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In his 1859 work “On the Origin of Species,” Darwin acknowledged evolution as a slow
process not readily observable (Darwin, 1859). However, in 1878, Reverend Dallinger
conducted a groundbreaking experiment (Hass, 2000). Cultivating protozoa in a controlled
environment with increasing temperatures, he observed them adapt to higher heat levels.
Darwin, upon learning of this, remarked on the significance of the results (Lenski, 2011).
Dallinger’s experiment, the first Adaptive Laboratory Evolution study, demonstrated the
adaptability of even simple organisms and provided a tangible observation of evolution
within a human lifetime.

In the 1960s, non-canonical amino acids (ncAAs) were viewed as growth inhibitors and
antimetabolites (Richmond, 1962). However, the pioneering works of Wong (1983) and
Bacher and Ellington (2001), in which tryptophan (Trp) was replaced by fluorinated
analogs, showed that microbes can adapt adeptly in synthetic microenvironments and
achieve substantial replacement levels. Trp, a rare amino acid encoded by a single TGG
codon, is an ideal target due to its recent addition to the genetic code (Fournier and Alm,
2015), with diverse anthropogenically produced indole side chains like fluoroindole (or
fluorotryptophan) (Budisa and Paramita Pal, 2004). Despite this, reassigning over
20,000 codons in Escherichia coli to chemically modified analogs remain a formidable
task (Zhang and Ellington, 2020).

Notably, strict analytical evidence for the full replacement of Trp with analogs in the
proteome was elusive until 2015 when Hoesl et al. (2015) reported on the evolution of the
chemical composition of the Escherichia coli. Using adaptive laboratory evolution (ALE),
they were able to prove analytically that all Trp residues were completely replaced by the
non-canonical amino acid analog L-beta-(thieno[3,2-b]pyrrolyl)alanine ([3,2]Tpa).
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Subsequently, in 2019, Agostini et al. (2020) performed ALE
experiments, successfully incorporating 4- and 5-
fluorotryptophan into the entire E. coli proteome.

There are two reports in the current issue of Frontiers in
Synthetic Biology that fundamentally address these questions.
The first report by Tolle et al. (2023) provides a mechanistic
understanding of the complete adaptation of E. coli to ([3,2]Tpa)
as the sole replacement source for Trp. In the second report,
Treiber-Kleinke et al. (2024) present a comprehensive study
focusing on fermentation protocols that enable the strict,
proteome-wide replacement of Trp with 6- and 7-
fluorotryptophan.

Performing a “clean” proteome-wide exchange in microbial cells
with a well-defined auxotrophic metabolic prototype and defined
genomic background is challenging for several reasons, primarily
rooted in empirical experimental design. The traditional approach
involves serial dilution in minimal media with decreasing Trp
concentrations over time, alongside a constant high level of
analogs throughout ALE (Figure 1). However, difficulties arise
due to the presence of traces of Trp in commercially available
preparations, even those labeled as “ultrapure.” Cells tend to
adhere to these residual traces under selection pressure
for analog use.

In the works of Hoesl et al. (2015), Agostini et al. (2020), Tolle
et al. (2023), and Treiber-Kleinke et al. (2024), overcoming challenges
involved the utilization of chemically pure fluoroindole or analogous
compounds like thienopyrrole. These were meticulously synthesized
to exclude any presence of canonical (“natural”) Trp. In addition,
state-of-the-art mass spectrometric analyses of proteomes and
metabolomes were performed to ensure a thorough examination of

the cellular composition and to detect any traces of Trp in the
experimental setup.

Now, armed with well-established empirical protocols, we can
advance to contemplate the chemical evolution of synthetic cells
using various synthetic ncAAs. This involves a genomic-level
approach, monitoring the emergence of key mutations in genes
associated with various cellular processes, including the general
stress response, amino acid metabolism, stringent response, and
chemotaxis. Understanding these adaptation mechanisms to non-
canonical biomass components is crucial for informing strategies in
engineering synthetic metabolic pathways and cells (Lefèvre-
Morand et al., 2024). With a substantial body of empirical data
on ALE through ncAA proteome-wide insertions, the significance of
the “oligogenic barrier” (Mat et al., 2010) becomes increasingly
apparent. This barrier comprises a relatively small number of genes
that must undergo mutation to facilitate the successful insertion of a
new, non-canonical amino acid into the genetic code (Acevedo-
Rocha and Schulze-Makuch, 2015).

The overcoming of these hurdles is illustrated by the discovery of
Tolle et al. (2023): adapted bacterial strains successfully overcome
the adverse effects associated with the incorporation of synthetic
amino acids at Trp positions. This adaptation primarily involves the
suppression of the growth-inhibitory stress response within the
regulatory networks of the bacterial strains (Figure 1). Essentially,
these strains have evolved to enforce a phenotype capable of utilizing
[3,2] Tpa as a core building block by effectively modulating their
regulatory networks, particularly by suppressing the stress response.

It is crucial to emphasize that substituting amino acids involves
chemically diversifying their side chains. Efforts to modify the
“alanine core” (Kubyshkin and Budisa, 2019a), as seen with

FIGURE 1
Escherichia coli is able to overcome the frozen state of the genetic code by mitigating its own stress response. In this context, the work of
Tolle et al. (2023) is important evidence that the genetic code and the rigidity (conservation) of the protein translation machinery are also “guarded” by
the regulatory network of metabolism, signal transduction and physiology in general.
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proline analogs (Kubyshkin and Budisa, 2019b), are generally poorly
tolerated and frequently rejected by the universally conserved
protein translation machinery. Nevertheless, these experiments
underscore the remarkable adaptability of the protein translation
apparatus to chemical variations in amino acid side chains. The
works of Hoesl, Agostini, Tolle, and Treiber-Kleinke clearly show
that, among other factors, the stress response acts as both a physical
and a biological constraint when attempting to alter the amino acid
repertoire of the genetic code.

The findings emphasize that the universally conserved
repertoire can be experimentally altered by addressing biological
constraints, such as specific metabolic regulatory networks that
have played a role in maintaining or “freezing” the code (Figure 1).
Consequently, the laboratory-driven reassignment of codons
becomes a feasible task when conservation mechanisms like the
stress response or the quality of protein folding are effectively
mitigated or bypassed. This illustrates the potential for further
advances in our ability to “unfreeze” the genetic code through
specific interventions in biological processes, using an efficient
top-down approach to alter the chemical composition of
living cells.

These experiments will provide a critical mass of empirical data
that will enable us to use sophisticated genome-editing tools to
configure chassis to adapt and thrive in man-made chemical
processes. We are indeed at the very beginning of the long
journey towards synthetic species away from the “old” living
world (Marliere, 2009). With a built-in genetic firewall ensured
by biological compounds of mostly anthropogenic origin, these
chassis will allow us to create and explore strange new life forms

and establish Xenobiology (Budisa et al., 2020) as the science of
alien life forms.
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