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INTRODUCTION

We are currently in the midst of a genomic revolution in which an avalanche of DNA and RNA
sequencing data can be produced for any organism with almost no limit. These data are fueling the
dissection of quantitative traits and human diseases into their molecular machineries through the
concepts of systems genetics. The past decade has witnessed the emergence of systems genetics as a
discipline of genetics and its tremendous impact on genotype-phenotype mapping. Following Cell
Systems’ 2017 forum in which 16 experts were invited to share their views on the field of systems
genetics (Baliga et al., 2017), the EuropeanMolecular BiologyOrganization (EMBO) convened a special
symposium on the systems genetics of complex traits in 2019 (https://www.embo-embl-symposia.org/
symposia/2019/EES19-08/index.html). Systems genetics studies complex traits through understanding
the flow of information underlying biological processes from genotype to phenotype. This essentiality is
largely above and beyond the reductionist concepts and tools used in traditional genetics.

The central theme of systems genetics is to integrate genetic and genomic data to better reveal the
intrinsic complexity of biological processes underlying phenotypic variation. As an emerging discipline,
the definition of systems genetics, its relevance to other fields, its standing position inmodern biology and
medicine, and its future development to play a more pivotal role, are dynamic, varying in the research
community. Yet, there has been a well-received recognition that the heart of systems genetics is the
network modeling of complex biological systems. A network is the mathematical formulation of a graph
inwhich nodes represent individual entities and links or edges stand for the functional interconnections of
different entities. In genetic networks, a “node”may present a biological entity like a SNP, gene, protein,
metabolite, or even a specific disease/phenotype, whereas an “edge” may represent physical interaction,
chemical induction, signal transduction, or even shared genes among different phenotypes. In this
Specialty Grand Challenge, I list several key challenges for network conceptualization, application and
reconstruction that are immediately faced by system genetics from a personal perspective.

OMNIGENIC INTERACTOME NETWORKS DRIVING COMPLEX
TRAITS

During the past 15 years, there have been enormous applications of genome-wide association studies
(GWAS) to study the genetic architecture of complex traits and diseases. A typical approach for GWAS
data analysis is to identify singleDNAvariants for one phenotype at a time. It turns out that each significant
variant can only account for a tiny portion of genetic variation. Collectively, the portion of genetic variation
explained by all significant variants detected from the whole genome is still below the heritability of a
complex trait. Enormous efforts have been made to retrieve this so-called missing heritability by
considering other types of variants, such as epigenetic marks, copy number variations, or rare
alleles, as contributing factors, but no consensus agreement has been yet reached on where the
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heritability is lost. Theoretical geneticists believe that it is
impossible to retrieve this missing mystery because an
extremely large number of genes of small effects are involved.

More recently, a so-called “omnigenic” model has been
proposed to interpret the genetic architecture of complex traits
(Boyle et al., 2017). This model states that complex phenotypes
are controlled by a small number of “core” genes directly linked to
phenotypic variation and a large number of “peripheral genes”
that play a role through regulatory networks. This model is
essentially similar in spirit to the QTL “oligogenic” model.
Although some argue that the “oligogenic” model already
encompasses the omnigenic extreme, the hypothesis of a few
core (major) genes working along many peripheral (minor) genes
has inspired widespread discussion and the potential
advancement of quantitative genetics. However, the omnigenic
model does not contextualize the complexity of the network to
interrogate how core genes play a more important role than
peripheral genes and why the existence of peripheral genes is
essential given their subtle, even negligible effects.

We argue that the omnigenic model can be tested by inferring
omnigenic interactome networks (OGIN) that cover a complete set of
SNPs genotyped from the whole genome in a GWAS design (Wang
et al., 2021). Such OGIN have many desirable properties that can fill
two major gaps of systems genetics. First, the genetic effect of a SNP
estimated by existing models represents the net effect of this locus.
Beyond this, the OGIN partitions the net effect of each SNP into its
two underlying components: the independent effect that arises when
this SNP is assumed to be in isolation and the dependent effect is
derived from the collective effect of interactions of other SNPs with
this SNP. A core gene may not have a large independent effect, but it
still can play a critical role modulating phenotypic variation because
of itsmore linkswith other genes. Likewise, a peripheral genemay not
necessarily be subtle, but because of its large independent effect
cancelled by dependent effects in an inverse sign. Thus, by altering its
interaction environments to promote or inhibit dependent effects, we
can better edit and utilize a genetic locus of interest. On the other
hand, even if a peripheral gene has a neglectful effect, it may still lead
to an unpredicted change of phenotypic variation. This is because
peripheral genes may individually wield negligible effects but they
may raise the possibility of a “butterfly” effect (from chaos theory) of
genetic interactions, a phenomenon of large unforeseen consequences
caused by a sensitive dependence on a small initial change.

Second, core genes are defined as those with more links in the
network than other genes. Beyond this definition, OGIN can classify
all links of each SNP into “outgoing” and “incoming” types. An
outgoing link describes an “active” process in which a SNP as a
regulator actively promotes or inhibits other SNPs, whereas an
incoming link is a “passive” process of a SNP receiving promotion
or inhibition by other SNPs. OGIN can not only count the numbers of
outgoing and incoming links for a specific SNP, but also quantify the
strength of each of these links. Taken together, OGINwill outperform
a traditional marginal analysis of single genes or single gene pairs,
equipped with a capacity to reveal an overall picture of how the
genotype is connected to the phenotype.

While OGIN can advance systems genetics, its statistical
reconstruction presents a major challenge. There has been a
rich body of literature on network reconstruction, but existing

approaches may not be sophisticated enough to capture favorable
and unique properties of OGIN from general GWAS data. Many
approaches are too specific and fragmented, hardly used to
augment a generalized argument from various problem
domains. For example, by reviewing over 30 network inference
approaches, Marbach et al. (2012) found that no single one
performs optimally across all datasets. Integration of multiple
inference approaches may be robust across diverse datasets, but
each approach has its own underlying mathematical rationale and
assumptions, thus making the results difficult to interpret. Chen
and Mar (2018) further pinpointed that existing approaches lack
performance to reconstruct gene networks using heterogeneous
single cell data that are becoming popular in genetic studies.
Several attempts have beenmade to combine elements of multiple
distinct disciplines to reconstruct maximally informative genetic
networks that function at different levels of organization (Sun
et al., 2021; Wu and Jiang 2021), producing some promising
results that may advance systems genetics (Wang et al., 2021).

TRIDIMENSIONAL NETWORKS ACROSS
TIME AND SPACE

Classic genetic research is aimed at analyzing the association
between genotype and its remote phenotype. The mission of
systems genetics is to unravel the “black box” behind the
processes intermediate between genotype and phenotype by
identifying biological molecules from DNA sequence variants
(also epigenetic marks) to levels of transcripts, proteins and
metabolites to cellular components of complex trait. Approaches
have been available to line up these intermediate phenotypes or
endophenotypes, some of which attempt to infer interaction
networks from multi-omics data. However, these approaches
generally do not attempt to chart a big picture of genotype-
phenotype processes, rather focuses on some certain pathways.
When modeling multi-omics data from different spaces, they do
not take into account the asynchronous feature of signal
transduction. For example, the expression of proteins lags
behind the expression of genes, and metabolites are synthesized
after perception and recognition of the signals originating from
gene or protein elicitors. Thus, these approaches can only project
originally existing space-dependent multilayer networks on one
surface, ignoring how endophenotypes interact with each other
directionally and intertwiningly across spaces.

A unified approach is needed to assemble different types of
endophenotype data into a multilayer and multiplex
mathematical graph. This procedure will generate a
tridimensional network in which surfaces represent interaction
networks of endophenotypes at a single space and vertical edges
represent interaction networks of endophenotypes across
different spaces. For example, when genes G1–G4 form a
surface interaction network at the gene space, their transcripts
T1–T4 generate a surface interaction network at the transcript
space. These genes and transcripts interact across the gene and
transcript spaces to form multiple channels of connectivity. By
linking the gene space to transcript space to protein space to
metabolite space to microbiome space finally to trait space, we

Frontiers in Systems Biology | www.frontiersin.org September 2021 | Volume 1 | Article 7381552

Wu Systems Genetics

https://www.frontiersin.org/journals/systems-biology
www.frontiersin.org
https://www.frontiersin.org/journals/systems-biology#articles


reconstruct a multiscale tridimensional network from which key
nodes and key links can be identified to unveil a roadmap of
genotype-phenotype relationships. This tridimensional network
will be casual, signed, and weighted. It can uncover and quantify
the causal relationships of endophenotypes from one space to the
other or from the second to first. Statistical methods should be
developed to untangle the most likely causal direction between
two given spaces.

HORIZONTAL INTERACTION NETWORKS

Quantitative genetic theory has long focused on modeling how the
phenotype of an organism is determined by its genes and the
environment where it grows. An increasing body of evidence has
unraveled that an individual’s phenotype in a population is also
affected by the phenotypes of other members that coexist with it.
To better dissect phenotypic variation, we as a community will
need to investigate not only how alleles from an individual directly
affect its own phenotype, but also how alleles from the individual
indirectly affect the phenotypes of members that co-exist socially
with it and how alleles from different individuals affect epistatically
the phenotypes of each member in a population. We define
epistasis between genes from different individuals coexisting in
a population as horizontal epistasis, as opposed to the traditional
definition of vertical epistasis as the genetic interaction between
different genes expressed in the same genome. The characterization
of horizontal epistasis can help to chart a more complete atlas of
genetic control for complex traits. To address this challenge, we will
integrate community ecology theory and evolutionary game theory
tomodel and quantify different types of social interactions between
different individuals in a population, community or society. For
example, the fetus carries DNA information from both parents and
grows in the mother’s uterus. Thus, the fetus and its parents form
the smallest society in which each member develops and uses its
optimal strategy to compete or cooperate with the other members
through a coordinated social network.

Statistical methods need to be developed for reconstructing
multiscale interaction networks that govern individual-individual
interactions in a community. Such networks can be divided into
direct genetic networks, indirect genetic networks, and horizontal
epistatic networks from which we can identify key causal pathways
linking genotype to phenotype and predict the growth trajectories
of the intrauterine fetus in particular and community phenotypes
(i.e., assembled phenotypes of multiple species) in general.

RECOVERING MAXIMALLY INFORMATIVE
NETWORKS FROM STATIC DATA

The objective of network theory is to develop a tractable structure
to distill relevant insight into the actions and interactions of a set
of entities. Existing statistical approaches for network inference in
genetics were mostly developed or modified from some aspects of
network analysis in physical or social disciplines and, thereby,
may not fully consider and capture biological complexities. For
example, some approaches can estimate the strength of

interaction but fail to identify its direction, some can infer
causality but cannot recover feedback cycles, and some can
characterize all these network features but fail to determine
the sign of interaction. For these reasons, many gene networks
reconstructed by existing approaches are so-called nondirectional
correlation networks or directed acyclic graphs. An approach that
can not only fully capture all network properties, but also take
into full account the biological requirements and complexities of
complex trait dissection is sorely needed.

Wu and Jiang (2021) have developed a statistical model that
can reconstruct bidirectional, signed, and weighted interaction
networks. From a technical perspective, inferring such so-called
informative networks requires temporal or perturbed data that
provide an extra dimension for dynamic fitting. However, these
types of data cannot be collected logistically or ethically in many
studies; e.g., the genotype-tissue expression tissue (GTEx) project
only can collect RNA-seq data once from dying donors. It is very
challenging to collect time-series omics data from individual cells
at high resolution using current sequencing techniques. In
addition, transcriptional profiles of genes in cells or tissues
may stochastically fluctuate over time and space, making it
difficult to fit their dynamic trends using mathematical and
statistical functions. Wu and Jiang (2021) developed a
conceptual idea to convert static data into their dynamic
representation, thus providing a key step to recover
informative networks from static data. This methodological
breakthrough facilitates the use of network tools based on
static data which are much more readily collected and much
more common than temporal data.

CONCLUDING REMARKS

The Integrative Genetics and Genomics section will provide a
forum to strengthen and disseminate interdisciplinary research
into systems genetics and create a synergistic environment for
researchers worldwide to cross-promote and cross-pollinate the
generation process of new ideas by connecting unrelated ideas
brought from their own fields. We expect to publish new theories
and statistical models that refresh and solidify the methodological
foundation of systems genetics to better unveil life’s complexities.
The paradigm shift of genetic research from a reductionist
thinking to holistic thinking will enable downstream
researchers to predict more complete manifestations of
complex traits and diseases and design rational breeding
programs and therapies in translational sciences.
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