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Introduction: Cancer patients treated with paclitaxel often develop

chemotherapy-induced peripheral neuropathy, which has not been effectively

treated with drugs. The anti-diabetic drug metformin is effective in the treatment

of neuropathic pain. The aim of this study was to elucidate effect of metformin

on paclitaxel-induced neuropathic pain and spinal synaptic transmission.

Methods: Electrophysiological experiments on rat spinal slices were performed in

vitro and mechanical allodynia quantified in vitro.

Results: The present data demonstrated that intraperitoneal injection of

paclitaxel produced mechanical allodynia and potentiated spinal synaptic

transmission. Intrathecal injection of metformin significantly reversed the

established mechanical allodynia induced by paclitaxel in rats. Either spinal

or systemic administration of metformin significantly inhibited the increased

frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in spinal

dorsal horn neurons from paclitaxel-treated rats. We found that 1 h incubation

of metformin also reduced the frequency rather than the amplitude of sEPSCs in

the spinal slices from paclitaxel-treated rats.

Discussion: These results suggested that metformin was able to depress the

potentiated spinal synaptic transmission, which may contribute to alleviating the

paclitaxel-induced neuropathic pain.
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1. Introduction

Paclitaxel is a frontline clinical drug used to treat many solid tumors (Hagiwara and
Sunada, 2004). A common dose-limiting adverse side effect of paclitaxel is chemotherapy-
induced peripheral neuropathy (CIPN), which can result in severe acute and chronic pain
during paclitaxel treatment and after withdrawal (Han and Smith, 2013; Sisignano et al.,
2014). So far, there is still a lack of effective drugs to treat the paclitaxel-induced neuropathic
pain in clinic (Burgess et al., 2021). Spinal central sensitization is an important mechanism
underly neuropathic pain, which is characterized by enhanced synaptic transmission in
the spinal dorsal horn neurons (Woolf, 2011). There is evidence that excitatory synaptic
transmission in spinal dorsal horn neurons is enhanced in CIPN, which involves increased
excitability of primary sensory afferent neurons (Li et al., 2015). Electrophysiological
recordings show that the frequency of excitatory postsynaptic currents (EPSCs) of dorsal
horn neurons is increased in paclitaxel-treated rats (Xie et al., 2016).

Metformin is a drug widely used to treat type II diabetes. Metformin has been found
to reverse the established mechanical hyperalgesia in a variety of neuropathic pain, such as
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pain caused by spinal cord nerve ligation and spared nerve
injury (Melemedjian et al., 2011, 2013). In addition, metformin
can also prevent neuropathic pain caused by chemotherapy
(Mao-Ying et al., 2014; Inyang et al., 2019). It is still unclear
whether metformin alleviates paclitaxel-induced neuropathic pain
by affecting synaptic transmission in the spinal dorsal horn
neurons. The present study indicated that spinal dorsal horn
neurons displayed enhanced spontaneous excitatory postsynaptic
currents (sEPSCs) in paclitaxel-treated rats, which was significantly
inhibited by intrathecal and systemic administration of metformin
in rats and incubation of metformin in spinal slices. Intrathecal
administration of metformin also reversed the paclitaxel-induced
mechanical allodynia.

2. Materials and methods

2.1. Animals

Male Sprague–Dawley rats (3–4 weeks of age) were housed in
individual cages. The rats had free access to food and water. Room
temperature was controlled at 23 ± 2◦C during a 12 h light/dark
cycles. All animal experimental protocols were approved by the
Animal Research Ethics Committee of Hubei University of Science
and Technology (2016-03-005). To evaluate the effect of intrathecal
treatment with metformin on sEPSCs in spinal dorsal horn neurons
from paclitaxel-treated rats, animals were randomly divided into
three groups (n = 18, 6 rats in each group). In control group
(CON), rats were injected corresponding vehicle intraperitoneally
and intrathecally, respectively. In paclitaxel-treated group (PAC),
rats received intraperitoneal injection (i.p.) of paclitaxel (2 mg/kg
per injection at day 1, 3, 5, and 7) and intrathecal injections (i.t.) of
50 µl vehicle. In paclitaxel-metformin (i.t.)-treated group (MET),
metformin (100 ug in 50 ul, at day 8, 9, and 10) was intrathecally
treated in paclitaxel-treated rats. To further investigate the effect
of systemic treatment with metformin on sEPSCs in spinal dorsal
horn neurons from paclitaxel-treated rats, rats were randomly
divided into three groups (n = 18, 6 rats in each group). In
control group (CON), rats were injected corresponding vehicle
intraperitoneally. In paclitaxel-treated group (PAC), rats received
intraperitoneal injection (i.p.) of paclitaxel (2 mg/kg per injection
at day 1, 3, 5, and 7) and 50 µl vehicle (i.p. at day 8, 9, and 10).
In paclitaxel-metformin (i.p.)-treated group (MET), metformin
(200 mg/kg, at day 8, 9, and 10) was intraperitoneally treated
in paclitaxel-treated rats. At day 11 or 12, spinal cord slices
were prepared to record sEPSCs in all rats. To study the acute
effect of metformin on sEPSCs, spinal slices (at day 11 or 12)
from paclitaxel-treated rats were incubated by oxygenated ACSF
containing metformin (2 mM) or vehicle for 1 h, and then
sEPSCs were recorded.

2.2. Intrathecal Surgeries and drug
application

Intrathecal catheters were implanted on rats 15 days before
paclitaxel treatment. Under deep anesthesia with a mixture of
ketamine (75 mg/kg) and medetomidine (0.5 mg/kg), rats were

inserted a polyethylene-10 catheter into their subarachnoid space
through L5–L6 intervertebral space, and the tip of the catheter was
located at the L5 spinal segmental level. To establish a mechanical
allodynia model, rats received intraperitoneal injection (i.p.) of
paclitaxel (Sigma-Aldrich, 2 mg/kg) at day 1, 3, 5, and 7, with
a cumulative dose of 8 mg/kg. Paclitaxel was dissolved in a
1/1 Cremophor EL (Sigma-Aldrich)/ethanol solution then further
prepared with 0.9% saline for injection. Rats in the control group
received the vehicle (Cremophor EL/ethanol, 1:1) on the same
four alternate days. Metformin (Sigma-Aldrich) was treated at day
8, 9, and 10. Metformin was dissolved in artificial cerebrospinal
fluid and delivered through the intrathecal catheter. Metformin
was also dissolved in 0.9% saline and intraperitoneally injected.
After paclitaxel and metformin were applied, rats were sacrificed
to prepare spinal cord slices for electrophysiological recordings
at day 11 or 12.

2.3. Spinal slice preparations

The rats were anesthetized with 1.5 mg/kg urethane (10%,
i.p.). A laminectomy was performed, and the lumbar segment was
quickly removed and immersed in oxygenated (95% O2 and 5%
CO2) cold ACSF. The ACSF contained 95.0 mM NaCl, 1.8 mM
KCl, 0.5 mM CaCl2, 7.0 mM MgSO4, 1.2 mM KH2PO4, 26.0 mM
NaHCO3, 15.0 mM Glucose and 50.0 mM Sucrose. Its pH was
adjusted to 7.3–7.4 with NaOH and osmolarity to 310–320 mOsm/L
with sucrose. The pial-arachnoid membrane was removed from the
section. The L5 spinal segment was fixed on the cutting bracket
with cyanoacrylate glue, then, 350 µm thick spinal cord slices were
cut with a vibratome (Leica VT1200S Microsystem). Slices were
incubated in ACSF oxygenated at 35◦C for at least 1 h and then
transferred to the recording chamber.

2.4. Electrophysiological recordings

The slice was placed into a recording chamber and continuously
perfused with recording solution at a speed of 3–4 ml/min. The
recording solution contained 127.0 mM NaCl, 1.8 mM KCl, 2.4 mM
CaCl2, 1.3 mM MgSO4, 1.2 mM KH2PO4, 15.0 mM glucose,
and 26.0 mM NaHCO3, oxygenated with 95% O2, and 5% CO2,
at a pH of 7.3–7.4, and an osmolarity of 300–310 mOsm/L.
Recordings of sEPSCs were performed using whole-cell voltage-
clamp. All recordings were conducted in lamina II neurons at the
L5 spinal level. Lamina II outer zone was identified by its distinctive
translucent appearance and neurons were visualized using a water-
immersion objective on an upright infrared Olympus microscope
(BX51WI, Japan) with differential interference contrast/infrared
illumination. sEPSCs were recorded using an EPC-10 amplifier and
PULSE program (HEKA Electronics, Lambrecht, Germany). The
recording pipette had a resistance of 8–10 M� when filled with
the internal solution containing: 140.0 mM K-gluconate, 3.0 mM
KCl, 4.0 mM NaCl, 0.2 mM EGTA, 10 mM HEPE and 2.0 mM Mg-
ATP. Only a seal resistance of ≥ 2 G� and an access resistance of
20–35 M� were used for electrophysiological recording. The series
resistance was optimally compensated by ≥70% and constantly
monitored throughout the experiments. In the presence of 10 µM
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bicuculline and 5 µM strychnine, sEPSCs were recorded from
neurons clamped at −70 mV. After a 15 min stabilization period,
synaptic events were recorded for 4 min in every slice. A spinal
cord slice was obtained from each animal and only a neuron was
recorded in a slice.

2.5. Behavioral tests

Male rats were placed in a Plexiglas chamber and adapted to
the environment for at least 30 min before behavior experiments.
Mechanical allodynia was measured by paw withdrawal threshold
(PWT). After rats were coded and pretreated with paclitaxel,
different groups of rats then received intrathecal injection of vehicle
or different dose (10, 30, and 100 ug in 50 ul, i.t. at day 8, 9, and
10) of metformin, separately. After 30 min metformin injection, the
other experimenter tested PWT of the hind plantar using a series of
von Frey filaments (Stoelting, Wood Dale, IL, USA). Experimenters
who performed behavioral tests were blinded to all treatments.

2.6. Data analysis

Spontaneous events were performed and analyzed using Mini
Analysis Program version 6.0.3 (Synaptosoft, Decatur, GA, USA).
Analysis was performed in Igor pro6.10A software. Data were
expressed as mean ± SEM and statistically compared using
unpaired t-test or analysis of variance (ANOVA), followed by
Bonferroni’s post-hoc test.

3. Result

3.1. Paclitaxel-induced mechanical
allodynia is prevented by intrathecal
injection of metformin

To evaluate the effect of metformin on paclitaxel-induced
mechanical allodynia, rats were intrathecally injected with
different dose of metformin versus vehicle, and then their
mechanical thresholds were compared. We observed that rats
displayed mechanical allodynia after administration with paclitaxel
(4 × 2 mg/kg, cumulative dose 8 mg/kg). Figure 1 shows that the
mechanical withdrawal thresholds of rats were decreased 1 day after
paclitaxel injection. The decrease was further intensified, which was
significantly different from baseline value at day 0. Since day 7,
withdrawal threshold of paclitaxel-treated rats remained stable at
low levels throughout the experiment. Figure 1 shows intrathecal
administration of metformin (10, 30, and 100 ug in 50 ul, i.t. at day
8, 9, and 10) dose-dependently prevented the paclitaxel-induced
mechanical allodynia (P < 0.01 and 0.001, Bonferroni’s post-hoc
test, compared with vehicle, n = 10 rats). Mechanical allodynia only
partially developed in the paclitaxel and 100 ug metformin-treated
rats, which was significantly less than that of the paclitaxel–vehicle-
treated rats at days 8–15. These results suggested that intrathecal
injection of metformin dose-dependently prevents the established
mechanical allodynia induced by paclitaxel in rats.

FIGURE 1

Intrathecal injection of metformin reverses paclitaxel-induced
mechanical allodynia in rats. Treatment with paclitaxel (8 mg/kg at
day 1, 3, 5, and 7) significantly reduced the paw withdraw threshold
(PWT, in grams) in rats. Intrathecal injection of metformin (at day 8,
9, and 10) prevented paclitaxel-induced mechanical allodynia in a
dose-dependent manner. N = 10 rats in each group, **P < 0.01,
***P < 0.001, two-way ANOVA followed by Bonferroni post-hoc
test, compared with PAC + Vehicle group.

3.2. Intrathecal treatment with
metformin inhibits the increased
frequency of sEPSCs in spinal dorsal horn
neurons from paclitaxel-treated rats

At day 11 or 12, sEPSCs in spinal dorsal horn neurons were
recorded. Figure 2A shows the sEPSCs traces from three groups
of rats. Cumulative distributions shows that the curve of sEPSC
interevent interval was significantly shifted leftward in paclitaxel-
treated (PAC) rats (Figure 2B), but no change in the curve of sEPSC
amplitude (Figure 2D), compared with those from control (CON)
rats. Figures 2C, E shows that sEPSC frequency was significantly
increased (1.86 ± 0.26 Hz vs. 0.6 ± 0.07 Hz, P < 0.01, n = 6
neurons from 6 rats) without change in amplitude with paclitaxel,
compared with those from control treatment. Metformin reversed
this effect (Figures 2B, C). Intrathecal treatment with metformin
significantly inhibited the increased frequency of sEPSCs with
paclitaxel, as observed in paclitaxel-metformin treated (MET)
rats (0.87 ± 0.07 Hz vs. 1.86 ± 0.26 Hz, P < 0.05, n = 6
neurons from 6 rats; Figures 2B, C), but not affected the sEPSC
amplitude (Figures 2D, E). The results indicated that intrathecal
administration of metformin inhibited the increased frequency of
sEPSCs in spinal dorsal horn neurons from paclitaxel-treated rats.

3.3. Incubation of metformin reduces
sEPSC frequency in spinal dorsal horn
neurons from paclitaxel-treated rats

Figure 3 shows that incubation of slices with metformin
for 1 h had also effects on sEPSCs in spinal dorsal horn
neurons from paclitaxel-treated rats. Cumulative distributions
shows that metformin incubation significantly shifted the curve
of sEPSC interevent interval rightward and had no effects on
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FIGURE 2

Intrathecal injection of metformin decreases the frequency rather than the amplitude of sEPSCs in spinal cord slices from paclitaxel-treated rats.
(A) Typical traces of sEPSC recordings in spinal cord slices from control (CON), paclitaxel-treated (PAC), and paclitaxel-metformin (i.t.)-treated (MET)
rats. Metformin (Met, 100 ug in 50 ul) was intrathecally injected daily in paclitaxel-treated rats at day 8, 9, and 10. Cumulative distributions (B,D) and
the bar graphs (C,E) show the frequency rather than the amplitude of sEPSCs increased in spinal dorsal horn neurons from paclitaxel-treated rats,
The increased sEPSC frequency recorded in slices from paclitaxel-treated rats was significantly decreased by intrathecal injection of metformin.
However, metformin had no effect on sEPSC amplitude. Data are expressed as means ± S.E.M. N = 6 neurons from 6 rats, one-way ANOVA followed
by Bonferroni post-hoc test, ∗∗P < 0.01, compared with control rats, #P < 0.05, compared with paclitaxel-treated rats. VH = –70 mV.

the curve of sEPSC amplitude, indicating that metformin made
the intervals between sEPSC events longer, but not significantly
changed sEPSC amplitude, compared with vehicle incubation
(Figures 3B, D). Figures 3B, D show that metformin incubation
also significantly reduced the sEPSC frequency (0.99 ± 0.19 Hz

vs. 1.75 ± 0.38 Hz, P < 0.05, n = 6 neurons from 6 rats),
rather than sEPSC amplitude, in the slices from paclitaxel-
treated rats. These results indicated that metformin had an acute
effect on sEPSCs in spinal dorsal horn neurons from paclitaxel-
treated rats.
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FIGURE 3

Incubation of metformin inhibits the frequency of sEPSCs in spinal dorsal horn neurons from paclitaxel-injected rats. (A) Typical recording traces of
sEPSCs in spinal cord slices incubated with ACSF containing vehicle or metformin. Cumulative distributions (B,D) and the bar graphs (C,E) show
incubation ACSF containing metformin (2 mM) decreased the frequency rather than the amplitude of EPSCs in spinal dorsal horn neurons from
paclitaxel-treated rats. Data are expressed as means ± S.E.M. N = 6 neurons from 6 rats, ∗P < 0.05, unpaired t-test, compared with vehicle + PAC.
VH = –70 mV. All slices (at day 10 or 11) from paclitaxel-treated rats were pre-incubated in ACSF containing metformin or vehicle for 1 h at 35◦C.

3.4. Systemic treatment with metformin
reduces the increased frequency of
sEPSCs in spinal dorsal horn neurons
from paclitaxel-treated rats

Figure 4A shows the sEPSCs traces in spinal dorsal horn
neurons from three groups of rats. Cumulative distributions shows
that the curve of sEPSC interevent interval was significantly
shifted rightward in paclitaxel-metformin (i.p.)-treated (MET)
rats, compared with those from paclitaxel-treated (PAC) rats
(Figure 4B). However, no change in the curve of sEPSC amplitude
was observer between the two groups of rats (Figure 4D).
Figures 4C, E show that intraperitoneal injection of metformin
also significantly decreased the increased frequency of sEPSCs

(1.18 ± 0.37 Hz vs. 1.89 ± 0.42 Hz, P < 0.01, n = 6 neurons from 6
rats), but did not affect the sEPSC amplitude in spinal dorsal horn
neurons from paclitaxel-treated rats. The results indicated that
systemic treatment with metformin also suppressed the increased
frequency of sEPSCs in spinal dorsal horn neurons from paclitaxel-
treated rats.

4. Discussion

This study showed that mechanical allodynia was induced by
intraperitoneal injection of paclitaxel and reached its peak within
the 7th day to the 15th day after paclitaxel administration. We
demonstrated that consecutive intrathecal injection of metformin
at day 8, 9, and 10 dose-dependently alleviated the established
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FIGURE 4

Systemic metformin inhibits the frequency of sEPSCs in spinal dorsal horn neurons from paclitaxel-injected rats. (A) Typical recording traces of
sEPSCs in spinal dorsal horn neurons from control (CON), paclitaxel-treated (PAC, i.p.), and paclitaxel (i.p.)-metformin (i.p.)-treated (MET) rats.
Metformin (Met, 200 mg/kg) was intraperitoneally injected daily in paclitaxel-treated rats at day 8, 9, and 10. Cumulative distributions (B,D) and the
bar graphs (C,E) show systemic administration of metformin reduced the frequency rather than the amplitude of sEPSCs in spinal dorsal horn
neurons from paclitaxel-treated rats. Data are expressed as means ± S.E.M. N = 6 neurons from 6 rats, one-way ANOVA followed by Bonferroni
post-hoc test, ∗∗P < 0.01, compared with control rats, #P < 0.05, compared with paclitaxel-treated rats. VH = –70 mV.

mechanical allodynia in paclitaxel treated rats. Consistently,
spinal and systemic application of metformin could suppress the
potentiated spinal synaptic transmission in paclitaxel-treated rats.

It has been well documented that enhanced neuronal activation
in the spinal dorsal horn is involved in a variety of pathological pain
(Woolf, 2011). These include neuropathic pain induced by sciatic
nerve-injury, diabetes, paclitaxel or vincristine chemotherapy
(Weng et al., 2003; Li et al., 2010; Nie and Weng, 2010; Yan

et al., 2015). Our results showed the frequency rather than the
amplitude of sEPSCs in superficial dorsal horn neurons was
increased in spinal cord slice from paclitaxel-treated rat. Previous
studies have shown that the nociceptive synaptic transmission
is enhanced by intraperitoneal injection of paclitaxel, which
contributes to chemotherapy-induced neuropathic pain (Zhu et al.,
2015; Xie et al., 2016). We observed that the increased frequency
of sEPSCs did not occur after consecutive intrathecal or systemic
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administration of metformin in paclitaxel-treated rats, suggesting
metformin prevented the paclitaxel-induced potentiation of spinal
synaptic transmission. The increased frequency of sEPSCs was also
significantly suppressed after the spinal cord slices from paclitaxel-
treated rats were pre-incubated with metformin for 1 h, indicating
the short-term treatment with metformin has an acute effect
on enhanced synaptic transmission. However, pretreatment with
metformin decreases sEPSC amplitudes and has no effect sEPSC
frequency in oxaliplatin-incubating spinal slices (Ling et al., 2017).
The possible reason for this discrepancy is the different effects
of oxaliplatin on spinal synaptic transmission. Oxaliplatin only
increases sEPSC amplitudes in spinal cord slice without change
in sEPSC frequency (Ling et al., 2017). The present and previous
studies have shown that paclitaxel had a direct effect on the
increasing frequency of EPSCs in the spinal cord (Li et al., 2015).
It has been found that DRG neurons, including their terminals,
are the targets of paclitaxel attack (Matsumoto et al., 2006; Scuteri
et al., 2006; Hara et al., 2013; Li et al., 2021). These findings suggest
that paclitaxel may interact with presynaptic terminals in the dorsal
horn, but not directly with postsynaptic neurons and other spinal
neurons.

The current results cannot reveal the mechanisms underlying
inhibition of sEPSC frequency by metformin in paclitaxel-treated
rat spinal cord slices. Recently, metformin has been reported to
inhibit L-type voltage-dependent calcium channel (Wang et al.,
2020). In spinal lamina, the L-type calcium channel is located at
presynaptic terminal and involved in synaptic transmission (Kim
et al., 2001; Qian et al., 2013). The L-type calcium channel blocker
can reduce the frequency of sEPSCs in spinal lamina in peripheral
nerve injury model (Alles et al., 2018). It needs to be further verified
whether metformin prevented the enhanced synaptic transmission
in paclitaxel-treated rat spinal cord slices through inhibition of
L-type calcium channel.

The present study showed that intrathecal injection of
metformin reversed the established mechanical allodynia produced
by paclitaxel in rats, similar to its role in paclitaxel-induced and
nerve injury-induced neuropathic pain (Melemedjian et al., 2011,
2013; Inyang et al., 2019). However, intraperitoneal injection of
metformin could prevent development of mechanical allodynia
induced by cisplatin and paclitaxel in mice only when the injection
was started before the administration of these chemotherapeutics,
and has no effect when metformin was injected after the cisplatin
application (Mao-Ying et al., 2014). It is unclear whether the reason
for this discrepancy is related to the route of administration and
animal species. Most studies believe that the analgesic effect of
metformin is mainly depends on the activation of AMP-activated
protein kinase (AMPK), which can alleviate the nociceptive
behavior of animals in a variety of pain models, such as those
caused by nerve injury, surgical incision, diabetes neuropathy and
chemotherapy (Melemedjian et al., 2011; Tillu et al., 2012; Mao-
Ying et al., 2014; Ma et al., 2015; Maixner et al., 2015; Wang
et al., 2018; Inyang et al., 2019). Decreased AMPK activity was
found in the dorsal horn of the spinal cord in animals with partial
sciatic nerve ligation. Spinal AMPK knockdown by siRNA results in
behavioral hypersensitivity (Maixner et al., 2015). Especially, mice
lacking AMPKα1 display increased glutamatergic synaptic activity
in the spinal dorsal horn and mechanical allodynia (Maixner et al.,
2016). These findings provide a clue that metformin may suppress

the potentiated spinal synaptic transmission and relieve paclitaxel-
induced neuropathic pain by activating spinal AMPK signaling,
although it need to examine whether metformin could increase
the expression of AMPK in the spinal dorsal horn of rats with the
neuropathic pain.

5. Conclusions

In conclusions, metformin was able to depress the potentiated
spinal synaptic transmission, which may contribute to alleviating
the paclitaxel-induced neuropathic pain.
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