactions take place

between several species. An example of higher-order

interactions was experimentally demonstrated in the zebrafish

gut microbiome, where researchers showed that the addition of

microbial species dampened the strengths of the interactions

between other species pairs, thereby contributing to the stability

of the community (Sundarraman et al., 2020). Whether this

finding is true in general is unknown. The standard LV model is

not equipped to handle these types of complex interactions

directly, and the question becomes how well the LV model

which, like all other models, is a simplifying approximation,

still reflects reality and at least permits reliable predictions of the

signs of interactions.

As an illustration, we analyze again data from the earlier

mentioned systemwith four species (Piccardi et al., 2019), but use

a different example from the study. Figure 7 displays the results of

an analysis where we inferred the parameters in four different

ways:

1. using a top-down approach with no previous assumptions

regarding the parameter values, where all parameters are fit

simultaneously;

2. adopting growth rates from single-species experiments and

fitting all interaction parameters from data of the four-species

experiment;

3. adopting growth rates and carrying capacities from the single-

species experiments; and

4. using the growth rate and carrying capacity from each

single-species experiment, as well as the interaction

parameters from two-species experiments; in this case,

all parameters were thus considered known and the

four-species data were only used as validation, because

no parameter was left to be fitted.

The results in Figure 7 highlight several issues that may or

may not emerge in the various estimation strategies. Overall, it is

clear that overfitting is reduced when some of the parameters are

fixed. The estimation without former knowledge (all parameters

free; Top Down) and the estimation with fixed growth rates,

leaving 16/20 parameters to be estimated, produce over- and

undershoots caused by the algorithm attempting to fit all data

points with the minimal SSE. It is unlikely that this is the true

dynamics of the system, although we cannot be sure.

Regularization methods (above) would presumably tame these

over- and undershoots.

On the other extreme, the estimation that exclusively uses

single-species and two-species parameter values, so that no

parameters remain to be estimated (All Fixed; Bottom Up),

overestimates the density at virtually all time points, thus

indicating that the growth of individual species is affected

and/or that some of the interactions change in the transition

from the two-species systems to the combined four-species

system.

In this example, the estimation that adopts the growth

parameters (Fixed Growth + Carrying Capacity) but leaves the

interaction parameters free to be estimated displays a good

tradeoff between accuracy and overfitting (Figure 7). Note

FIGURE 6
Density Plot of a Parameter with Values from All
Combinations of Replicates. The four-species case with three
replicates from the dataset of Piccardi et al. (Piccardi et al., 2019)
permits three rank-four replicates and three replicates with
each species removed, giving a total of 3̂4 different combinations.
The values of the same parameter inferred from each of the
81 combinations are displayed in orange and their mean is
indicated with the green dot. Here, the mean value of the
parameter is about -1.48*10–10, and the standard deviation is
3.96*10–10. The blue distribution curve is fitted by using kernel
density estimation.
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that these fits are not regularized. It is not known whether this

result is true with some generality.

We can also look at the signs of the interaction terms among

the four species in (Piccardi et al., 2019) to see if they are

reasonably similar when either fitted with the bottom-up or

the top-down approach (Figure 8). Disconcertingly, more than

half of the interaction signs are interchanged, thus suggesting

drastically different relationships between the species (see

Table 1). We do not know the true interaction structure for

the bacterial community in (Piccardi et al., 2019), but there is

clear indication that the two approaches yield different results.

The reason may be that higher-order interactions are at play in

the larger community, with a “new” species influencing the

interactions between other species, i.e., that the interactions

cannot be explained adequately by the Lotka-Volterra

framework. Research has shown that more positive

interactions occur in lower diversity systems (Palmer and

Foster, 2022) and that pairwise interactions cannot always

predict community outcomes (Friedman et al., 2017).

The overall conclusion from this example is two-fold:

1. Caution is necessary when adopting parameter values from

sub-models in combined community models. There is no

guarantee that the lower-level parameter values validly

translate into the larger model, because interaction

parameters could possibly change in the presence of

additional species, thereby leading to higher-order

interactions. Without further experiments, it is not possible

to discern which interaction structure is most likely. Turned

into a positive argument, the different analyses indicate which

interactions are presumably persistent among the alternative

estimations and pose hypotheses regarding those interactions

that are variable within an ensemble of candidate models.

2. Initially fixing some parameters may give reasonable initial

estimates for fitting higher-dimensional systems, because one

might argue that the earlier parameter values are probably not

totally wrong but simply becomemodulated by the addition of

species. In other words, it might be beneficial to pass the

lower-level parameter values as initial guesses to the solver for

the higher-level inference task, possibly with reasonable

ranges. By providing these educated guesses, the solver

may more readily converge to the optimal solution,

although there is no guarantee. Once such a solution is

obtained, it is advisable to vary the parameter values in the

solution and re-estimate the system, in order to see whether

the solution is more or less unique or part of a larger ensemble.

As some aspect of validation, we can look at the simulated

system, which we know adheres to the LV interaction structure,

and where we have a defined ‘ground truth’ of user defined

parameters. Table 3 suggests that both parameter sets, from the

bottom-up and the top-down estimations, are reasonably good

when compared to the ground truth parameters. In fact, all

parameters from the two-species bottom-up estimations

roughly match the parameters obtained when estimating all

four species together, at least in sign, and would, at the very

least, offer good initial guesses for a subsequent gradient

optimization (see below).

Search methods

If the system under consideration is linear and time series

data are available, it is usually straightforward to estimate optimal

parameter values per multivariate linear regression (Kutner et al.,

2004). This approach is similarly feasible, if the system becomes

linear through some equivalence transformation. Notably, this is

possible for LV systems, at least under favorable conditions (Voit

and Chou, 2010).

The next three sections describe the concepts of different

parameter estimation methods used by specialized search

algorithms, with a focus on LV models. These algorithms are

needed because explicit mathematical solutions are impossible to

compute even for moderately sized models. Instead, the system is

simulated very many times with different parameter sets and a

loss function is calculated every time. The settings of each

simulation are determined by the algorithm such that there is

a reasonable probability that the value of the loss function

decreases. General introductions and reviews of parameter

search methods include (Gennemark and Wedelin, 2007;

Chou and Voit, 2009; Gennemark and Wedelin, 2009; Voit,

2013).

The available classes of algorithms differ in the way new

parameter sets are chosen. Many variations on each theme exist,

and we focus here just on the basic concepts.

The general procedure of a search estimation consists of the

following steps:

1. Enter the model structure into a search algorithm of choice

and choose a loss function.

2. Based on general knowledge of the system, choose an initial set of

parameters. The simplest choice consists of default values

provided by the algorithm. However, if any information

regarding the parameters is known, using this information

can speed up the algorithm tremendously. For instance, it is

often known whether a parameter value must be positive or

negative. By entering such a constraint, the search space is cut

in half.

3. Enter the parameter values into the model and simulate.

4. Calculate the value of the loss function.

5. Let the algorithm change the current parameter values. This

step allows tremendous variations and is the hallmark of each

method.

6. Repeat steps 3-5 until an optimized solution is found or a

predefined limit on the number of iterations is reached. The

solution may be the actual optimum, but that is not always
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guaranteed. For instance, it may be a local—but not the

global—minimum of SSE.

Uncounted search algorithms, many with additional

variations, have been published. All have advantages and

disadvantages, but there is still no silver bullet that

successfully, reliably, and effectively yields the optimal

solution every time. The various types of algorithms can be

categorized as shown in the following sections.

We do not mention the possibility of using maximum

likelihood estimation (MLE). While this method effectively

reduces the problem of overfitting in statistical applications

(Reid, 2010), MLE is not really useful for dynamic systems

that deviate considerably from a steady state, because the data,

by their nature, are not independent and identically distributed,

which is a prerequisite for MLE. The use of MLE could be

beneficial, though, for assessments of noise in data relatively close

to a steady state (cf. (Holmes et al., 2012).

Most methods directly–or with some coding–permit the

setting of bounds for some or all parameters to be estimated.

Such bounds are a blessing and also a problem. Of course, strong

bounds can reduce the size of the search domain substantially.

Also, it is often known, for instance, whether a parameter value

should be positive or negative. However, the implementation of

bounds in an algorithm is not always facilitated and may require

specific coding.

Grid search

A grid search is a brute force method of testing every

combination of parameter values within a predefined set of

bounds and with predefined density. As an example, consider

our one-variable logistic equation. It contains two parameters, so

that its estimation from data requires the creation of a two-

dimensional grid that represents the growth rate α on the x-axis

and β on the y-axis. In biological applications, we know that α

must be positive and β negative. Hence, we initially set the search

intervals within the fourth quadrant, for instance, as a ∈ [0, 3],
β ∈ [−3, 0]. We also need to set the grid size, which we choose at

intervals of 0.005 for each parameter and define our loss function

simply as SSE. The grid search then simulates the differential

equations using each set of parameter values and computes the

loss function every time. We can visualize the results of the

estimation with a heat map that shows the value of the loss

function at each evaluated grid point, in Figure 9 with added

interpolation.

In this example shown, the systematic grid search actually

returns the exact parameter values, which we know, since their

combination is located exactly on one of the grid points that were

tested, but that is typically not the case, for instance, if the true

values are irrational. However, even if the true solution does not

lie on the grid, the search can provide a good estimate of the

location where the optimal solution can be found.

Large, relatively coarse grid searches are sometimes a good

initial step for determining the approximate locations of local

minima and thereby provide a good starting point for more

refined types of optimizations, including possibly a finer grid

search within the neighborhood of the best local minimum

determined in the previous step. This process, executed

iteratively, has a good chance of leading to a parameter set

TABLE 3 Signs of inferred interaction terms from the bottom-up and top-down fits for data from four simulated bacterial species.

Method β12 β13 β14 β21 β23 β24 β31 β32 β34 β41 β42 β43

Top Down −0.531 −0.982 −0.484 0.489 0.972 0.477 0.0035 −0.0222 0.0122 −0.488 0.447 0.0328

Bottom Up −0.5 −1.0 −0.25 0.5 1.0 0.501 0 0 0 −0.25 0.502 0

Actual Params −0.5 −1.0 −0.5 0.5 1.0 0.5 0 0 0 −0.5 0.5 0

FIGURE 7
Comparison of Top-Down vs Bottom-Up Methods. Shown
here is growth of Ochrobactrum anthropi. Time is in hours and
abundances are in CFU/mL on a logarithmic scale. The colors of
dots represent three replicates. Data from (Piccardi et al.,
2019).
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close to the global minimum within predefined bounds, up to the

accuracy of the grid size. Again, this result is not guaranteed, as it

is theoretically possible that the coarse grid search determined

locally the best solutions even though the true, global solution lies

somewhere else.

Note that a grid search for two parameters can be easily

executed and visualized, whereas plots of grid searches become

infeasible with additional parameters and smaller discretization. For

example, with 16 free parameters and using grid points with Δ = 1 in

the range of [-5,5] in each dimension, which corresponds to just

11 possible values for each parameter, we must create a solution

array of size 54·1112 = 1.96·1015 which, using floating point numbers

(8 bytes each), would require allocating over 15 petabytes of

memory. It would also take an extraordinarily long time to

simulate each combination of parameters. Extrapolating solution

times from the two-parameter case, solving all combinations would

take over 211 s to solve, that is, nearly 7,000 years! Even then, this

approach would only give us the solutions that assume parameter

values to be integers between -5 and 5. Facing this “combinatorial

explosion,” numerous methods have been proposed to alleviate the

problem. Pertinent examples include Latin hypercube sampling and

Monte Carlo simulation (Mckay et al., 1979; Luengo et al., 2020),

where large random samples of parameter values are taken

throughout the parameter space and solutions are compared.

These are good compromises for otherwise computationally

infeasible problems since they represent the search space within

an acceptable time. A variation on this theme is importance

sampling, where the most impactful parameters are emphasized

and therefore chosen with a higher frequency than other parameters

(Luengo et al., 2020).

Direct search methods

Direct search methods include many variations of a

fundamental algorithm that starts with a user-supplied initial

guess of all parameter values, sometimes called a “guestimate,”

locally searches for improved parameter sets close-by and moves

the search in the direction of greatest improvement, that is, a

lower value of the loss function. This process is iterated

thousands or millions of times. Variations on this theme

prominently include deterministic and stochastic steepest-

descent and hill-climbing approaches, Newton-Raphson and

Levenberg-Marquardt methods, and Simulated Annealing. The

search-and-improve process is iterated until a predefined limit in

the number of simulations is reached or until there is no more

substantial decrease in the loss function when parameters are

changed, indicating that a minimum has been detected. For a

detailed account of these and other methods, see (Kochenderfer

and Wheeler, 2019).

The most common direct search method is gradient descent.

Generically, a gradient-descent optimizer takes an initial set of

parameters {P0}, solves the model with these parameter values,

computes the value of a loss function, typically SSE, and

approximates the gradient of this function at {P0}. It then

changes the parameters to a new set {P1} that is located in the

negative direction of the gradient, which is therefore expected to

yield a lower SSE. The distance of {P0} from {P1} is controlled by a

hyperparameter, the learning rate. The algorithm then solves the

model with set {P1}, computes SSE, and determines the gradient

again. This process of local improvement is iterated thousands of

times. Uncounted variations of gradient-descent based methods

have been described in the literature.

While a very effective approach in principle, this type of

approach is prone to getting stuck in local minima, each of which

the algorithm considers a successful result, because all values

close-by have a higher SSE, even though the global minimum,

possibly far away, would have an even lower SSE. For more

information, see Chapter 4 of (Goodfellow et al., 2016).

Recent techniques have been designed to avoid this local-

minimum problem, for instance, by using adaptive learning rates

and momentum-based methods (Qian, 1999; Duchi et al., 2011).

Also, restarting the estimation with different sets of parameters

may help to avoid allegedly optimal solutions at local minima. As

a minor issue, these methods require that the model to be

estimated is differentiable, which complicates the methods for

models with discontinuities or points without derivatives; an

example is y � 1/x. However, these issues can often be overcome.

Simulated annealing is an effective algorithm that adds an

important twist on the direct search algorithm: the possibility of

not strictly following the gradient towards the local minimum.

The likelihood of proceeding into a different direction is

determined by the parameter T. T stands for temperature, in

reference to annealing in metallurgy, which inspired this method.

FIGURE 8
Differences in Signs of Inferred Interaction Terms from the
Bottom-up (A) and Top-down (B) Fits for Data from Four Co-
cultured Bacterial Species (Piccardi et al., 2019). The species are (A)
tumefaciens (AT), C. testosteroni (CT), M. saperdae (MS), and
O. anthropi (OA). The interactions are colored positive (blue) or
negative (red); cf. Table 1. 80% of interactions in the bottom-up
system and 60% of the top down system match the authors’
inferred interaction direction. No significant direct influence was
detected for MS and OA and vice versa in (A); more exactly, the
corresponding interaction terms were very close to 0. This is also
the effect of OA on CT in (B).

Frontiers in Systems Biology frontiersin.org12

Davis et al. 10.3389/fsysb.2022.1021897

https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2022.1021897


This method often works well, but is generally computationally

expensive (van Laarhoven and Aarts, 1987).

Figure 9 visualizes the process of gradient-descent based

parameter optimization with the same example of a logistic

function as before. Here, the algorithm is set to start at five

different points in the parameter space (initial guesses). In this

simple case, they all converge quickly to the true minimum of the

loss function, with the correct parameters. The optimizer used

here is a variant of the ADAM optimizer (Kingma and Ba, 2014),

which uses an adaptive learning rate based on the first and second

moments of the gradient.

Evolutionary search methods

Evolutionary algorithms are global search methods superficially

gleaned from the principles of biological evolution, where traits are

randomly mutated and recombined from one generation to the next.

Those mutations and recombinations leading to superior

performance, in this case a lower SSE, have a higher chance of

being passed on to the next generation. Evolutionary algorithms

fundamentally consist of a series of generations of parameter sets that

improve over time (Ba€ck, 1996). They mainly include genetic

algorithms (Michalakelis et al., 2012), differential evolution (Storn

and Price, 1997), ant colonies (Dorigo and Stu€tzle, 2004), and particle

swarm optimization (Mosayebi and Bahrami, 2018), but also others.

The generic steps of these types of algorithms are:

1. Selection–A population of candidate solutions (parameter sets)

is evaluated against a loss function; the fittest solutions (with the

lowest SSEs or other loss function values) are given the highest

probability to produce offspring for the next generation. The

population size can be determined by the user: higher

population sizes offer more candidate solutions, but

solutions take longer to compute. Candidate solutions can be

chosen by several different methods, such as tournament

selection, steady-state selection, or elitism selection (Blickle

and Thiele, 1996). It has turned out that it is advantageous

to make the choice probabilistic, thereby allowing some less-fit

solutions to enter the next generation, although with a low

probability.

2. Recombination–In this key process, which is also called crossover,

two parent solutions from the previous generation are combined

stochastically to create a new candidate solution. Specifically, all

parameter values are sequentially arranged into a string, often

called a chromosome, and the first portion of the offspring

chromosome comes from one parent and the remainder from

the other parent. The cut-off is determined stochastically. These

candidate solutions are evaluated with respect to their SSEs, and

solutions with the lowest SSEs among parents and offspring will

constitute the new generation of parameter sets. These details vary

depending on the algorithm. Most parameter changes emerge in

this step of the optimization.

3. Mutation–With a very small probability, bits of candidate

solutions can be mutated before they reach the new

generation. This option is meant to replicate biological

mutation and maintain diversity in the population.

Without mutation, candidate solutions may become too

similar and never approach the optimal solution.

This three-step process generally ends when solutions no longer

improve after a certain number of generations. Other stopping

conditions include the number of generations or a time limit. The

various types of evolutionary algorithms use different methods for

arranging recombination and introducing mutations. Unlike

gradient descent methods, evolutionary methods do not require

the system under investigation to be differentiable. For more

information on evolutionary strategies see (Simon, 2013).

For the purpose of comparison in a later section, we will use

radius-limited differential evolution, as implemented in (Wang

et al., 2014a).

As an example, consider the tracking of an evolutionary

parameter search for the logistic function whose global minimum

is at (2.5, -2.0) (Figure 10). Starting at (0, 0) (Generation 0), the

solution quickly jumps to around (4.96, -2.59) in Generation one

and to (3.71, -2.82) in Generation 2. Generations three through

seven do not find better solutions than what had been found in

Generation 2. The solution of Generation eight holds for nearly

200 generations until a solution is found in Generation 195 that is

considerably closer to the trueminimum. The solution is now slowly

improved further with a solution at about (2.84, -2.28) in Generation

503. Additional minor improvements ensue successively until

Generation 5314, which is the last generation where the solution

improves, and the algorithm terminates with a final solution of

(2.502, -2.002), which is approximately correct.

Note that evolutionary methods are unlikely to find the

precise minimum of the loss function, since the parameters are

randomly generated, and a criterion for cutoff must be

defined, which is generally a set number of generations or a

successive number of generations without solution

improvement. In fact, once the algorithm stops, we do not

really know if the algorithm has found a value close enough to

the true solution. One should however note that most modern

algorithms usually do a good job avoiding local minima, which

is the Achilles heel of gradient-based methods. Thus, it is often

a good strategy to start with an evolutionary algorithm, let it

evolve to a reasonably good solution and then to use the result

as a very good starting point for a direct search method, such

as a gradient method.

Algebraic inference methods for Lotka-
Volterra systems

All the above methods are directly applicable to LV systems.

However, in stark contrast to the direct and evolutionary search
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methods, and due to their specific structure, many other

approaches have been proposed for general or specific LV

inference tasks. We present two methods here: ALVI-LR

(Algebraic LV Inference by Linear Regression) and ALVI-MI

(Matrix Inversion). Both can be used as stand-alone estimation

algorithms or as tools for quickly determining candidate

solutions that are to be subsequently fine-tuned with gradient-

descent based methods.

ALVI-LR. An n-dimensional LV system

dxi

dt
� xi(αi +∑n

j�1βijxj) (9)

can be rearranged by moving each xi to the left-hand side of the

ODE, assuming that xi ≠ 0:

1
xi

dxi

dt
� αi +∑n

j�1βijxj. (10)

If time series data of sufficient quantity and quality are

available, both xi and
dxi
dt can be estimated from the data, and

the task of estimating all αi and βij becomes a straightforward

multi-variate linear regression problem (Varah, 1982; Voit

and Savageau, 1982; Voit and Almeida, 2004). Because values

and slopes can only be estimated at discrete time points, the

regression problem is thus based on equations of the type:

1
xi
Si(tk) � αi +∑n

j�1βijxj(tk) (11)

for each time point tk; k � 1, . . . , K, where Si(tk) is the slope of
species i at time point k. The slope is generically defined as

Si(tk) � lim
Δt �����→ 0

xi(tk + Δt) − xi(tk)
Δt

(12)

and approximately true for reasonably small Δt. For instance, for
Δt = 1, one may estimate

Si(tk) ≈ xi(tk + 1) − xi(tk). (13)

An often-better approximation is the averaged slope in the

“three-point formula”

Si(tk) ≈ [xi(tk + 1) − xi(tk)] + [xi(tk) − xi(tk − 1)]
2

� xi(tk + 1) − xi(tk − 1)
2

.

(14)

For data of exponentially changing populations, it is

furthermore possible to estimate slopes in terms of

logarithms: Because

1
xi

dxi

dt
� dln(xi)

dt
(15)

one may perform the estimation of 1
xi
Si(tk) from data presented

on a logarithmic y-axis and with reasonably small Δt:

1
xi
Si(tk) � ~Si(tk) � lim

Δt �����→ 0

ln(xi(tk + Δt)) − ln(xi(tk))
Δt

(16)

Further information on slope estimation can be found in

(Voit and Almeida, 2004). It should be noted that it is often

advantageous to smooth the data, for instance, with a smoothing

spline, and to compute slopes from this spline (see below).

To summarize, if data are available atK time points, they may

be used to estimate the slopes for the left side of Eq. (Mounier

FIGURE 9
Estimation Results for the Logistic Model with Grid Search and Five Gradient-descent Optimizations. The grid search is within the parameter
domain ([0,3], [-3,0]) for a and ß of a logistic equation. Grid sizes Δx and Δy were set to 0.005. The true minimum of the system (star) is (0.7, -2.0). To
aid the visualization, the values of the loss function were interpolated between grid points to create a surface. Five different initial guesses for the
gradient-descent are labeled with numbers. All sets of initial parameters allow the algorithm to converge at the global minimum (0.7, -2.0).
Losses are depicted on a log10 scale.
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et al., 2007). at each time point and also to populate the xj’s on the

right side, resulting in K linear algebraic equations per variable.

Subsequent linear regression is used for each xi to calculate the αi
and βij that minimize the square errors.

For ease of discussion of the inference task, we may collect

the parameters into a vector p, which depends on the xi’s, and

reformulate Eq. (Mounier et al., 2007). as

~Si(tk) ≈Δt · [1 +∑xj(t)]P. (17)

Written in matrix form (where ~S is a vector of slopes, each

ln(xi(tk + Δt)) − ln(xi(tk))), the estimation task is:

~S≈
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t(1) − t(0)
..
.

t(K) − t(K − 1)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ · ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x1(1) / xn(1)
..
. ..

.
1 ..

.

1 x1(K) / xn(K)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ai
bi1
..
.

bin

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (18)

It is known that noise in observation data is exacerbated in

their slopes (Knowles and Wallace, 1995). This issue can be

addressed by smoothing the raw data. For example, Liao et al.

had good success fitting parameters when using empirical mode

decomposition (Wang et al., 2014b; Liao et al., 2020). Other

common smoothing techniques include splines and the LOESS

method (Cleveland, 1979). For more information on smoothing

see (Olivença et al., 2021). In general, there is no strict criterion

guiding the decision when smoothing is necessary or

beneficial. A somewhat vague rule is to smooth the data if

the signal-to-noise ratio in the sample is so low that it is

difficult to discern whether certain features in the data, like

peaks or overshoots, are biologically reasonable or due to

randomness. Smoothing should also be considered if slopes of

the time trends are to be estimated and if the estimates of

subsequent slopes vary much in magnitude, and especially

in sign.

Smoothing offers other important advantages, beyond

reducing the effects of outliers and noise. Namely, upon

smoothing the trends in the data, values of xi and the

corresponding slopes may be estimated at any points within

the reported time interval, thus increasing the base for

performing regression. Moreover, slopes can be estimated

algebraically from the spline function.

One might ask: If the data are smoothed, why is it even

necessary to estimate an LV model? The answer is that

smoothing functions typically contain numerous parameters

who have no biological meaning whatsoever. In particular,

they do not reveal anything about the nature of the

interactions among the population in a mixed community.

Thus, an effective inference consists of the following steps:

1. Smooth the data, if necessary;

2. Estimate values of xi and of slopes ~Si at K time points and

collect data into data matrices (A) and slope vectors (B);

3. Choose a loss function;

4. Minimize the loss function using Least-Squares Regression,

possibly with normalization and/or regularization.

As an example, consider a two-variable system and choose

Δt = 1. The first equation then reads

~S1(t0) � P(1 + x1(0) + x2(0)) (19)

For a dataset of 11 time points (t = 0, ..., 10), we thus obtain a

vector (B) of 11 slope estimates for species x1. Using the slope

estimate from above, we obtain:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ln(x1(1))
ln(x1(2))

−ln(x1(0))
−ln(x1(1))

..

.

ln(x1(10))
..
.

−ln(x1(9))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (20)

We also formulate a data matrix (A) of values of x1 at

different time points:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 x1(0) x2(0)
1 x1(1) x2(1)
..
. ..

. ..
.

1 x1(10) x2(10)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (21)

The result at each time point is B = A·P. In this

formulation, Δt is incorporated in the elements of the

vector B. This type of equation is established for each

variable in a multi-species system. Each species has its

own unique B matrix, but the A matrix is the same for all

species. Matrix A has an additional column of 1s for each

species. The optimal parameters correspond to the solution of

the equation set A·P-B = 0. Due to noise or the fact that the

smoothed trends are not exactly captured by the LV

equations, the task is now to minimize the function AP-B,

which is most easily accomplished with least-squares

regression. Once all parameter values are inferred, they are

plugged into the LV equations to assess the goodness of fit.

While we have not used bounds on possible parameter values,

they may be imposed on some or all of the parameters in

ALVI-LR estimation tasks.

ALVI-MI. The previous section has demonstrated that the

inference task for LV models becomes linear if time series data

are available from which values xi and slopes are estimated.

Above, we assumed data at K time points and obtained the

solution by linear regression. An alternative is the following.

Instead of using values at all K time points, one uses only

n+1 time points. Assuming that the data and slopes at these

points are linearly independent, the matrices A and B lead to a

system of linear equations that can be solved by simple matrix

inversion. The fact that only n+1 time points are used for each

solution, poses advantages and disadvantages. On the one hand,

the best sample(s) need to be determined. On the other hand,

retaining all results with low SSEs naturally generates an

ensemble of well-fitting models.
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As an illustration, we revisit the simulated example of four

variables with the following data points, with the average of three

replicates, superimposed with 5% Gaussian noise (Table 4).

First, we choose n+1 time points. We should select a

representative (spread-out) sample, so we choose points 1, 2,

3, 8, and 9. We can use the LOESS method to smooth our slopes,

as shown in (Olivença et al., 2021), which gives the matrix slightly

different values than the data points in Table 4. This step is not

necessary for the method to work but may yield slightly better

inferences. It results in the following matrices, with A being the

data matrix and Bi the vector for species i:

A �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 1.03 1.03 1.05 1.00
1 0.580 1.07 0.396 1.32
1 0.535 0.987 0.215 1.36
1 0.638 0.869 0.117 1.32
1 0.662 0.865 0.0958 1.32

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (22)

B1 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−0.695
−0.324
0.0332
0.0230
0.0359

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (23)

Here, each slope is divided by the Δt between time points

sampled. This is done automatically in the ALVI software (see

Software). We now perform regular matrix inversion for each B

and use inv(A)·B to obtain parameter values for the system. The

best results are usually obtained by choosing points that capture

the dynamics of the system well. Solutions with the lowest SSEs

are retained and collected as an ensemble. Figure 11 and Table 5

display the results of a collection of nine sets of points with the

lowest SSEs. Among them, the points 2, 3, 5, six and nine produce

the solution with the lowest SSE. Some of these solutions may be

discarded if they display over- or undershoots that do not appear

reasonable on biological grounds (here, Sets 1, 7, and possibly 8).

How many parameter sets are to be included in the ensemble is a

matter of choosing cut-offs within the set of SSEs and of

biological judgment.

Analysis of the possible point choices indicates that similar

SSE values do not necessarily lead to similar fits. For example, the

lowest SSEs in the above example are obtained with

combinations 6 and 7, which however yield rather different

trendlines. Furthermore, Panel seven displays a larger

overshoot at t = 1 than Panel six and an additional overshoot

between times 3 and 4, which indicates that the SSE should not be

the only criterion when declaring the best fit. For more

information on criteria for good fits see (Voit, 2011).

Estimation of LV parameters from steady-
state data

A new variation on the ALVI methods in the previous

sections is the estimation of interaction parameters from

different steady-state profiles of the system. Such data may

come from similar experiments leading to different outcomes.

As an example, the administration of antibiotics might lead to

different survivor profiles of bacterial species, even if the

experimental set-up is identical in all experiments (Varga

et al., 2022). In this study, administration of Meropenem led

to dominance of either Burkholderia cenocepacia or S. aureus, the

latter of which is normally not able to survive in the presence of

Meropenem. Even without antibiotics, different outcomes can be

seen among biological replicates of the de novo dataset of E. coli

and S. aureus shown in Figure 3. Even though experimental

conditions were the same in all three replicates, experimental

endpoints appeared with dominance of either E. coli or S. aureus.

Mathematically, the structure of such a system permits

several stable steady states, whose basins of attraction are

delineated by separatrices. In this situation, different outcomes

are possible if the initial states of two communities may be quite

close to each other, but are located on different sides of a

separatrix. Thus, the exact same model, with exactly the same

parameter sets, but starting with slightly different initial values of

the species within the community, can lead to distinctly different

steady states, including extinction of one or more species.

Ideally, if the system involves n species, n+1 survivor profiles

would be available, because then a matrix inversion would be

directly possible, as we will demonstrate below. But even if the

data are scarcer, a productive analysis may still be possible, either

with additional information or by using pseudo-inverses of the

involved matrices (Moore, 1920; Albert, 1972; Penrose, 2008). In

terms of additional information, other experiments might have

produced the growth characteristics of each species, growing by

itself which, ideally, had yielded the α and ß for each species by

means of fitting logistic growth equations to individual

populations. Some other methods can be employed to predict

interactions from a snapshot of data, including (Maynard et al.,

2020) and (Xiao et al., 2017), but they do not make use of

information about the growth of each species.

TABLE 4 Simulated data for the four species system.

Point Time X1 X2 X3 X4

1 0 1.054911 1.031277 1.044836 0.989643

2 1 0.549159 1.069698 0.395720 1.348810

3 2 0.551265 0.986707 0.214917 1.345221

4 3 0.549311 0.910363 0.225506 1.326866

5 4 0.574408 0.915890 0.191468 1.300380

6 5 0.623619 0.911596 0.184409 1.340807

7 6 0.632840 0.885918 0.130593 1.371320

8 7 0.635230 0.868838 0.116504 1.312974

9 8 0.663865 0.864625 0.095766 1.320514

10 9 0.679579 0.884405 0.108663 1.351050
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As an illustration, suppose the values of two different steady

states are available for a two-species system. In one experiment,

the two species coexist, but in the second experiment Species two

does not survive. To be specific, suppose these two steady-state

data points are: x1SS � 1.094, x2SS � 0.6235 and

x1SS � 1.25, x2SS � 0. Suppose further that growth rates had

been determined for both species, with values of 2.5 and

0.7 for Species 1 and 2, respectively. These data permit setting

up two steady-state equations with two unknowns. For Species

x1, the equation is

dx1

dt
� 0 � a1x1 + b11x1x1 + b12x1x2. (24)

Dividing by x1, inserting 2.5 for a1, and putting in the first

steady-state profile gives

0 � 2.5 + b111.25. (25a)

Similarly for the second steady-state profile, we obtain

0 � 2.5 + b111.094 + b120.6235. (25b)

Straightforward substitution yields (b11, b12) = (-2, -0.5). In

more general notation, we can convert the equations into the

matrix form:

0 � [ ai
ai
] + [matrix of steady states][ bi1

bi2
] (26a)

0 � [ 2.5
2.5

] + [ 1.25 0
1.094 0.6235

][ bi1
bi2

] (26b)

which can be solved with matrix inversion (or pseudo-inversion

for undetermined equations). The result is

[ bi1
bi2

] � inv([ 1.25 0
1.094 0.6235

])*[ − ( 2.5
2.5

)]. (27)

The method is applicable to systems of any number of

species, if sufficiently many different survivor profiles are

available. If fewer profiles are available, the set of equations is

underdetermined and the method produces a solution space that

contains the correct solution (Voit et al., 2021). Note that this

method assumes that different steady-state profiles exist even

though the species operate under quite similar conditions. The

FIGURE 10
Progression of an Evolutionary Optimization. This figure uses the same logistic function as in Figure 9. (A) The solution successively migrates
from the first population of estimates, with the minimum SSE for parameter set (4.96, -2.59), to the cluster of points in the upper left, where the
solution is fine-tuned in generations 1486–5314. The true solution is at (2.5, -2.0). (B) The SSE is improving in distinct steps and converges to about
2.8·10–9 at generation 5314.

TABLE 5 Sample Point Sets for ALVI-MI inferences and corresponding SSE values for Data in Figure 11.

Set 1 2 3 4 5 6 7 8 9

Points 1,2,4,5,9 1,2,4,7,9 1,2,4,8,9 1,3,4,5,8 2,3,5,7,8 2,3,5,7,9 2,3,5,7,10 2,3,5,8,9 2,3,6,7,10

SSE 0.119 0.123 0.111 0.0960 0.120 0.0337 0.0365 0.0482 0.0593
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profiles may reflect total coexistence or the extinction of one or

more species. If different well-fitting parameter sets are found for

a system, an ensemble of solutions can be established and

statistical arguments may be used to identify the most likely

parameter sets (see Figures 6, 11).

Additional generic methods to fit Lotka-
Volterra models

Due to the popularity of LV models, the research community

has developedmanymore approaches than those enumerated so far.

Some examples are the following: Michalik et al. used an

incremental single shooting strategy to infer LV parameters

(Michalik et al., 2009), while Bergmann et al. employed a

multiple shooting strategy to fit LV models in a piecewise

fashion (Bergmann et al., 2016). Cao et al. proposed a parameter

cascade method (Cao et al., 2007). Waniewsky et al. used an

individual-based model to perform parameter estimation

(Waniewski and Jedruch, 1999). Wenk et al. used a Gaussian

process approach (Wenk et al., 2020), while Martín-Fernández

et al. applied a particle filter method to estimate parameters

while simultaneously measuring biomass (Martín-Fernández

et al., 2014). Xiao et al. inferred interactions using only steady-

state snapshots of data using both brute force and heuristic

algorithms (Xiao et al., 2017).

Estimation of parameters for specific
variants of LV models

The simple LV format can be embellished in uncounted ways.

Correspondingly, parameter inference methods were proposed for

many specific situations. A few examples are listed here.Momeni et al.

made use of mechanistic insights into the modeled phenomenon to

infer interactions in a more effective manner (Momeni et al., 2017).

Zhao et al. parameterizedmodels with jumps (Zhao et al., 2018). Stein

et al. and Dam et al. introduced seasonal variability into an LVmodel

(Stein et al., 2013; Dam et al., 2016; Dam et al., 2020). Zimmer and

Sahle were able to parameterize partially observed LV models

(Zimmer, 2013). Finally, Xu et al. introduced Brownian motion to

simulate external perturbations (Xu et al., 2020).

Comparison of methods applied to
datasets

To compare the methods, we use the same simulated four-

variable dataset that we discussed in the context of top-down/

bottom-up estimation. For a fair comparison, we first identify the

growth rates and fix them in each scenario.1

FIGURE 11
ALVI-MI Fits of Data Points from the Simulated Dataset with Noise and Replicates. Nine different combinations of (n+1) time points yielding fits

with the lowest SSEs are displayed along with the true solution. Altogether, ( 10
5
) � 252 combinations of points are possible. Units are arbitrary. Fits

for all four variables are presented in the Supplements.

1 Note that a full grid search is infeasible even for a problem of this size.

Frontiers in Systems Biology frontiersin.org18

Davis et al. 10.3389/fsysb.2022.1021897

https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2022.1021897


This scenario has a perfect solution since the parameters were

taken from a true Lotka-Volterra system. Nevertheless, none of

the methods finds the exact parameters when all 20 parameters

are allowed to be fit without constraints, which indicates that the

data are of insufficient density to infer the parameters of the

system with confidence. One notes that the dynamics is well

captured with all methods but that the peaks around t = 1 are

different in all solutions. This result again suggests that the data

do not contain sufficient information about that peak, so that the

SSE is unaffected by the size of the peak in the estimation. For this

particular system, the gradient-descent method finds both the

best fit with regard to SSE as well as the closest parameters.

However, all methods are able to find reasonable estimates, with

the exception of the loosely constrained evolutionary method,

which is very clearly overfit. Even if sufficiently many noise-less

data are available, the inferred parameter estimates may not be

100% exact, which may be due to numerical inaccuracies,

especially if slopes of the time trends are to be estimated. It is

also mathematically possible that distinct parameter sets can

generate perfect solutions (Voit, 2018).

For the case published by Piccardi et al. (Piccardi et al., 2019)

and discussed before, we can compare the results to some aspects

of the authors’ inferred interaction network. As their inferred

interactions came from comparing the area under mono- and co-

culture growth curves, they cannot be compared directly to our

Lotka-Volterra analysis. However, we can qualitatively compare

at least the signs of interactions. Despite having the highest SSE,

the linear regression method most closely matches the

interactions that the authors of the paper concluded. The

gradient search method has the lowest SSE but introduces an

overshoot in the second half of the curve. The evolutionary

method also produces some bumps, compared to the linear

algebra-based fits that yield relatively smooth trends. One

notes that the algebraic methods require a fraction of the

computation time to find a solution, although we did not

include data preprocessing, like smoothing, in this argument.

More generally, computation time becomes a practical criterion

of substantial weight if the estimation task targets large models,

with dozens or even hundreds of parameters. It is well possible

that methods fail in these situations, even if they perform well for

small models. One should also mention that some methods,

including the algebraic algorithms mentioned here, are better

suited than others when it comes to speeding up the solution

through parallel computing or the use of multi-threaded

programming. Thus, each method is a compromise, and it is

impossible to declare winners and losers in a general manner.

Discussion and conclusion

Lotka-Volterra models have once again become popular, this

time in the context of microbial communities that often

determine the health of humans and the environment. The

overarching goal in these microbiome analyses is the

identification and quantification of interactions among

different species, which are captured in LV models by

interaction parameters. Thus, an important task is the

inference of these parameters from observational data, both in

terms of signs and magnitudes. Arguably the most informative of

such data are time series that quantify the abundances of the

various coexisting species at a sequence of time points. As is the

case for most dynamical models, this quantification is usually a

considerable challenge. In this overview, we summarize the

typical steps of the parameter inference process, with

particular focus on LV models. These models stand out, due

to their history of successful applications and the fact that the

task of inferring LV parameters from time series data can be

transformed into a linear problem (Voit and Chou, 2010). It is

impossible to devise a rigorous formal test to determine the

accuracy of an LV model for a particular community system, but

extensive work in the literature has been addressing the adequacy

in terms of both experimental applications (e.g., (Dedrick et al.,

2022)) and the computational power of these equations for a

variety of analyses (e.g., (Voit et al., 2021)).

Before specific inference algorithms are called up, it is

beneficial to preprocess the data through data cleaning,

smoothing, and the estimation of slopes, which can

tremendously reduce computation time in large and

moderately large systems. In fact, an analysis of computing

effort indicated that over 95% of the time used by a search

engine to identify optimal parameter values of an ODE

system is spent on integrating these equations, and this

step can be circumvented if slopes can be estimated (Voit

and Almeida, 2004). It is also advisable to consider different

metrics for the quality of data fits resulting from the

parameter inference.

For the inference process itself, we have discussed generic

and specialized methods and applied them to synthetic and real-

world datasets. Analysis of the different examples makes it

evident that each method has aspects in which it excels and

where it has drawbacks. Grid searches are only feasible for very

TABLE 6 Comparison of Methods with the Simulated Dataset in
Figure 12. The difference from true parameters is defined as∑ |Ptrue − Pinferred |. (A) and (B) refer to Figure 12. The two ALVI methods
have higher errors but are obtained in a fraction of the time needed
for the other methods and still generate reasonable fits (cf.
Table 7).

Method Loss Difference from true
parameters

Gradient 8.10 e−7 20.7

Evolutionary (A) 9.12 e−5 87.6

Evolutionary (B) 3.56 e−7 23.6

ALVI-LR 3.23 e−3 36.2

ALVI-MI 2.23 e−3 52.2
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small systems, although the concept can be extended for larger

systems through specialized statistical sampling or Monte-

Carlo simulations. The latter may be useful to obtain a

general impression of solutions throughout the parameter

space, but they seldom reveal reliable quantitative solutions.

The typical gradient methods have been fine-tuned for many

years. They have been and remain to be the true work horses

of parameter estimation but are time consuming and prone

to converging to local minima. Evolutionary approaches have

the potential of leading the search toward the global

minimum of the estimation task but seldom generate exact

answers. It has therefore almost become standard procedure

to initiate a parameter search with an evolutionary method

and follow it up with a gradient method. We also discussed

two newer algebraic LV inference (ALVI) methods that are

based on linear algebra. Their theoretical underpinnings were

previously documented by Xiao et al. (Xiao et al., 2017) and

practically applied in detail to different datasets in (Olivença

et al., 2021). These methods do not always capture the transient

dynamics as well as gradient methods, which is likely due to

imprecision when estimating slopes, but they avoid overfitting

and are computationally so cheap that numerous fits are readily

computed, either to select the solution with the lowest value of

some loss function or to establish an entire ensemble of well-

fitting solutions.

An unbiased overall comparison of all methods is

difficult, as different metrics should be considered that

are truly incomparable (Table 8). These metrics include

the residual error, computation time, multiple solutions

and solutions domains, unrealistic dynamics, and

parameter values that seem biologically doubtful. Thus, it

might be advisable to clean and smooth the data, estimate

slopes, and start with ALVI. In many cases, this procedure

will generate good solutions, but it can also be used as a

quick method for generating good initial guesses for more

refined methods.

In the end, uncounted methods are available but there is still

no silver bullet, and parameter estimation remains to be

TABLE 7 Comparison of Parameter Inference Methods using the Dataset of Piccardi et al. (Piccardi et al., 2019). These values correspond to the fits
from Figure 13. For the loss function, we used the SSE. Time to solution does not include data processing.

Method Loss Time to solution Agreement with interaction
from (Piccardi et al., 2019)

G (%)radient 1.51 e16 ~1 h 67

Evolutionary 1.12 e17 ~4 h 67

ALVI-LR 2.23 e17 < 1 min 87

ALVI-MI 1.90 e17 ~5 min 80

FIGURE 12
Method Comparison with a Simulated Dataset. Black dots represent abundances of species X2 in the simulated dataset. The four curves are fits
to these data, obtained with different strategies. Note that the ALVI-MI fit corresponds to the single best set of points (6 from Figure 11) and not to
some average of an ensemble. (A) shows a solution per differential evolution that is clearly overfit with large, damped oscillations. (B) shows a
differential evolution fit that incorporates tighter constraints for all parameters. Fits for all other methods are essentially the same in both panels,
although they differ in the initial peak and incur different SSEs (Table 6). Time and abundance units are arbitrary. Fits for all four variables are in
Supplements.
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somewhat of an art. In part, this is so because the computational

techniques are still not universally effective and all methods can

boast with examples where they shine. However, the proponents

of these methods should also acknowledge situations where the

algorithms become very slow, ineffective, or fail altogether.

A combined theoretical and computational issue is the

“sloppiness” or “unidentifiability” of parameters in

estimation tasks (e.g., (Arkin et al., 2007; Raue et al., 2009;

Vilela et al., 2009; Srinath and Gunawan, 2010)). Namely, it is

a frequent occurrence that similar—or even very

different—parameter sets produce SSEs of similar quality.

The reason is usually one of two situations: First, the model

may permit exact or approximate redundancies among its

parameters, such as two parameters that always occur in the

model as a product p1·p2, in which case the product may be

estimated, but any combination of p1 and p2 resulting in the

same product yields a different, yet equally good solution.

This particular case is almost trivial, but such redundancies

are quite frequent in actual systems (e.g., (Goel et al., 2008;

Voit, 2018)). Second, the structure of model is such that

many parameter sets yield similar, although not identical fits.

This situation can be troublesome, because an “optimal”

parameter set for a given dataset may fail drastically if the

same parameters are used to model another dataset. A

positive interpretation of this situation leads to the

acceptance of multiple solutions and the identification of

ensembles of models, as we discussed them in the text.

The estimation of parameter values is not only a

mathematical task but has biological implications (Voit,

2011). It may happen that a parameter in the best-fitting

solution has an unreasonable magnitude or even the wrong

sign on biological grounds, for instance, being negative

although it represents a turn-over rate. Finally, the

relatively best parameter set for given data may mask the

fact that the model structure is not even adequate, which

becomes a severe issue when the model is extrapolated

toward new biological situations or data. As an example,

our estimates for the Piccardi data and our own data yield

decent fits, but that does not prove that the LV framework is

even the best option. More complicated models, such as

Generalized Mass Action systems (Voit, 2013) which are

direct extensions of LV systems, could provide better fits, for

instance, by permitting higher-order interactions among

species. These fits with lower SSEs would likely necessitate

a higher number of parameters, raising the difficult question

whether the increased model complexity is “worth it.”

All these challenges can be daunting, but many of them

have at least been identified and subjected to scientific

scrutiny, although they are not definitely solved. But the

effort is certainly warranted. After all, the estimation of

TABLE 8 Comparison of different aspects of the various fitting strategies.

Final loss Computation
time

Preparatory
work

Overfitting Notes

Grid Search Medium
to Low

Very High Low Low Solution is very expensive for larger systems and only as good as the
grid is fine

Gradient Search Low to
Very Low

High Low Very High Good default but can get stuck in local minima

Evolutionary
Search

Low to
Very Low

High Low High Good starting point, but does not generate precise solutions

ALVI-LR Medium Low High Low Is linear and therefore effective but requires estimation of slopes

ALVI-MI Medium to
High

Low Medium Very Low Requires slopes. Quickly leads to both good and bad solutions.
Excellent for establishing ensembles of models

FIGURE 13
Comparison of Parameter Inference Methods for the Dataset
of Piccardi et al. (Piccardi et al., 2019). The species shown is
C. testosteroni. Time is in hours and abundance is in CFU/mL on a
logarithmic scale. The data points are three replicates of the
species.
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parameter values stands between the power of theoretical

models and the biological reality of the actual world.

Software

Simulations and optimization tasks were performed in

the Julia programming language (v1.7) (Bezanson et al.,

2017). Results were visualized with the ggplot2 package

(v.3.3.6) in the R (v4.1.3) programming language or the

Javascript version of the Plotly package (v2.14.0)

(Wickham, 2016; Sievert, 2020). Network visualization was

done with Cytoscape (v3.9.1) (Shannon et al., 2003).

Differential equations were solved using different variants of

Runge-Kutta (Tsitouras, 2011; Rackauckas and Nie, 2017) methods,

depending on the type of problem to be solved. Simulations were

executed in the Julia programming language (Bezanson et al., 2017).

Grid search method: Each parameter was assessed over a

predefined range (0–five for α, -5 to five for βij, and -5 to 0 for

βii) and the model was simulated at Δ � 0.005 increments in each

dimension.

Gradient-descent based method: Parameters were tuned

using the AdaMax (Kingma and Ba, 2014) method with a

learning rate of 1e-3 with 0s as initial parameters using the

Flux optimization package (v0.13.4) (Innes, 2018).

Differential evolution method: Parameters were tuned

with the bounds of -5 to five for α, -5 to five for βij, for the

simulated dataset. Parameters were tuned with the bounds of

-5 to five for α, -1e8 to 1e8 for βij, for the four-species dataset.

The initial population size was 500 and 0s were used as initial

parameters using the BlackBoxOptim package (v0.6.1).

ALVI-LR method: Data were discretized as in (Mounier et al.,

2007) and separated into a vector of abundances and estimated

slopes. Each variable was optimized individually using an interior

point optimization solver (Biegler and Zavala, 2009) in the JuMP

package (v. 1.1.1) (Dunning et al., 2017). Smoothing was performed

with the LOESS method as described in (Olivença et al., 2021).

The ALVI-MI method was performed as described in

(Olivença et al., 2021).

The ALVI survivor profile method was performed as

described in (Voit et al., 2021).
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