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INTRODUCTION

This editorial inaugurates the section Data and Model Integration of the new Frontiers in Systems
Biology. In what follows, I will present a general discussion of topics in data and model integration
which I hope will illustrate the challenging and exciting research opportunities that lay ahead in
computational Systems Biology.

“Without data you’re just another person with an opinion”. (W. E. Deming, 1900-1993).

The Two Worlds of Systems Biology
In Systems Biology two approaches can be distinguished when investigating a biological
system, be it a cell or a complete organism: the bottom up and top-down approaches
(Figure 1A).

The bottom-up approach, or inductive approach (Oltvai and Barabási 2002), begins from a
detailed understanding of a particular biological or biochemical mechanism (or combination
thereof) such as a pathway, a chemical reaction, or a gene regulatory network which constitutes
a subset of a larger and more complex system (Figure 1A). The aim is to create a mathematical
model that can reproduce experimental data (Torres and Santos 2015); such models are usually
based on (systems of) differential equations, and data collected is dynamic in time, but many
other approaches are possible (ElKalaawy and Wassal 2015).

The top-down approach, or deductive approach (Oltvai and Barabási 2002), aims to gain insights
on the whole biological system using system-wide data acquired using high-throughput experimental
techniques, often at different omics levels (Haas, Zelezniak et al., 2017). Information is extracted by
applying statistical modelling, data reduction techniques, and machine learning tools often in
combination with network inference and analysis (Ideker and Krogan 2012; Rosato, Tenori et al.,
2018).

These models are phenomenological in nature but serve to uncover new insights into the
biological system under study (Bruggeman, Hornberg et al., 2007). The goal is to characterize the
interactions among the many molecular constituents of the system (genes, proteins, metabolites) to
describe comprehensibly the interactions among the molecular constituents of the system (genes,
proteins, metabolites, etc.), possibly across different conditions (Ideker and Krogan 2012; Rosato,
Tenori et al., 2018), to understand how these parts interact and how these interactions shape the
system-wide behavior.

The two approaches should be combined in an iterative and virtuous cycle, with the top-down
approach generating hypotheses to be tested experimentally in the laboratory. Experiments should
confirm or disprove the hypotheses and generate or suggest new experiments that will inform a new
set of data in an iterative manner: Ideally, the two worlds of Systems Biology should feed each other
information until a model is produced that is able to reproduce the behavior of the systems under
investigation (Kitano, 2002a; Kitano, 2002b).
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As a matter of fact, the two worlds do not communicate, or
communicate sporadically and with great difficulty, and work as
separate strategies; paradoxically, it is the advancement of both
experimental and computational techniques, with their
increasing refinement and complexity, that drives the bottom-
up and top-down approaches further apart, entrenching systems
biology in silos based on distinct disciplines and methods
(Vodovotz 2021).

Integration is thus the overall grand challenge in Systems
Biology and the Frontiers in Systems Biology is
therefore dedicated to the concept of integration
across disciplines, across modelling scales, across
datasets, and across computational methodologies
(Vodovotz 2021).

Data and Model Integration plays and will play an even
greater role in modern biological science and solicits significant
theoretical and applied advances in different areas of

research, from classical statistic, to machine, to semantic
technologies.

The Challenge Ahead: Data Integration
Requires Different Approaches and
Computational Tools
The advent of high-throughput omics technology and
experimental platforms has enabled the quick and cost-
effective measurement of a biological system at different levels,
from transcriptome to epigenome (Haas, Zelezniak et al., 2017;
Krassowski, Das et al., 2020). This has led to an era where data is
abundantly available but tools to analyze it efficiently are missing
or not optimal (Marx 2013).

Data integration (fusion) aims to combine data from multiple
experimental platforms/omics levels to obtain more information
about a system than could be obtained by considering a single

FIGURE 1 | (A) The two worlds of Systems Biology. Partially adapted from (Chang, Creighton et al., 2013). (B) Overview of data and model integration in the
Systems Biology context.
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type of data (Haas, Zelezniak et al., 2017; Krassowski, Das et al.,
2020) (Figure 1B). A typical example is to combine gene
expression profiles with protein or metabolite abundance
profiles. How to better combine data is an open problem and
the solutions are often devised on an ad-hoc basis.

Since data fusion is common in many fields of research,
different taxonomies have been proposed to describe different
approaches that can be classified according to one of the following
criteria (Castanedo 2013): 1) Relationships between the data
platforms, 2) Input data abstraction, 3) Input and output data
abstraction levels, 4) the JDL (Joint Directors of Laboratories)
data fusion framework (White 1987; Steinberg, Bowman et al.,
1998), and 5) Type of architecture.

In Systems Biology, as well in analytical chemistry (Smolinska,
Engel et al., 2019), the categorization of the data integration
process is based on the abstraction level at which the data are
fused (criterion 2). Under this taxonomy, three abstraction levels
are distinguished, namely, low-, mid-, and high-level data fusion
(Roussel, Bellon-Maurel et al., 2003).

Low-level data integration consists of the concatenation of two
or more data sets (matrices) containing different measurements
acquired on the same objects; such a concatenated matrix is then
used for data analysis. This way of proceeding often results in data
sets containing far more variables than observations which
challenges the use of classical multivariate tools. Mid-level data
integration attempts to resolve this problem by first performing
dimensionality reduction followed by a low-level integration.
Finally, the top-level data integration pertains the combination
of the results obtained from the analyses performed on the
different data matrices.

All these steps are challenging in themselves and impact on
how efficiently we can use different data types to inform Systems
Biology investigation of an organism.

The data integration problem at the low- and mid-level is
usually attacked by means of statistical approaches: a great deal of
work has been made, especially in the chemometrics community,
mostly deploying statistical approaches, often with the goal of
extracting the information that is common or unique to the
different types of data (Hanafi and Kiers 2006; Acar, Lawaetz
et al., 2013; Acar et al., 2014; van der Kloet, Sebastián-León et al.,
2016) with methods like DISCO or DISCO-SCA (Van Deun, Van
Mechelen et al., 2012).

While metabolomics has enjoyed an almost symbiotic
relationship with chemometrics and benefited from it (Rosato,
Tenori et al., 2018), these methods and their use have not
propagated to the other disciplines that inform the top-down
world of Systems Biology, like transcriptomics, proteomics, and
other omics levels. In this respect the challenge is dual faced: from
one side, the necessity of developing tools that can deal with the
ever-increasing amount of data of different natures, on the other
side, the necessity of making these methods available and
understandable to practitioners, overcoming the major
bottleneck responsible for the current siloed nature of Systems
Biology.

I am of the opinion that data integration will benefit greatly
from network science, especially for what concerns the analysis of
network multiplexes (Kivelä, Arenas et al., 2014). While

monolayer networks, such as those built from metabolite
correlations or gene (co-)expression profiles describe
associations between one type of molecular feature or
information, a multilayer network connects nodes exiting in
different layers, thus describing the inter-relationships and
interaction across different levels of a system. This approach is
fully consistent with the representation of a biological system as a
set of interconnected networks, operating at different time and
spatial scales.

Inferring the topology of interaction networks from data
obtained from different omics level will play a bigger role in
Systems Biology, with both synchronous (in a step-by-step
fashion, two omics at a time) and asynchronous (all data
concurrently) integration (Hawe, Theis et al., 2019) with
possible use of prior biological knowledge in the inference
process, not dissimilar to what was proposed for the analysis
of omics data sets (Ramakrishnan, Vogel et al., 2009; Namkung,
Raska et al., 2011; Reshetova, Smilde et al., 2014; Cambiaghi,
Ferrario et al., 2017).

The challenge is now how to cross-link the statistical and
network-based approaches and make them a tool in the toolbox
of the system biologist. This will call for a stronger interaction
between different communities of theoretical and applied
statisticians, bioinformaticians, and chemometricians.

The Challenge Ahead: Tackling Data
Heterogeneity
Taking into account the heterogeneity of the data that recent
technological development has allowed access to will become
a fundamental step. Metagenomics and metaproteomics,
together with data from complex microbial communities
(microbiome), are becoming more common, along with
single cell measurements: DNA, RNA, protein, methylated
DNA, or open chromatin nucleosome positioning can be
simultaneously measured on the same cell. This data
presents a complex structure, a large degree of sparsity,
and an often unknown underlying experimental error
structure. Proper data integration and analysis will be
possible only through the characterization of experimental
noise and its inclusion in all steps of data analysis and
modelling.

The Challenge Ahead: Model Integration
The creation of a mathematical model to understand, predict,
control, or design a biological system is a core theme in Systems
Biology and it lays at the center of the bottom-up world (Torres
and Santos 2015) (Figure 1A). Biological systems are dynamic in
nature, and many biological processes, like enzyme-catalyzed
reactions (Michaelis and Menten 1913), the action potentials
in neurons (Hodgkin and Huxley 1952), the prey-predator
interaction of species (Lotka 1920; Volterra 1926), and
epidemic dynamics (Ross 1915; MacDonald, Cuellar et al.,
1968), have been traditionally formulated as (systems of)
nonlinear ordinary differential equations (ODEs). However,
different approaches exists, based on partial differential
equations, Bayesian equations, stochastic modelling, Petri nets,
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agent-based modelling, etc. [see (ElKalaawy andWassal 2015) for
a review].

All these approaches (Figure 1B) come with different
limitations and challenges: Formulating an ODE model for a
particular biological process may be simple, but the structural
identification and estimation of the model parameters (which
actually contain the information describing the system) are a
critical challenge.

While model identification and estimation has relied on
numerical methods (Moles, Mendes et al., 2003; Chis, Banga
et al., 2011), the last few years have seen the emergence of the use
of machine learning techniques, such as neural networks (Raissi,
Perdikaris et al., 2019; Yazdani, Lu et al., 2020), to solve
estimation problems or the proposal of new approaches which
augment scientific models with machine-learnable structures to
achieve scientifically-based learning (Rackauckas, Ma et al.,
2020). We can anticipate that machine learning and deep
learning will play a pivotal role in the model identification and
estimation, and novel approaches will be devised to address more
complex scenarios such those described through stochastic
modelling.

Answering relevant biological questions and the modeling of
an organism, however, implies going from the study of isolated
mechanisms to the study of the interaction of such mechanisms.
This naturally leads to the problem of model integration which
touches different scales, both temporal and spatial (for which
Frontiers is Systems Biology has a dedicated section: SeeMultiscale
Mechanistic Modeling section https://www.frontiersin.org/
journals/systems-biology/sections/multiscale-mechanistic-
modeling#about).

However, even the integration at a single level poses
tremendous challenges. For instance, the advent of single cell
measurement opens the possibility, at least in principle, to create
models that are cell-specific. Developing algorithms and tools or
conceptual frameworks for integrating such models to
understand the emerging behavior of cells communities (Bak-
Maier and Stojkovic 2005; Aguirre de Cárcer 2020), tissues
(Machado, Duque et al., 2015) and, ultimately, organisms is
thus necessary. Stochastics modelling (Wilkinson 2009;
Wilkinson 2018) at the cell level will be certainly central to
this task, but it comes with its own challenges, among them
the problem of distinguishing between interesting biological
variability and experimental variability, which is, in itself,
sometimes ambiguous (Hsu and Moses 2021).

The Challenge Ahead: Noise as Trait
d’Union Between Data and Model
Integration
Noise permeates biology at all levels (Monod 1971); as far back as
1940, Max Delbruck recognized that fluctuations in small
populations of enzyme molecules could affect cell physiology
(Delbrück 1940). Since then, a great deal of effort and interest has
been put into understanding how biological noise shapes the
behavior of biological systems (Simpson, Cox et al., 2009;
Tsimring 2014; Diambra and Santillán 2019; Eling, Morgan
et al., 2019; Prado Casanova 2020).

However, it should be remembered that the experimental
noise ultimately affects the level of accuracy with which a
system, no matter how big or small, can be described and
characterized. From this standpoint, the characterization of the
experimental noise is the fil rouge connecting data and model
integration (Figure 1B). Characterization of experimental noise
is a formidable task and will call for the input of both theoretical
and experimental communities with a concerted effort of
multidisciplinary expertise, in a truly Systems Biology spirit to
understand data generation mechanisms, to arrive at effective
integration of data and models.

The Challenge Ahead: Sharing and
Dissemination of Data and Models
A discussion about data and model integration cannot stray from
touching a practical yet fundamental aspect: the storing and
sharing of data and models. Successful data and model
integration rests on the assumption that data and models are
curated [not enough emphasis can be put on the curation step and
its implications (Lyngdoh 2013; Freitas and Curry 2016)], openly
shared, and findable without restriction. For this, I strongly
advocate for FAIR (Findable, Accessible, Interoperable, and
Reusable) (Wilkinson, Dumontier et al., 2016) data and
models (https://www.go-fair.org/fair-principles/) (Figure 1B).

Many funding organizations, like the European Commission,
have in now in place policies and mandates that require FAIR
data and Open Access to publications and research data (Collins,
Genova et al., 2018) or, like the American NIH (Health 2018)
(https://datascience.nih.gov/nih-strategic-plan-data-science) and
most recently the UNESCO (https://en.unesco.org/science-
sustainable-future/open-science/recommendation), indicate
FAIR guidelines to open science and data as a guiding principle.

Although most researchers recognize the importance of
sharing research data (and models), most of them had never
shared or reused research data (Y. Zhu, 2020).

Many communities that are an integral part of the system
biology family have proposed data standard and reporting
guidelines (Transcriptomics (Brazma, Hingamp et al., 2001);
Proteomics (Taylor, Paton et al., 2007); Metabolomics (Fiehn,
Robertson et al., 2007); (Figure 1B) but only the genomics
community has a long standing precedent for data sharing
and open science, which dates back to the Bermuda Principles
of 1996 (Cook-Deegan & McGuire, 2017). Why this happened is
difficult to say: Gene expression profiling as we know today
became popular in the second half of the 90’s (Schena et al., 1995,
1996) and the community immediately recognized the
importance of making transcriptomics data widely available.
The GEO database was created in 2000 (Clough & Barrett,
2016). Since then, the deposition of transcriptomics profiles to
the GEO database become a de facto prerequisite for publication.

Here, in the Data and Model integration section, we aim to
foster a systems biology community that is truly FAIR and Open,
inviting contributors to store and share data, models, protocols,
and publications relating to systems biology research projects
through platforms like FAIR-DOM (Wolstencroft, Krebs et al.,
2016) (http://www.fair-dom.org) and relevant databases.
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This implies that we should see an integrative systems biology
relying on the exploitation of semantic web technologies for data
integration and sharing (Figure 1B). The idea of a semantic
systems biology system dates back to the early 2000s (Jenssen and
Hovig 2002) but it is due to initiative such as SEEK (Wolstencroft,
Owen et al., 2011) and FAIR-DOM (Wolstencroft, Krebs et al.,
2016) that it has reached a larger audience and is now ready to be
embraced by the whole community.

CONCLUDING REMARKS

The Data and Model Integration section of Frontiers in Systems
Biology aims to become a forum for the dissemination, sharing,
and discussion of results addressing the theoretical and practical
problems originating from the need to integrate data and data

resources, algorithms, models, and frameworks. The section
welcomes multi- and cross-disciplinary research, spanning
from statistics to network science, from data and computer
science to data analysis, from semantic approaches to
experimental works, aiming to achieve better understanding of
the mechanisms underlying the generation of the diverse types of
data used in systems biology investigations.

“Data! Data Data! I can’t make bricks without clay!” (A Conan
Doyle, 1859-1930).
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