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Calcium signaling in astrocytes
and gliotransmitter release
Julianna Goenaga, Alfonso Araque, Paulo Kofuji* and
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Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States

Glia are as numerous in the brain as neurons and widely known to

serve supportive roles such as structural scaffolding, extracellular ionic and

neurotransmitter homeostasis, and metabolic support. However, over the past

two decades, several lines of evidence indicate that astrocytes, which are a

type of glia, play active roles in neural information processing. Astrocytes,

although not electrically active, can exhibit a form of excitability by dynamic

changes in intracellular calcium levels. They sense synaptic activity and release

neuroactive substances, named gliotransmitters, that modulate neuronal activity

and synaptic transmission in several brain areas, thus impacting animal behavior.

This “dialogue” between astrocytes and neurons is embodied in the concept

of the tripartite synapse that includes astrocytes as integral elements of

synaptic function. Here, we review the recent work and discuss how astrocytes

via calcium-mediated excitability modulate synaptic information processing at

various spatial and time scales.
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Introduction

Nervous systems throughout the animal kingdom vary in structure and complexity and
are made up of neurons, specialized cells that can receive and transmit chemical or electrical
signals, and glial cells, historically considered to only provide support functions to neurons.
Glial cells were first described by Virchow in the 1850s as “nervenkitt” or nerve glue, implying
a homogenous population of support cells holding them together (García-Marín et al., 2007).
However, several different types of glia can be differentiated based on their different functions
and morphology. Among them, there are microglia, oligodendrocytes, and astrocytes. The
term astrocyte was coined by Michael von Lenhossek to describe star-shaped cells observed
in histological brain specimens (Parpura and Verkhratsky, 2012). Subsequently, Camillo
Golgi and Ramon y Cajal with the development of novel histological stains illustrated several
astrocytes with their elaborated processes (García-Marín et al., 2007; Navarrete and Araque,
2014). Conventionally, two major classes of astrocytes have been distinguished in histological
sections of the central nervous system (CNS) based on their morphology and distribution,
the fibrous and protoplasmic astrocytes (Miller and Raff, 1984). The fibrous astrocytes are
located mainly in white matter with few straight and long processes. Their processes are
long (up to 300 µm), though much less elaborate as compared to protoplasmic astroglia.
The protoplasmic astrocytes are mainly found in gray matter and are characterized by
their extremely elaborate morphology with many branching processes yielding a “bushy”
or “spongiform” appearance. Protoplasmic astrocytes extend their endfeet to blood vessels
and enwrap them to form the glial limiting membrane, which is the outermost wall of the
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blood–brain barrier (BBB). More recently, the emergence of
molecular approaches such as RNA-sequencing and proteomic
analysis has revealed a much larger degree of astrocytic
heterogeneity across various brain regions. Excellent reviews
related to this topic can be found elsewhere (Zhang and Barres,
2010; Farmer and Murai, 2017; Miller, 2018; Xin and Bonci, 2018;
Matias et al., 2019).

Astrocytes customarily have been identified using the
intermediary filament protein Glial Fibrillary Acid Protein (GFAP)
as a histological marker (Shehab et al., 1990; Zhang et al., 2019;
Batiuk et al., 2020; Jurga et al., 2021). Other markers such as the
enzyme glutamine synthetase or a Ca2+ binding peptide S100
have also been applied (Norenberg, 1979; Gonçalves et al., 2008).
Transcriptome analysis of purified astrocytes identified novel
molecular markers for astrocytes such as aldehyde dehydrogenase
family 1 member L1 (Cahoy et al., 2008) or the transcription factor
Sox9 (Sun et al., 2017).

Electrophysiologically, astrocytes are characterized by their lack
of voltage-gated conductances, displaying a quasi-linear voltage-
current relationship (Stevens and Wang, 1995). The expression
of large amounts of inwardly rectifying potassium channels
confers astrocytes with their characteristic low input resistance
and membrane potential close to the equilibrium potential for
transmembrane potassium. The principal potassium channels are
the weakly inwardly rectifying Kir4.1 channels (Nwaobi et al., 2016)
although other potassium channels such as the two-pore domain
TWIK-1 and TREK-1 channels are also likely to be expressed in
astrocytes (Zhou et al., 2009). Another major conductance found
in astrocytes is the connexin channel such as connexin 43 which
provides gap junctional coupling among astrocytes (Nagy and
Rash, 2000). This gap junctional coupling allows the intercellular
passive diffusion of endogenous signaling molecules, such as
inositol (1,4,5)-triphosphate (IP3) (Leybaert et al., 1998), as well
as glucose and its metabolites, glutamate, glutamine, and lactate
(Medina et al., 1999). Therefore, astrocytes are considered to form
a functional network of communicating cells.

Astrocytes also express various transporter proteins on
the plasma membrane for the uptake of neurotransmitters.
Transporters are vital for the normal CNS physiology by
maintaining neurotransmitter homeostasis and modulating
synaptic transmission. It is estimated that astrocytes remove about
80% of the glutamate released, whereas the remaining 20% is taken
up by neurons (Parpura and Verkhratsky, 2012). Astrocytes remove
extracellular glutamate by excitatory amino acid transporters
(EAAT). Five types of EAATs are present in the human brain; the
EAAT1 and EAAT2 are expressed almost exclusively in astrocytes
(the rodent analogs are known as glutamate/aspartate transporter,
GLAST, and glutamate transporter-1, GLT-1) (Murphy-Royal et al.,
2017; Mahmoud et al., 2019).

Studies in the past few years have shown that astrocytes are
spatially organized to form exquisite tridimensional structures
(Gavrilov et al., 2018; Refaeli et al., 2021; Aten et al., 2022).
Reconstruction of protoplasmic astrocyte assemblies in the rat
hippocampus showed that astrocyte cell bodies are evenly spaced,
and their processes overlap only minimally creating a “tiling” of
astrocytes (Bushong et al., 2002; Ogata and Kosaka, 2002). This may
be the case in some other brain regions as well (Halassa et al., 2007)
though overlap of astrocyte territories have also been described
(López-Hidalgo et al., 2016). Perhaps even more surprising is how

a single astrocyte with its large territory and complex morphology
can massively interact with a neuronal network. Indeed, a single
astrocyte in the rat hippocampus is estimated to occupy a territory
of 66,000 µm3 of neuropil and contact over 140,000 synapses
(Bushong et al., 2002).

As discussed above, the role of astrocytes in promoting
neurotransmitter clearance at synapses has long been recognized.
A more unconventional role of astrocytes at synapses has emerged
in the last three decades. The deployment of calcium imaging
techniques in cultured cells and in brain slices provided evidence
that when neurons communicate with each other they also
signal to astrocytes. In turn, astrocytes respond to this neuronal
signaling by releasing various neuroactive substances, mentioned
in detailed in the section below, such as ATP, glutamate, D-serine,
and GABA. Thus, the astrocytes form the third element at the
synapses. Not only the information flows from presynaptic to
postsynaptic elements but also streams to astrocytes that, in turn,
regulate synaptic communication. This intimate morphological
and functional association of astroglial processes in a synapse led
to the conceptual term of a “tripartite synapse” (Figure 1).

Astrocytic Ca2+ excitability

The plasticity of neuronal connectivity requires dynamic
cooperation between neurons and astrocytes (Allen and Eroglu,
2017). Astrocytes change their morphology and synaptic coverage
to scale synaptic strength and modulate neuronal circuit activity
(Gómez-Gonzalo et al., 2017; Verkhratsky and Nedergaard,
2018; Henneberger et al., 2020; Semyanov and Verkhratsky,
2021). Although not electrically excitable, astrocytes display
complex intracellular Ca2+ pathways as a major component of
astrocytic signaling. Interaction between synapses and astrocytic
arborization promotes astrocyte Ca2+ events to modulate astrocyte
neurotransmitter and K+ uptake, the release of neuroactive
molecules (Wang et al., 2012; Zorec et al., 2012; Araque et al., 2014),
and regulation of local blood flow (Petzold and Murthy, 2011;
MacVicar and Newman, 2015). Astrocyte Ca2+ events manifest
differentially in space and time within single astrocytes and across
astrocytic networks (Semyanov et al., 2020). In soma and primary
branches, Ca2+ events are primarily initiated by intracellular
Ca2+ release from Ca2+ stores in the endoplasmic reticulum
(ER) and mitochondria (Verkhratsky et al., 2018). Moreover,
astrocytic Ca2+ transients mainly have also been suggested to
occur by Ca2+ entry through the plasma membrane following Na+

increases during neurotransmitter uptake via the sodium/calcium
exchanger (NCX) (Verkhratsky et al., 2018) or after activation of
other ionotropic Ca2+ permeable receptors and transient receptor
potential channels (Shigetomi et al., 2011, 2013; Shibasaki et al.,
2014; Rakers and Petzold, 2017).

In contrast to neurons, astrocytes contain processes with
distinct morphology and complement organelles that generate
widely distributed Ca2+ loci that allow them to differentially
respond to synaptic activity and integrate multiple synaptic inputs
(Perea and Araque, 2005; Bernardinelli et al., 2014; Semyanov
et al., 2020). Astrocytic branches are intermingled with neuronal
structures and contain Ca2+ stores that can trigger and amplify
Ca2+ events by activation of inositol-1,4,5-triphosphate receptors
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FIGURE 1

Synaptic regulation of astrocyte Ca2+ signaling. Astrocyte leaflets sense and respond to synaptic activity through neurotransmitter receptors and
transmitter transporters. Ca2+ transients are triggered by Ca2+ entry and by Ca2+ release from the endoplasmic reticulum (ER) through inositol
1,4,5-triphosphate receptors (IP3R) after G-protein-coupled receptor (GPCR) activation. Mitochondria also participate in Ca2+ loci by action of
mitochondrial permeability transition pore (mPTP) and mitochondria sodium/calcium exchanger (NCX). Ca2+ can be removed from the cell by
action of Ca2+ ATPase (PCMA) or mobilized to the ER by sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA). NKA, Na+/K+ ATPase; InsP3,
inositol 1,4,5-trisphosphate; MCU, mitochondria Ca2+ uniporter; ROS, reactive oxygen species.

(IP3Rs). IP3Rs are synergistically modulated by IP3 and Ca2+

levels and further Ca2+-dependent phospholipase C activation,
stimulating Ca2+ release from the ER (Foskett et al., 2007; Khakh
and Sofroniew, 2015). Ca2+ levels can also reach the threshold
for activation of IP3Rs by activation of plasmalemmal G-protein-
coupled receptors (GPCRs) (Semyanov and Verkhratsky, 2021)
and via increased diffusion of Ca2+ from multiple daughter
leaflets (Semyanov, 2019). Intracellular Ca2+ amplification between
clusters of IP3Rs can propagate Ca2+ waves within the astrocyte
cell body and further astrocytic branches (Srinivasan et al., 2015;
Semyanov and Verkhratsky, 2021). Ca2+ event generation in
leaflets can be additionally enhanced by ER-independent release
mechanisms, involving Ca2+ efflux from mitochondria, in response
to the transient opening of permeability transition pores (Agarwal
et al., 2017; Figure 1).

The analysis of the neurotransmitter-evoked astrocyte
calcium dynamics has revealed that astrocytes integrate incoming
synaptic information (Perea and Araque, 2005; Shigetomi
et al., 2008). Indeed, synaptic action of excitatory or inhibitory
neurotransmitters evoke non-linear calcium elevations and result
in the control of the spatial propagation of the intracellular calcium
signal within the astrocyte (Perea and Araque, 2005; Shigetomi
et al., 2008; Mariotti et al., 2016; Durkee and Araque, 2019; Liu
et al., 2022), which is indicative of synaptic information processing
by astrocytes. The control of the spatial extent of the calcium
signal may have important functional consequences, as it may
regulate the spatial extention of the gliotransmitter release and

the consequent synaptic regulation (Durkee and Araque, 2019).
Moreover, converging Ca2+ signals from multiple daughter leaflets
can be finally integrated by parent branches as a readout of
local network activity (Lock et al., 2019). In some circumstances,
propagating Ca2+ waves can spread through astrocytes and the
astrocytic network to influence neuronal activity. This pathway has
been suggested to guide information processing across neuronal
networks (Tong et al., 2013; Semyanov and Verkhratsky, 2021).
Ca2+ events are terminated by Ca2+ removal through the plasma
membrane by Ca2+ ATPase (PCMA) or by uptake to Ca2+ stores
by ER calcium ATPase (SERCA) (Bazargani and Attwell, 2016).
Elongated mitochondria in astrocytic branchlets can also actively
uptake intracellular Ca2+ by mitochondria Ca2+ uniporters
(Zhang and Ding, 2018).

Heterogeneity of astrocytic Ca2+

signals

Astrocytic Ca2+ events can be classified as either spontaneous
or neurotransmitter-evoked (Khakh and McCarthy, 2015;
Semyanov et al., 2020). Spontaneous events are characterized by
intrinsic Ca2+ fluctuations that can occur in the absence of external
signals (Nett et al., 2002; Wang et al., 2006). These spontaneous
Ca2+ oscillations persist even if neuronal firing or neuronal
and astrocytic vesicular release is blocked (Wang et al., 2006;
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Sun et al., 2014). Even though the precise mechanisms mediating
the triggering of spontaneous Ca2+ transients are not completely
understood, it has been proposed that they can be the result of
stochastic Ca2+ fluxes through simultaneous multiple pathways
(Ding et al., 2018; Denizot et al., 2019). These mechanisms involve
both entering Ca2+ from the extracellular space through Ca2+

permeable receptors, Ca2+ channels, and Na+/Ca2+ exchangers
at the plasma membrane or intracellular Ca2+ stores through
IP3Rs on the ER and mitochondrial permeability via transition
pores (Rungta et al., 2016; Agarwal et al., 2017; Wu et al., 2019).
The addition of small spatially determined Ca2+ events stimulates
local cytosolic Ca2+ oscillations that can trigger Ca2+-dependent
Ca2+ release via activation of IP3Rs, leading to amplification and
propagation of Ca2+ events (Khakh and McCarthy, 2015). The
magnitude of spontaneous Ca2+ activity can be influenced by the
intrinsic activity of Gq GPCRs, which stimulates sufficient levels of
IP3 to activate IP3Rs, or by focal points of elevated Ca2+ which acts
as a co-agonist of IP3Rs. Ca2+ fluxes can be further strengthened
or weakened depending on cellular energy states, changes in
membrane potential, surface-to-volume ratio, and ER depletion
(Khakh and McCarthy, 2015; Ding et al., 2018; Stobart et al., 2018).
In soma and primary branches, intracellular Ca2+ waves will
mobilize in a specific spatial path within the cell, depending on the
proximity of ER IP3Rs, further distance from IP3Rs will terminate
the cascade and buffer Ca2+ to basal levels (Denizot et al., 2019).

Astrocytic calcium signals in the soma
and processes

Astrocytic Ca2+ signals are considered to rely mainly on
the IP3R pathway, especially in the soma and primary branches,
as genetic deletion of IP3R2, which is known to be enriched
in astrocytes, reduces spontaneous Ca2+ oscillations with the
complete abolition of Ca2+ signals in astrocytic soma. Residual
Ca2+ activity in astrocyte processes, even if reduced, is still
persistent in astrocytes of IP3R2−/− mice (Kanemaru et al.,
2014), suggesting IP3R-independent Ca2+ release mechanisms,
especially in processes (Patrushev et al., 2013). Such mechanisms
involve low cytosolic Ca2+ elevations in mitochondria (Agarwal
et al., 2017; Okubo et al., 2019) and transmembrane Ca2+ fluxes
mediated by transient receptor potential ion channels (TRPA1),
that contribute to the maintenance of basal Ca2+ levels within
astrocytes (Shigetomi et al., 2010, 2011). Importantly, 80% of
the astrocyte Ca2+ activity in vivo takes place in astrocytic
ramifications, that account for 75% of astrocytic volume (Bindocci
et al., 2017). Spatial restriction of spontaneous Ca2+ events has
been reported in ex vivo and in vivo preparations. Such events
occur predominantly in distal parts of astrocyte processes and
do not propagate to the soma, thereby identifying autonomous
functional domains called “microdomains” (Grosche et al., 1999;
Lia et al., 2021). High-resolution imaging techniques have allowed
a deeper understanding of the distinct properties and mechanisms
underlying astrocyte somatic and microdomain Ca2+ activity.
While somatic Ca2+ increases can be triggered by intense
neuronal firing patterns, astrocytic processes also respond to
local levels of synaptic activity, suggesting compartmentalized
astrocyte neuronal communication integration. Microdomain

Ca2+ oscillations are more frequently observed than somatic
ones and occur asynchronously in various processes (Volterra
et al., 2014). Microdomain Ca2+ events have been deferentially
categorized based on their distinct properties, however, a rich
diversity of Ca2+ signals are present within single astrocytes
and are modulated by local brain environments in distinct brain
areas (Shigetomi et al., 2013; Khakh and Sofroniew, 2015).
Previous elegant classifications have distinguished microdomain
Ca2+ activity in focal and expanded microdomains (Di Castro
et al., 2011; Clarke and Barres, 2013). Focal microdomains, also
later referred to in the field, as localized microdomains in branches
and branchlets (Khakh and Sofroniew, 2015), depend largely on
IP3R-dependent Ca2+ transients and seem to be independent
of neuronal firing. A distinct hypothesis has suggested that
these events could originate from spontaneous neurotransmitter
release at neighboring synapses, potentially contributing to plastic
adaptations at the tripartite synapse (Di Castro et al., 2011; Clarke
and Barres, 2013).

On the other hand, expanded microdomains present different
Ca2+ dynamics, compared to focal events, with larger amplitude,
duration, and spatial extent, and are highly sensitive to surrounding
neuronal firing. The increased magnitude of these Ca2+ events
has been suggested to result from the synchronization of
several autonomous microdomains and might represent a more
coordinated Ca2+ response that could modulate gliotransmitter
release probability (Di Castro et al., 2011; Panatier et al., 2011;
Volterra et al., 2014).

Astrocytic calcium signaling in response
to neuronal activity

Astrocytes sense, react and modify the extracellular transmitter
homeostasis by responding in situ to neuronal activity. Ex vivo
and in vivo examinations have provided strong evidence showing
that neuronal inputs trigger astrocyte Ca2+ events by activation
of multiple plasma membrane receptors (Nimmerjahn et al., 2004;
Wang et al., 2006; Caudal et al., 2020; Figure 1). Engagement of
distinct receptor arrays after neuronal input increases cytosolic IP3
levels and IP3R activation, promoting Ca2+ release from ER Ca2+

stores (Bazargani and Attwell, 2016). Additional Ca2+ entry to the
cytosol and further triggering of Ca2+ transients can be observed
after neuronal-mediated activation of ionotropic receptors, such
as glutamate AMPA and NMDA (Saab et al., 2012), purinergic
P2X (Abbracchio and Verderio, 2006), and nicotinic cholinergic
receptors (Aryal et al., 2021) or after uptake of glutamate and GABA
via Na+ influx via Na+/Ca2+ exchangers (Boddum et al., 2016;
Brazhe et al., 2018; Rose et al., 2020). Evidence collected through
the last decades has shown that astrocyte GPCR activation mainly
leads to intracellular Ca2+ increases (Kofuji and Araque, 2021).
Such a dynamic seems to oppose canonical responses observed in
neuronal activation, as increases in astrocytic intracellular Ca2+

are triggered after activation of excitatory or inhibitory transmitter
receptors (Mariotti et al., 2016; Perea et al., 2016) or other Gq,
Gs, or Gi-coupled metabotropic receptors (Durkee and Araque,
2019; Yu et al., 2020). The consequences of GPCR-mediated
increase in astrocytic Ca2+ are not fully characterized, however,
exciting evidence has suggested that astrocytes can discriminate
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and integrate metabotropic signaling upstream of internal Ca2+

oscillations (Caudal et al., 2020). Different activation efficiencies
of GPCRs exert equivalent (Shigetomi et al., 2008) or do not
necessarily induce the release of gliotransmitters, contrary to the
effects observed after Ca2+ uncaging or IP3 application (Wang
et al., 2013).

Neuronal influence on astrocytic activity can occur at
individual synapses but also after diffusion of neuromodulators,
such as dopamine, acetylcholine, serotonin, and noradrenaline, that
modulate spatiotemporal spontaneous Ca2+ events that trigger
new Ca2+ fluctuations (Takata et al., 2011; Ding et al., 2013;
Jennings et al., 2017; Corkrum et al., 2020; Semyanov et al.,
2020). Evidence collected during the last decades has suggested
that the modulation of astrocyte intracellular Ca2+-induced by
neuromodulators finely tunes K+ homeostasis and gliotransmitter
release (Wang et al., 2012; Pacholko et al., 2020). By integrating
the neuromodulatory effects, astrocytes act as crucial players in
behavioral states. Neuromodulator effects have been especially
evident in astrocyte Ca2+ network activity, as they influence
astrocyte activity thresholds in response to local neuronal activity or
depending on the brain’s vigilance state (Ding et al., 2013; Araque
et al., 2014). Astrocyte Ca2+ events in leaflets and branchlets can
also be triggered by gliotransmitters or other diffuse signals in the
local environment, as well as by changes in partial pressures of CO2
and O2, osmotic pressure, pH, and temperature (Angelova et al.,
2015; Turovsky et al., 2016; Kofuji and Araque, 2021; Semyanov
and Verkhratsky, 2021). Astrocytic Ca2+ activity resulting from the
interaction between astrocytic processes and synapses can trigger
astrocyte morphological remodeling and gliotransmitter release,
which feedback to neuronal network excitability and functioning
(Kofuji and Araque, 2021).

Kinetics of astrocyte Ca2+ signals

Astrocyte Ca2+ signals in response to external stimulation
present different temporal and spatial properties than neuronal
activity. The timescale of astrocytic Ca2+ dynamics is generally
much slower, with variable intervals between sensory stimulation
and the onset of astrocytic Ca2+ event. Single action potentials
that can last within a range of a few milliseconds differentiate
from astrocytic Ca2+ events, as they can occur over durations
of several hundred milliseconds to a few seconds (Paukert et al.,
2014; Otsu et al., 2015). The differences in Ca2+ dynamics
between neurons and astrocytes have raised the question of whether
the astrocytic activity can be directly correlated to real-time
information processing in the brain (Semyanov, 2019; Semyanov
et al., 2020). Astrocyte information processing could potentially
bridge information received by thousands of synapses belonging
to different circuits and neurons and integrate the information
in different spatial-temporal scales (Bushong et al., 2002; Perea
and Araque, 2005; Halassa et al., 2007; Gordon et al., 2008).
Indeed, recent evidence suggests that astrocytes could encode
information by evoking specific time and spatial Ca2+ signal
patterns, characterized by the different total area of appearance,
number, and duration of Ca2+ events (Perea and Araque, 2005;
Volterra et al., 2014; Nakayama et al., 2016; Wang et al., 2019).

Moreover, during information processing, astrocytes could
incorporate not only, neuronal information, but also signals

resulting from complex interactions with other non-neuronal
cells and non-cellular elements part of the extracellular brain
microenvironment (Volterra et al., 2014; Ribot et al., 2021;
Semyanov and Verkhratsky, 2021). Further investigation is needed
to elucidate the emerging complexity of mechanisms and dynamics
mediating specific types of astrocytic Ca2+ patterns and astrocyte
processing of information.

Calcium and gliotransmitter release
from astrocytes

Since the coining of the term, “tripartite synapse,” researchers
have been studying the extent that astrocytes actively communicate
with neurons (Araque et al., 1998, 2014). One of the active
mechanisms of astrocytes that impacts synaptic transmission is
gliotransmission (Araque et al., 2014). Gliotransmission refers to
the capacity of astrocytes to release neuroactive molecules that
impact synaptic transmission or neuronal signaling (Araque et al.,
2014; Volterra et al., 2014). Many of these signaling molecules
include classic transmitters such as glutamate and GABA and
amino acids like ATP/adenosine and d-serine. Even though the
cellular and molecular mechanisms mediating gliotransmitter
release are not completely understood, several studies have revealed
both calcium-dependent and -independent release mechanisms
(Guček et al., 2012; Li et al., 2013; Sloan and Barres, 2014; Figure 2).

Glutamate

Calcium-dependent and -independent mechanisms for
glutamate release from astrocytes have been proposed. These
include (a) exocytosis from vesicles, (b) anion channel opening,
(c) glutamate exchange via cystine-glutamate antiporter, (d)
release from hemichannels, or (e) ionotropic purinergic receptors
(Araque et al., 2000; Montana et al., 2004; Zhang et al., 2004;
Malarkey and Parpura, 2008). Vesicular gliotransmitter release of
glutamate has been supported by morphological and functional
evidence. For example, it has been shown that astrocytes possess
some of the proteins involved in exocytosis, including the soluble
N-ethyl maleimide-sensitive fusion protein attachment protein
receptor (SNARE) complex (Zhang et al., 2004), to control vesicle
fusion. SNARE proteins, such as VAMP2 or VAMP3, Syntaxin
1, SNAP23, and synaptotagmin isoforms have been detected in
astrocytes (Bohmbach et al., 2018; Mielnicka and Michaluk, 2021).
Interestingly, the mechanisms involved in glutamate-mediated
exocytosis have been highly debated in the last years (Li et al.,
2008; Chai et al., 2017). Functionally, expression in astrocytes
with the light chain of tetanus toxin that selectively cleaves the
vesicle-associated SNARE protein potently inhibits the release
of glutamate from astrocytes (Montana et al., 2004; Xu et al.,
2007; Araque et al., 2014). However, complementary evidence has
questioned the exact mechanisms involved in Ca2+-dependent
glutamate exocytosis (Li et al., 2008; Chai et al., 2017). Deployment
of a variety of experimental approaches revealed that fusion events
from astrocytic vesicles following intracellular calcium increase
occurs in a much slower time scale in comparison to neurons
(Bezzi et al., 2004; Calì et al., 2008; Marchaland et al., 2008).
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FIGURE 2

Schematic of Ca2+ dependent and independent gliotransmitter
release. Astrocytes can release gliotransmitters through a variety of
mechanisms dependent and independent of calcium. Glutamate
has been shown to be released via a variety of mechanisms. These
mechanisms include exocytosis, lysosomes, hemichannels,
exchangers, anion channels, antiporters as well as channels such as
TREK-1 and Bestropin-1 (BEST-1) (Araque et al., 2000; Montana
et al., 2004; Zhang et al., 2004; Xu et al., 2007; Malarkey and
Parpura, 2008; Yang et al., 2019; Okada et al., 2021). GABA on the
other hand, has been shown to be released via BEST-1,
hemichannels, as well as anion channels and transporters (Kozlov
et al., 2006; Jiménez-González et al., 2011; Le Meur et al., 2012;
Yoon and Lee, 2014; Christensen et al., 2018; Kwak et al., 2020). ATP
can be released via hemichannels, exocytosis, anion channels, and
lysosomes (Bezzi and Volterra, 2001; Fujii et al., 2017; Xiong et al.,
2018). Lastly, D-serine has been shown to be released via
exocytosis, BEST-1, and hemichannels (Wolosker et al., 1999;
Martineau et al., 2013; Sild and Van Horn, 2013; Herman, 2018; Koh
et al., 2022; Linsambarth et al., 2022; Park et al., 2022; Tapanes
et al., 2022). Created with BioRender.com.

While in neurons the fusion occurs in less than 0.5 ms following
calcium increase, in astrocytes the exocytotic release takes place
over two orders of magnitude slower (Bezzi et al., 2004; Calì
et al., 2008; Marchaland et al., 2008; Südhof, 2012). The release of
glutamate may also occur via the opening of glutamate-permeable,
two-pore domain potassium channel TREK-1 or the opening of
glutamate-permeable, calcium-activated bestrophin anion channel
(Best1). Ultrastructural analyses demonstrate that TREK-1 is
preferentially localized at cell body and processes, whereas Best1 is
mostly found in microdomains of astrocytes near synapses (Woo
et al., 2012). Recent evidence has also shown that activation of
volume-regulated anion channels (VRAC) can lead to glutamate

release. When this channel is activated by cell swelling, astrocytes
in the hippocampus release glutamate (Yang et al., 2019). Lastly,
glutamate may also be released via hemichannels which can be
blocked by drugs targeting synaptic vesicle protein 2A (Okada
et al., 2021).

GABA

GABA is an important neurotransmitter for neuronal
inhibition. As neurons, astrocytes can also release GABA via
transporters, anion channels, and gap junction channels (Yoon and
Lee, 2014). In contrast to glutamate, GABA release from astrocytes
has been reported to be mediated by distinct mechanisms, as the
vesicular release of GABA seems unlikely, due to the lack of GABA-
containing vesicles in astrocytes. Atypically, astrocytes synthesize
GABA from the polyamine putrescine using monoamine oxidase
B (Yoon and Lee, 2014). Early examples of GABA release from
astrocytes have been found in the olfactory bulb, thalamus, and
hippocampus (Kozlov et al., 2006; Jiménez-González et al., 2011;
Le Meur et al., 2012). One of the major functional consequences
of astrocyte-derived GABA is the tonic inhibition of various
neuronal circuits. Various mechanisms of GABA release from
astrocytes have been proposed. Calcium-dependent GABA release
from astrocytes potentially involving the GABA transporter GAT
has been reported in the dorsal root ganglia (Christensen et al.,
2018). Other mechanisms for GABA release from astrocytes such
as Best anion channels and gap Junction hemichannels have also
been described. “Sniffer-patch” experiments have shown that the
Best-1-mediated release of GABA is dependent on intracellular
calcium and is triggered by GPCR activation. Tonic inhibition
caused by GABA release via glial Best1 anion channels has been
reported in the cerebellum and thalamus (Lee et al., 2010; Kwak
et al., 2020). This mechanism has also been demonstrated in
reactive astrocytes in the hippocampus (Pandit et al., 2020). Finally,
gap junction hemichannels could be another route by which
GABA can be released from astrocytes. GABA release via gap
junction hemichannels is involved in the regulation of tonic GABA
currents of neurons in cultured hippocampal neurons and acute
hippocampal slices (Ransom et al., 2017).

ATP

ATP is a primary energy source in cells and also acts as
an important messenger molecule through action on purinergic
receptors. ATP plays an important role in calcium wave
propagation in astrocytes (Bezzi and Volterra, 2001). Unlike
the previously mentioned gliotransmitters, the mechanism for
exocytosis was unclear in situ until recent years. This was due
primarily to using indirect assays to measure quantal and non-
quantal ATP release (Xiong et al., 2018). Many studies have
examined calcium-dependent and independent mechanisms of
ATP release. Evidence collected from mice conditionally expressing
the SNARE domain of VAMP2 selectively in astrocytes (dn-SNARE
mice), has shown Ca2+-dependent ATP release by astrocytes
(Lalo et al., 2014). In addition, ATP release can be mediated
by calcium-dependent lysosome exocytosis (Pangršič et al., 2007;
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Zhang et al., 2007). Lysosome exocytosis and ATP release occurred
after mechanical stimulation in primary hippocampal astrocyte
culture (Xiong et al., 2018) in a calcium-dependent manner (Lee
et al., 2015). In addition, ATP can also be released via connexin 43
(Cx43) hemichannels and anion channels (Kang et al., 2008; Fujii
et al., 2017).

D-serine

Astrocytes can produce and store D-serine in vesicles
(Martineau et al., 2013; Sild and Van Horn, 2013). The enzyme,
serine racemase converts L-serine to D-serine (Wolosker et al.,
1999). Astrocytes play an important role in the serine shuttle by
converting L-serine from glucose which can then supply to neurons
(Herman, 2018). Ca2+ dependent vesicle release of D-serine has
been demonstrated to modulate long-term potentiation (LTP)
(Henneberger et al., 2010; Bergersen et al., 2012). Astrocytic
glutamate activates on mGluRs and further activates LTP in
cholinergic neurons (Navarrete et al., 2012). Moreover, astrocyte
release of D-serine also leads to LTP modulating recognition
memory (Robin et al., 2018). Glial D-serine is relevant for astrocytes
across multiple species including Drosophila. In Drosophila, glial
D-serine is required for thirst-directed behavior (Park et al.,
2022). Many studies have shown that astrocytes can release
D-serine under pathological conditions. For instance, preventing
the release of d-serine from glia reduce synaptic damage after
traumatic brain injury (Tapanes et al., 2022). Astroglial d-serine
can also travel through Cx43 hemichannels. The form of release is
particularly important for fear memories during fear conditioning.
Blocking Cx43 in the basolateral amygdala impaired fear memory
consolidation (Linsambarth et al., 2022). In addition, astrocytes can
also release D-serine via Best1 channels. This has been shown to
alter NMDA tone in the hippocampus (Koh et al., 2022).

Conclusion

The development of tools for visualization and manipulation of
cell Ca2+ dynamics together with advances in imaging techniques
have enabled the monitoring and modulation of astrocyte Ca2+

signaling in in vitro, ex vivo, and in vivo preparations (Li
et al., 2013). Advanced optical imaging techniques, sensitive
genetically encoded Ca2+ indicators (GECIs), and optogenetic
and pharmacogenetic tools allow the selective measuring and
activation of astrocyte Ca2+ signaling pathways to study astrocyte-
neuron communication, mechanisms of gliotransmitter release,
and role of astrocytes in physiology (Li et al., 2013; Semyanov
et al., 2020). In particular, selective astrocyte GPCR activation
has been useful to explore the functional role of astrocyte Ca2+

signaling in specific brain areas and astrocyte populations (Losi
et al., 2017). A variety of experimental approaches are now available
to increase astrocyte intracellular Ca2+ levels, such as light-gated
glutamate receptor, channelrhodopsin-based effectors, melanopsin,
optoXRs, and designer receptor exclusively activated by designer
drugs (DREADDs) (Hirbec et al., 2020). In particular, Gq-GPCR
and Gi-GPCR DREADDs have been widely used in the field, as
they offer an opportunity for non-invasive and selective in vivo

activation of astrocyte GPCR pathways after selective agonist
administration (Losi et al., 2017). Even though there is a variety of
tools to increase astrocyte Ca2+ signaling, till recently, IP3R2−/−

mice and IP3 sponges (Agulhon et al., 2008; Petravicz et al.,
2008) have been the only available options to achieve astrocyte
Ca2+ selective attenuation. Recent studies have provided new
tools to lessen intracellular Ca2+ release, such as activation of
kappa-opioid receptor coupled to a Gi-GPCR selectively activated
by salvinorin B (Vardy et al., 2015; Herrera Moro Chao et al.,
2022) or by Cre-dependent expression of hPMCA2, a human
plasma membrane Ca2+ ATPase pump that constitutively extrudes
Ca2+ from astrocytes (Yu et al., 2018, 2021). Decreases in
astrocyte intracellular Ca2+ levels have also been observed during
neuropathology after astrocyte Gs-GPCR activation (Pham et al.,
2021).

The evolving genetically targeted optical and pharmacological
tools to modulate astrocytic Ca2+ signals have been of value
in several studies in the field, showing that astrocyte function
and astrocyte-neuron communication is heavily impacted during
pathological conditions (Nedergaard et al., 2010; Nanclares et al.,
2021; Herrera Moro Chao et al., 2022). Visualization of astrocyte
Ca2+ by GECIs monitoring has shown that astrocytes become
hyperactive in many neurological diseases such as traumatic brain
injury, amyotrophic lateral sclerosis, epilepsy, and Alzheimer’s
disease (AD) (Shigetomi et al., 2019). In addition, modified
gliotransmitter release and synaptic transmission have been
associated with the development of astrocyte hyperactivity and
reactivity (Nedergaard et al., 2010; Nanclares et al., 2021; Herrera
Moro Chao et al., 2022). In conclusion, further studies are essential
for a precise understanding of the detailed mechanisms by which
astrocyte-neuron communication mediates physiological outputs
and how the dysregulation of this reciprocal communication affects
the development of neuropathology. Tailoring novel molecular
tools that specifically modulate astrocyte Ca2+ signaling pathways
combined with advanced Ca2+ imaging techniques in vivo
will further shed light on the complexity of astrocyte-neuron
bidirectional communication and its impact on physiology.
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