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In physical science such as physics and chemistry, there are governing principles
that are universal and applicable to all relevant systems, including energy
conservation, entropy increase, uncertainty principle in quantum mechanics,
and chemical equilibrium. However, what are governing principles in biology
that are unique to all living systems? After collecting opinions and thoughts from
diverse scientists and engineers all over the world, I summarize seven governing
principles or laws in biology: central dogma, evolution, biological robustness,
regeneration, reproduction, development, and causality. Some of these are not
necessarily unique in biological systems from a reductionist’s point of view (e.g.,
causality), and others are applicable predominantly to eukaryotes (e.g.,
reproduction and development). Notably, many engineering systems have
mimicked biological systems to enhance their performance. In this perspective
article, I discuss these principles to better understand the rules of life and help
construct improved engineering systems that we can use and control in an ethical,
safe, and rational way.
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1 Introduction

We constantly ask questions regarding our meaning of existence. To partly answer these
questions, we have studied our physical world, discovering governing principles in physics
and chemistry, including thermodynamic laws in chemistry, chemical equilibrium
principles, uncertainty principle in quantum mechanics, Einstein’s relativity theory, and
Newton’s laws. These principles are elegant, simple, and universal. However, are there such
laws in biology? If so, what are such governing principles that are unique to biology? I have
asked these questions almost every day since 1991, and I have recently collected researchers’
opinions and insights, while traveling for more than 300 days and interacting with diverse
people since November 2021. In this article, I summarize biological principles that are
unique to living systems. In addition, I discuss engineering systems that mimic these
biological principles to enhance their performance. Such discussions will deepen our
understanding of the rules of life and help create better and safer engineering systems
such as artificial intelligence and ChatGPT (Silver et al., 2016; Michaud et al., 2022; Gao et al.,
2023).

2 Central dogma

There is no doubt that central dogma should be one of the governing principles in
biology. Genetic information is transferred from DNA to protein by transcription and
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translation, and this information transfer is the core of modern
molecular biology. Interestingly, the information age or the use of
the word “bit” for “binary digit” began with Claude Shannon’s
seminal paper in 1948 (Shannon, 1948), 5 years prior to the
discovery of the DNA double helix. DNA replication is related to
the fourth and fifth principles, regeneration and reproduction,
respectively, which will be discussed later. I found that
researchers generally think about genetic information transfer,
rather than DNA replication, when they mention central dogma.
Thus, I focus on the information transfer in this section.

Scientists first saw the biological alphabet ATGC 70 years
ago, well summarized by and culminated with the discovery of
the DNA helix structure (Moon, 2023). The Sanger and next-gen
DNA sequencing technologies have then allowed researchers to
read the alphabet, words, sentences, and paragraphs. With DNA
synthesis technology, researchers have written letters, words,
sentences, and poems, facilitating the discovery of the rules of
life. Combined with state-of-the-art technologies such as CRISPR
genome or base editing (Jinek et al., 2012; Jiang et al., 2013;
Komor et al., 2017), DNA can now store information, including a
huge number of books, music, and data (Church et al., 2012).
Interestingly, the early synthetic biology studies focused on
mimicking digital electronic circuits (Elowitz and Leibler,
2000; Gardner et al., 2000; Moon et al., 2012), and now digital
information is being stored using DNA (Sheth et al., 2017; Lin
et al., 2020). Notably, biological systems are more analog than
digital, and the genetic information flow, governed by central
dogma, should be understood in an analogous manner (Daniel
et al., 2013), rather than ON and OFF of gene expression
although different levels of abstraction and digitalization can
facilitate our understanding of the complex biological systems
(Shen-Orr et al., 2002; Endy, 2005).

3 Evolution

Evolution makes living organisms unique, compared to other
physical and engineered systems. Evolution means changes in
genetic information typically over a long time. Although other
physical systems also change or degrade over time, the unique
aspect of evolution is the selection of adapted organisms in
response to environmental changes. With directed evolution
technologies that use a variety of selection pressures in a short
period (Arnold et al., 2001), the field of synthetic biology has
advanced significantly. However, with metabolic burdens and
intrinsic selection pressure that lead to the accumulation of loss-
of-function mutants, evolution is the most challenging problem
that bioengineers have faced and will face (Rottinghaus et al.,
2022). Notably, the concept of evolution has been adopted by
other fields of study such as genetic algorithms in computer
science (Renner and Ekárt, 2003), but evolution is a sword with
two edges for biological researchers who are optimizing genetic
circuits by directed evolution and trying to ensure their
mutational stability, as well as computer scientists who are
developing self-evolving artificial intelligence that can both
benefit and potentially harm humans.

4 Biological robustness, homeostasis,
or biological control

Biological robustness is the ability of biological systems to
maintain their functions against perturbations and uncertainty
(Kitano, 2004; 2007). This is truly unique to living cells, and
many engineered systems mimic living organisms to achieve this
ability, including thermostats, airplane controllers, car cruise
controllers, and pH controllers for fermentations. Biological
robustness is also a comprehensive concept, including
homeostasis and biological control (Aoki et al., 2019). In essence,
biological robustness is characterized by the entropy decrease within
the living system while the bigger increase of entropy occurs in the
surrounding environment. Unfortunately, biological robustness is
achieved by spending a lot of energy, and reckless human activities
have caused many global issues, including climate crisis, pollution,
food shortage, pandemic, and quickly diminishing resources (Moon,
2022).

We should discover new ways to live without sacrificing our
planet. For example, I view the entire planet as a huge living system
where diverse individual organisms (acting as a cell of the
“multicellular” planet) used to maintain biological equilibrium
(e.g., prey-predator population oscillation) or robustness through
material recycling (e.g., plant or bacterium growth on dead creatures
as discussed below). However, our planet may be approaching the
tipping point of a catastrophic collapse by only boosting cancerous
growth of humans and destroying diverse other “cells” of the
multicellular planet. As I have previously proposed (Moon,
2022), nitrogen-fixing bacteria can replace chemical nitrogen
fertilizers (Temme et al., 2012), food supplements such as
lycopene can be bio-manufactured from plastic waste (Diao et al.,
2023) instead of extracting them from foods, and bacteria might help
humans keep warm without using too much petroleum-based
energy (Dhatt et al., 2023). In this way, biological robustness of
the planet and humans can be maintained hand in hand.

5 Regeneration

Regeneration is another unique biological process, as T.S. Eliot
describes April as “the cruelest month, breeding lilacs out of the dead
land” in the Waste Land. With the decomposition and degradation
of dead bodies (i.e., entropy increase), new creatures are born and
grow (i.e., entropy decrease inside the living cells with its increase
outside these cells). This process occurs universally, including the
growth of plants, fungi, and bacteria using depolymerized biomass
and waste and that of the plant scavenger such as herbivores. The
regeneration process has even inspired many art pieces and movies,
including the movie Matrix where humans’ metabolic energy is
exploited by the machines. Unfortunately, humans have recently
generated more waste than the entire living systems can use for their
regeneration in a timely manner. However, synthetic biology can
harness its engineering power to address this issue by developing
waste valorization technologies, processes for capturing carbon
dioxide, and plastic-eating microbes (Yoshida et al., 2016; Liew
et al., 2022; Moon, 2022).
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6 Reproduction

In addition to regeneration that recycles materials and energy of
typically dead bodies and waste to produce new components of
living cells, reproduction is unique to biology in that reproduction
typically requires male and female. However, reproduction is not
necessarily universal because it is mostly limited to eukaryotic cells.
From mating yeasts to love-making people, this reproduction
process also allows for DNA recombination, contributing to
genotypic and phenotypic diversity and evolution. For humans
and some animals, this biological characteristic is linked to one
of the basic instincts, triggering complex emotions and sometimes
challenging issues.

7 Development

Although not necessarily universal, another unique rule is that
living systems, especially eukaryotes, have a developmental process.
Although even a microbial community from a single ancestor often
consists of differentially “developed” cells (e.g., antibiotic-susceptible
actively growing cells and antibiotic-resistant dormant cells (Dewachter
et al., 2019)) and a photosynthetic bacterium can be developed into a
filamentous structure consisting of photosynthetic and nitrogen-fixing
cells (Berla et al., 2013), the development process is predominantly
found in eukaryotic organisms. It can be hypothesized thatmulticellular
systems have evolved from a community of cooperating single cells that
originate from a single prokaryotic ancestor (Lyons and Kolter, 2015;
Mizuno et al., 2022). Interestingly, in mammals, the development
process is precisely controlled over the long period, making them
unique (e.g., a new-born baby period, childhood, adolescent period,
and adulthood). Notably, humans require not only biological
development but also intellectual and social development through
education, making us develop in a slow but unique way, compared
to other organisms, although other animals also learn social behaviors
such as dominance hierarchy (i.e., a ranking system within the habitat)
and playing (e.g., dogs enjoying the company of other dogs).

8 Causality

Causality can be too general to be applicable to biological systems
only. As the “butterfly effect” says that a butterfly’s small movement can
lead to a disastrous storm in an opposite part of the globe, causality is a
term describing a cause and effect in physical, chemical, and biological
worlds. Nevertheless, I include causality as one of the seven governing
principles in biology because it gives living systems the meaning of
existence or uniqueness: decision or choice and its resultant
consequence. Perhaps, humans live to discover our meaning of
existence although not all find it while living in this world. Living
systems, from microbes to humans, also make decisions constantly by
an intelligent process, gut feeling, automatically induced response, or
stochastic gene expression. Each decision or choice also leads to a
deterministic or stochastic cascade of cause-and-effect or choice-and-
fate, influencing many biological processes discussed above, including
those relevant to the other six governing principles. Notably, causality
can sometimes be easy to predict (e.g., adrenaline increase in response to
threats and bacterial chemotaxis), but it can often be very difficult to

predict due to the complex gene regulatory ormetabolic network as well
as a complicated web of intercellular or interspecies interactions
(Becskei and Serrano, 2000; Paulsson, 2004; Pedraza and van
Oudenaarden, 2005; Austin et al., 2006; Ley et al., 2006). Despite the
complexity in understanding or predicting causality, all current living
systems may be the products of causality processed by evolution.

9 Conclusion

In this article, I discuss and summarize the seven governing
principles in biology that have been collected from many researchers
and thought leaders all over the world for almost 2 years while traveling
andmeeting them in person. Although some of the seven principlesmay
be considered not unique in biology by some people (e.g., causality),
others are unique and universal in biology (e.g., central dogma and
evolution). Many engineering systems have mimicked biological
systems to make them function better, and we have witnessed their
amazing improvement. For example, ChatGPT and artificial intelligence
have evolved through machine learning (Duan et al., 2019), and many
engineering systems have been built and optimized such that they
maintain their robustness under fluctuating conditions (Kitano, 2004;
Kitano, 2007). With a plethora of new technologies, it is time to think
about biological systems, including ourselves, to better understand
humans and better control engineering systems. I urge readers to
start discussing the ethical, societal, economic, and safety
implications of these seven principles when developing and assessing
engineering systems mimicking biological systems.
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