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Editorial on the Research Topic

Role of protein palmitoylation in synaptic plasticity and neuronal

di�erentiation, volume II

Post-translational modifications (PTMs), such as S-palmitoylation described here, add

to the already large diversity of protein amino acid code. These modifications act as a

dynamic switch that regulates protein function by altering protein localization and activity,

as well as interactions with other molecules, lipids, glycans, and nucleic acids. Most PTMs

utilize charged or polar groups as the covalent modifications that trigger this switch.

Protein S-palmitoylation is one of a group of PTMs that differs from most others in that

a hydrophobic, lipid-like group is linked to the substrate during the modification. For S-

palmitoylation, usually the fatty acid palmitate is the added modification. As a result, the

modification causes cytoplasmic proteins to be first targeted to and then to associate with

the cytoplasmic leaflet of the plasma membrane or other organellar membranes. Integral

membrane proteins are also S-palmitoylated. However, the role of S-palmitoylation of

membrane proteins is more subtle than for cytoplasmic proteins, aiding in the sorting of

proteins to specialized lipid domains such as lipid rafts (see Hayashi article below) or the

selective trafficking between endomembranes along the secretory pathway (Smotrys and

Linder, 2004; Aicart-Ramos et al., 2011).

The most common type of palmitoylation, S-palmitoylation, is reversible, occurs via

thioester linkage to cysteine residues, and is catalyzed by palmitoyl acyltransferases (PATs).

This is distinct from other forms of protein palmitoylation (e.g., N-palmityolation), which

are irreversible and use a different set of palmitoylating enzymes (Linder and Deschenes,

2007; Resh, 2021). PATs are large, multi-pass integral membrane proteins containing a

conserved catalytic site positioned near the inner membrane leaflet (Fukata et al., 2004;

Greaves and Chamberlain, 2011; Korycka et al., 2012). This conserved region consists

of the aspartate-histidine-histidine-cysteine (DHCC) sequence, and thus, PATs are also

referred to as zDHHC proteins (Fukata et al., 2004; Greaves and Chamberlain, 2011;

Korycka et al., 2012). Considering S-palmitoylation is typically a dynamic and reversible

process, both the palmitoylation and depalmitoylation processes act to regulate modified

proteins. Depalmitolyation is mediated by cytoplasmic thioesterases which are still being

characterized (Lin and Conibear, 2015a,b; Won et al., 2018; Koster and Yoshii, 2019).
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The importance of S-palmitoylation is evident, since this

modification occurs on∼11% of the human proteome (Blanc et al.,

2015). This modification and other PTMs are highly prevalent

in the proteome (Kang et al., 2008; Sanders et al., 2015), as

their dynamic nature coincides with the shuttling of molecules

(or groups of molecules) to and from synaptic domain being the

basis for plasticity. In the nearly 5 years since the first volume

of this Research Topic was published (Yoshii and Green, 2020),

more progress has been made in characterizing how protein S-

palmitoylation influences synaptic form and function, neuronal

plasticity, and the brain at the systems level. Much of the most

recent work centers on the influence of synaptic activity/plasticity

on synaptic protein palmitoylation, building on the seminal

findings of Noritake et al. (2009). For instance, several new

studies demonstrate activity-dependent changes to synaptic protein

palmitoylation, including the enzymes that mediate palmitoylation

themselves (Nasseri et al., 2022; Abazari et al., 2023). Similarly,

multiple lines of experiments (Shen et al., 2022; Koster et al.,

2023) reveal that the palmitoylation of postsynaptic scaffolds,

neurotransmitter receptors, and other synaptic molecules are

crucial for mediating homeostatic synaptic plasticity (Turrigiano

et al., 1998; Turrigiano, 1999). Finally, recent work also solidifies

a role for synaptic protein palmitoylation in various forms of

plasticity that may underlie learning across different species

(Nelson et al., 2020; Nasseri et al., 2022; Seo et al., 2022). In

the current Research Topic, several groups have examined how

palmitoylation of synaptic proteins affects their precise localization,

interactions with other synaptic molecules, and the downstream

consequences of dysregulated synaptic palmitoylation.

In a brief article reporting new findings with respect to long-

term plasticity at glutamatergic synapses, the Hayashi lab presents

new evidence that phosphorylation of the GluA2 subunit of AMPA

receptor at tyrosine 876 (GluA2-pTyr876) requires intact lipid rafts.

Specifically, Hayashi demonstrates that Tyr876 phosphorylated

GluA2 is largely localized to a biochemically isolated lipid raft

fraction in primary cortical neurons. Further, disruption of lipid

rafts abolished the typical stimulation-dependent phosphorylation

of GluA2 at Tyr827. Together, these results suggest a crucial role

for palmitoylation of Src member kinases like Fyn in the selective

trafficking of GluA2 to lipid rafts, providing a model by which

palmitoylation controls the compartmentalization of kinases to

regulate synaptic strength.

A study from Barylko et al., examines the palmitoylation-

dependent localization of calmodulin kinase-like vesicle-associated

(CaMKv), a pseudokinase that is required for the maintenance of

dendritic spines and typical synaptic physiology (Liang et al., 2016).

The authors demonstrate that CaMKv is indeed palmitoylated at

the predicted site (cysteine 5; Collins et al., 2017) and that its

palmitoylation is required for localization of CaMKv to the plasma

membrane. Intriguingly, the article also shows that CaMKv directly

interacts with the immediate early gene, Arc, in a palmitoylation-

dependent fashion. These data suggest that the palmitoylation of

both Arc and CaMKv are involved in the activity-dependent endo-

and exocytosis of AMPA receptors during Hebbian plasticity.

The studies from Chen et al., and the Yoshii lab group both

provide novel insight into how palmitoylation of the A-kinase

anchoring protein 5 (Akap5) influences its role as a postsynaptic

scaffold. First, a detailed light and electron microscopic study

of Akap5 nanoscale organization demonstrates that N-terminal

palmitoylation of Akap5 is necessary for it adapting a vertical

(i.e., extended) orientation relative to the postsynaptic membrane,

similarly to PSD-95 (Jeyifous et al., 2016). Palmitoylated Akap5

is also more likely to associate with the postsynaptic density and

synaptic endosomes, while palmitoylation had a lesser effect on

the extrasynaptic Akap5 pool. Performing the same analyses with a

palmitoylation-deficient mutant of Akap5 revealed that concurrent

with loss of this characteristic vertical, extended orientation, it is

displaced from the postsynaptic density. These findings indicate

that palmitoylation of Akap5 underpins its stability in synaptic

sub-compartments, like the postsynaptic density.

In a series of experiments, the lab of Dr. Akira Yoshii

demonstrates that Akap5 is overly palmitoylated in a model

of infantile Batten disease, which occurs due to a mutation

in a depalmitoylating enzyme. Building on the evidence from

Chen et al. here, as well as previous studies on Akap5 function

(Purkey et al., 2018; Sanderson et al., 2018), they demonstrate

that the excessive palmitoylation of Akap5 in this disease model

correlates with a plasticity-dependent excessive upregulation of

the AMPA receptor subunit GluA1. Further scrutiny implied

that aberrant Akap5 palmitoylation links synaptic receptor

activation to downstream pro-inflammatory signaling through

its transcriptional targets, which exacerbated the Batten disease

phenotype under these circumstances. Taken together, these studies

point to the palmitoylation state of Akap5 as a critical regulator of

glutamate receptors and local signaling pathways.
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