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Cyclic AMP response
element-binding protein (CREB)
transcription factor in astrocytic
synaptic communication
Jooyoung Kim and Bong-Kiun Kaang*

School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul,
South Korea

Astrocytes are known to actively participate in synaptic communication

by forming structures called tripartite synapses. These synapses consist of

presynaptic axon terminals, postsynaptic dendritic spines, and astrocytic

processes where astrocytes release and receive transmitters. Although the

transcription factor cyclic AMP response element (CRE)-binding protein

(CREB) has been actively studied as an important factor for mediating synaptic

activity-induced responses in neurons, its role in astrocytes is relatively

unknown. Synaptic signals are known to activate various downstream

pathways in astrocytes, which can activate the CREB transcription factor.

Therefore, there is a need to summarize studies on astrocytic intracellular

pathways that are induced by synaptic communication resulting in activation

of the CREB pathway. In this review, we discuss the various neurotransmitter

receptors and intracellular pathways that can induce CREB activation and

CREB-induced gene regulation in astrocytes.
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Introduction

Astrocytes are glial cells of the brain that perform diverse functions, including
supportive functions such as brain barrier transport, energy molecule transport, ion
concentration control, and neurotransmitter recycling. In the last two decades, the
role of astrocytes, in addition to their supportive functions, has been largely studied.
Molecular and behavioral studies have shown that astrocytes are major participants in
information processing and learning in the brain. The astrocytic process establishes a
structure morphologically and functionally similar to neuronal synapses, called tripartite
synapses, which bidirectionally affect synapses using release factors and contact-
dependent factors. Through tripartite synapses, astrocytes respond to neuronal activity
and various neurotransmitters. A single astrocyte can occupy up to 100,000 synapses,
suggesting that astrocytes may be the center for converging various neuronal inputs and
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modulating synapses (Bushong et al., 2002). Many studies have
shown that neighboring neuronal activity can elicit calcium
activity in astrocytes, which is a major signaling mechanism
(Martin et al., 2015; Martin-Fernandez et al., 2017; Lezmy
et al., 2021). Astrocytic calcium signals mediate differential gene
expression, structural changes, and release of signal molecules
called gliotransmitters.

The CREB transcription factor, known to be involved in
neuronal plasticity, is also activated in astrocytes in response
to neurotransmitters (Carriba et al., 2012). CREB binds to CRE
of the promoter to regulate transcription, and is activated by
phosphorylation at Ser-133 (Gonzalez and Montminy, 1989).
Cyclic adenosine monophosphate (cAMP)/protein kinase A
(PKA) is known to activate CREB via the cAMP/PKA
pathway; however, other factors such as phosphatidylinositol
3-kinase (PI3K)/Akt can also phosphorylate CREB (Figure 1).
In neurons, apart from activating neuronal plasticity genes,
including BDNF, overexpression of CREB has been shown to
be sufficient to allocate memory-encoding cells (Han et al.,
2009). Although neuronal CREB has been actively studied,
in astrocytes, the CREB transcription factor has rarely been
reported in relation to synaptic communication and plasticity.
Genes related to amino acid processing, cytoskeleton dynamics,
and vesicle dynamics have been shown to be differentially
expressed after activation of CREB signaling (Pardo et al., 2017),
suggesting that CREB signaling may be an important mediator
of astrocytic responses to stimuli. To examine this possibility,
it is important to identify upstream elements that activate the
CREB pathway and downstream pathways that are affected
by the CREB pathway. Therefore, this review summarizes
astrocytic receptors and transcriptomic and morphological
changes related to CREB signaling.

Neuronal CREB in synaptic
communication and plasticity

Early studies of synaptic plasticity have shown CREB to
be a crucial mediator of long-term potentiation (LTP). In
Aplysia, serotonin (5-HT)-induced long-term facilitation (LTF)
of synapses activates the cAMP second messenger pathway and
phosphorylates CREB (Kaang et al., 1993; Lee et al., 2009).
Subsequently, other studies in Drosophila (Yin et al., 1994) and
rodents (Bourtchuladze et al., 1994; Guzowski and McGaugh,
1997) demonstrated that blockade of CREB can impair long-
term memory, confirming that CREB is an important mediator
of long-term synaptic plasticity and memory. In the 2000s,
CREB studies were expanded using transgenic mice expressing
constitutively active CREB, called VP16-CREB (Barco et al.,
2002) or region-specific modulation using viral expression
(Josselyn et al., 2001). VP16-CREB mice show facilitated LTP
in the hippocampus (Barco et al., 2002), which is dependent
on brain-derived neurotrophic factor (BDNF) expression (Barco

et al., 2005). Virus-mediated CREB overexpression in the
amygdala can increase long-term memory (Josselyn et al.,
2001). Viral modulation of CREB expression has enabled more
complex experiments that provide an extensive understanding
of CREB. Han et al. (2007) showed that CREB-expressed subset
of neurons can act as memory-encoding neurons, which was
later confirmed by inhibition of memory by selective ablation
(Han et al., 2009). In addition, CREB not only regulates plasticity
during synaptic activity but also regulates the excitability of
neurons (Zhou et al., 2009).

With increasing evidence of CREB being an important
mediator of synaptic communication, the mechanism of CREB
activation in neurons has also been investigated. Ser-133 is an
important phosphorylation site for CREB activation (Gonzalez
and Montminy, 1989). Phosphorylation of CREB at Ser-133
allows binding of CREB-binding protein to the site, inducing
a complex formation (Parker et al., 1996). In neurons, various
kinases have been shown to be involved in phosphorylation
of CREB (for review see Sakamoto et al., 2011). cAMP and
PKA are major activators of CREB (Gonzalez and Montminy,
1989) while Akt is required for some CREB activation pathways
(Brami-Cherrier et al., 2002), and calcium-dependent pathways
involving Ca2+/calmodulin (CaM) kinases are also responsible
for CREB activation (Deisseroth et al., 1996; Finkbeiner et al.,
1997). CREB can be regulated by mechanisms other than
phosphorylation, which have been described previously (for
review, see Sakamoto et al., 2011).

G protein-coupled receptors and
cyclic adenosine
monophosphate/protein kinase A
pathways in astrocytic CREB activation

Identifying the signals and receptors that activate CREB
would be the first step in understanding the synaptic
communication of the tripartite synapse. Unlike neurons, in
astrocytes, CREB transcription is not merely induced by Ca2+

transients (Murray et al., 2009), thus, emphasizing the need
to identify specific receptors that activate distinct pathways
for CREB activation. The G protein-coupled receptor (GPCR)-
activated cAMP/PKA pathway is the best-known pathway for
CREB activation. Therefore, in this section, we explore the
current literature on cAMP/PKA/CREB pathways.

G protein-coupled receptors that induce
response to synaptic signals

G protein-coupled receptors are membrane receptors that
bind ligands in the extracellular domain and G proteins
in the intracellular domain. Upon activation, GPCRs recruit
and activate G proteins, which mediate subsequent activation
cascades. GPCRs can be classified according to the type of G
proteins they bind to. Canonical cAMP-PKA-CREB signaling
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FIGURE 1

Activation of CREB pathway in astrocyte. CREB activity regulates gliotransmitter release, cytoskeleton dynamics, synaptic plasticity,
neuroprotection, growth factor release, calcium dynamics, metabolism, and generation of reactive oxygen species. Receptor tyrosine kinases
produce PIP3 to activate Akt that can phosphorylate CREB. GPCRs can activate adenylyl cyclase to produce cAMP and activate PKA. Some
GPCRs, such as melatonin receptor, can activate CREB via Akt. Notch intracellular domain is cleaved upon activation by contact-dependent
signals and may activate MAPK pathway.

can be activated by Gs-GPCRs, where the activated Gs-protein
stimulates the production of cAMP, which in turn activates PKA,
which can directly phosphorylate CREB. Various types of GPCR
that respond to neurotransmitters are present in astrocytes.

One of the known GPCRs that can evoke astrocytic response
is the adenosine receptor. All four types of the adenosine
receptors, namely A1, A2A, A2B, and A3, are expressed in
astrocytes (Dare et al., 2007). A1 and A3 receptors are Gi-
coupled, and A2A and A2B receptors are Gs-coupled (Fredholm
et al., 2000). The ligand of the receptor adenosine is generally
produced through the breakdown of adenosine triphosphate
(ATP) by ectoenzymes. The application of ATP (Perea and
Araque, 2007; Kawamura and Kawamura, 2011), adenosine
(Tanaka et al., 2021), and A2A receptor agonists (Kanno
and Nishizaki, 2012) have been reported to evoke astrocytic
calcium responses. The calcium response is reduced by A1,
A2A, and A2B antagonists (Tanaka et al., 2021). Adenosine
has been shown to be involved in controlling neurotransmitter

concentrations in astrocytes. Activation of the A2A receptor
inhibits glutamate clearance into astrocytes (Nishizaki et al.,
2002; Matos et al., 2013) and promotes glutamate release
(Nishizaki et al., 2002). In addition, A2A receptor activation
boosts γ-aminobutyric acid (GABA) uptake into astrocytes,
whereas activation of the A1A receptor depresses GABA uptake
by astrocytes (Cristovao-Ferreira et al., 2013). Another Gs-
coupled adenosine receptor, the A2B receptor, is involved
in the downregulation of mGluR5 receptors and a decrease
in excitatory synapses during development (Tanaka et al.,
2021). Knockout of the A2A receptor has been shown to
enhance memory (Orr et al., 2015). These studies confirm that
astrocytes respond to adenosine signaling in a diverse and
complex manner, the effects of which are specific to the types
of GPCR. Indeed, the behavioral consequences of activating
hippocampal astrocytes by Gq- (Adamsky et al., 2018) and
Gi- (Kol et al., 2020) coupled designer receptors exclusively
activated by designer drugs (DREADDs) are different.
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Adrenergic receptors can induce calcium transients in
astrocytes (Vardjan and Zorec, 2017; Fischer et al., 2021). All
adrenergic receptor (AR) types are expressed in astrocytes
(Hertz et al., 2010), and have been studied in various aspects
of cognitive function, including consolidation of memory
(Gibbs and Bowser, 2010; Gao et al., 2016). α1-ARs are Gq-
coupled, α2-ARs are Gi-coupled, and β-ARs are Gs-coupled
(Insel, 1993), suggesting that each subtype shows different
downstream pathways. Indeed, in olfactory bulbs, only α1-
AR and α2-AR are involved in the norepinephrine-induced
astrocytic calcium transient, whereas β-AR does not participate
in calcium activity (Fischer et al., 2021). Instead, Gs-coupled
β1-AR has been shown to induce CREB phosphorylation
and cAMP production in neurons (Meitzen et al., 2011).
Norepinephrine has also been shown to be involved in
astrocytic formation. While activation of β-AR promotes
process formation, activation of α2-AR inhibits the β-AR effect
(Kitano et al., 2021). In addition, β-AR is involved in glial
fibrillary acidic protein (GFAP) plasticity in the soma and
processes of astrocytes (Wang et al., 2017). It is unknown
whether CREB mediates norepinephrine-regulated astrocytic
morphological changes; therefore, future studies are required to
evaluate these changes. In addition to morphological control,
the activation of ARs can affect glucose uptake in astrocytes
(Catus et al., 2011).

G protein-coupled receptor-induced canonical
cyclic adenosine monophosphate/protein
kinase A pathway and astrocytic CREB
activation

The CREB pathway has been studied as a downstream
pathway of adenosine and adrenergic signaling in astrocytes.
Norepinephrine and ATP increase CREB-dependent signaling
in astrocytes (Carriba et al., 2012). There is evidence that
adrenergic and adenosine receptors activate the cAMP-
PKA-CREB pathway in astrocytes; inhibiting PKA blocked
adenosine-induced gliotransmitter release in astrocytes
(Nishizaki et al., 2002). In addition, PKA blockade inhibits
modulation of GABA uptake by the A2A receptor and A1A
receptor (Cristovao-Ferreira et al., 2013), suggesting that the
astrocytic response to adenosine involves the PKA pathway.
Norepinephrine has been shown to induce BDNF in a CREB-
dependent manner (Koppel et al., 2018). Transcriptional
changes induced by CREB manipulation provide further
evidence that the adrenergic receptor pathway is involved in
CREB activation. Pardo et al. (2017) expressed constitutively
active CREB, VP16-CREB, in astrocytes and compared their
transcriptional profiles with norepinephrine- and forskolin-
treated astrocytes. Transcription profiles related to amino
acid processing, cytoskeleton dynamics, and vesicle dynamics
undergo alterations in VP16-CREB cells, similar to the
transcriptional profiles induced by norepinephrine and
forskolin.

G protein-coupled receptor-induced CREB and
synaptic plasticity

The cAMP/PKA pathway is a canonical pathway that
activates CREB. Zhou et al. (2021) showed that astrocytic
cAMP was sufficient to modulate memory and synaptic
plasticity. The study used photoactivatable adenylyl cyclase to
increase cAMP levels in astrocytes during blue light irradiation,
which successfully increased pCREB in target astrocytes. Light
stimulation during and immediately after learning significantly
increased learning, whereas light stimulation during the
retention period impaired memory. These results show that
CREB signaling in astrocytes is important for learning, and that
its activated time window is important for accurate memory
processing. The same study showed that the activation of
the cAMP pathway was sufficient to induce de novo synaptic
plasticity. This is consistent with the results of Adamsky et al.
(2018), who showed that Gq-DREADD-mediated astrocytic
activation resulted in de novo synaptic plasticity. It is possible
that the CREB pathway in astrocytes mediates de novo synaptic
plasticity during learning.

Non-canonical pathways

Non-canonical CREB activation is known to be mediated by
various cascades, such as ERK, MSK, GSK, p90RSK, PI3K/Akt,
CaMKII, and CaMKIV (for review, see Sakamoto et al., 2011;
Wang et al., 2018). Indeed, one study reported that ATP- and
norepinephrine-induced CREB activation in astrocytes is not
mediated by the canonical cAMP pathway, but by protein kinase
C (PKC) in culture conditions (Carriba et al., 2012). In addition,
various receptors other than GPCR may directly activate CREB
or may affect CREB via crosstalk between signaling pathways in
astrocytes. This section discusses the receptor tyrosine kinase,
Notch signaling, and PI3K/Akt pathways.

Receptor tyrosine kinases (RTKs)
Receptor tyrosine kinases are membrane proteins with an

intracellular tyrosine kinase domain, which activates various
downstream molecules that can regulate the CREB pathway.
Various receptor tyrosine kinases that mediate synaptic
communication are expressed in astrocytes, such as the IGF1R,
which has been shown to induce calcium responses, ATP
release, and affect synaptic plasticity (Noriega-Prieto et al.,
2021). Astrocytic IGF1R modulates PTEN, which is involved in
the PI3K/Akt pathway (Fernandez et al., 2008). Another type
of receptor tyrosine kinase expressed in astrocytes, the ephrin
receptors (Zhuang et al., 2010), have been reported to regulate
the astrocytic cytoskeleton (Puschmann and Turnley, 2010) and
is involved in gliotransmitter release (Zhuang et al., 2010).
Ephrin signaling is known to induce CREB activation in
neurons (Alapin et al., 2018; Yuan et al., 2021); however, there
is a lack of direct evidence of its involvement in astrocytic
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ephrin receptors and CREB. Instead, the astrocytic ephrin
receptor has been reported to modulate PKC (Zhuang et al.,
2010), which may be related to CREB-binding protein (CBP)
interaction (Johnson et al., 2007). RTK may transactivate
other types of receptors that activate CREB pathway. In
PC12 cells, TrkA receptor transactivates sustained CREB
activation by α2-AR in GPCR kinase 2 (GRK2)-dependent
fashion (Karkoulias et al., 2020). GRK2 is known to mediate
crosstalk between RTKs and GPCRs (Fu et al., 2017). GRK2 is
expressed in astrocyte, known to regulate glutamate transport
(Nijboer et al., 2013).

Notch signaling
Notch signaling interacts with and represses the CREB

pathway (Hallaq et al., 2015). It is a juxtracrine signaling
system, mostly between membrane-bound ligands and receptors
of adjacent cells. It can be mediated by the cleavage of the
intracellular domain, and has been shown to induce CREB
activation in the brain and is involved in long-term memory
(Zhang et al., 2013). Heterogeneous Notch signaling molecules,
including Notch1, Bmp4, Hes1, and Nrarp, are expressed
in astrocytes (Hu et al., 2019). Expression of NICD were
shown to be involved in CREB activation via MAPK in
astroglia culture (Lim et al., 2019). While neuronal Notch
signaling is known to be activity-responsive and necessary
for learning (Costa et al., 2003; Alberi et al., 2011), little is
known about the astrocyte-neuron communication. Astrocytic
Notch signaling has mainly been studied for its role in
development and differentiation. Considering that astrocytes
are in close proximity to neurons, Notch signaling could
also be a potential mediator of contact-dependent cell-to-cell
communication in tripartite synapses. An in vitro study showed
that an astrocyte-neuron co-culture differentially expressed
Notch signaling pathway-related genes, which were blocked by
a Notch pathway inhibitor (Hasel et al., 2017). In addition,
ex vivo hippocampal astrocytes showed differential expression
of Nrarp after late LTP (Chen et al., 2017), suggesting the
effect of neuronal activity and synaptic communication on
astrocytic Notch signaling. Many studies have reported the
pathological involvement of astrocytic Notch signaling, which
is activated in reactive astrocytes (Ribeiro et al., 2021), and
the Notch ligand of reactive astrocytes has been shown to
mediate symptoms in a neurodegenerative model (Nonneman
et al., 2018). The NFIA transcription factor, which stimulates
basal transcription, is known to be activated downstream of
Notch signaling in astrocytes during development (Namihira
et al., 2009); however, it is not known if a similar downstream
system is present in the adult brain. NFIA can interact with
CREB indirectly via CBP (Leahy et al., 1999), which may
be the mechanism of CREB repression by Notch signaling.
In addition, PKA signaling is known to regulate expression
of Notch (Angulo-Rojo et al., 2013), suggesting bidirectional
involvement between pathways.

Phosphatidylinositol 3-kinase pathway
The PI3K/Akt pathway is involved in cellular proliferation

and survival. The activation of PI3K-Akt signaling is known to
activate CREB downstream and is involved in brain function. In
the PI3K pathway, activated receptors stimulate PI3Ks, which
in turn mediate the conversion of 4,5-bisphosphate (PIP2)
to phosphatidylinositol 3,4,5-trisphosphate (PIP3), leading to
Akt activation (Hemmings and Restuccia, 2012). Akt is
involved in multiple signaling pathways, including CREB,
where it mediates fibroblast growth factor (FGF)-2-induced
activation (Peltier et al., 2007). In addition, alcohol withdrawal
activates the PI3K-Akt-CREB pathway (Qiao et al., 2018).
Receptors that activate the PI3K/Akt pathway include receptor
tyrosine kinase and GPCR, depending on the PI3K isoforms.
Notch signaling is known to affect PTEN (Palomero et al.,
2007; Serra et al., 2015), which inhibits the PI3K/Akt
pathway. In astrocytes, stimulation of the melatonin receptor,
a type of GPCR, activates CREB via the Akt pathway
(Kong et al., 2008).

Ion channels
Intracellular calcium signaling is involved in CREB

activation in neurons (Chawla et al., 1998; Hardingham et al.,
2001), and calcium-induced activation in turn is mediated by
CaM kinases (Deisseroth et al., 1996; Finkbeiner et al., 1997).
However, in astrocytes, increasing calcium itself does not induce
CREB activation (Murray et al., 2009).

Transcriptional effect of synaptic
communication and CREB activation in
astrocyte

Molecular pathways that mediate astrocyte-neuron
communication may be activated by neuron-released or
contact-dependent factors, induce calcium signals, to regulate
transcription. A few studies have analyzed activity-induced
differential gene expression in astrocytes. Neuronal activity
can induce Nuclear factor erythroid 2-related factor 2 (Nfr2)
pathway in astrocytes in a calcium-dependent manner (Habas
et al., 2013), which has two CBP binding sites that are crucial
for its activity (Katoh et al., 2001). Nrf2 is involved in the
upregulation of glutathione metabolism gene expression
(McGann and Mandel, 2018), which is known to be involved
in protection against oxidative stress, and CREB-dependent
transcription is observed in astrocytes after neuronal activation,
upregulating glucose and lactate metabolism, and lactate
shuttle-related genes (Hasel et al., 2017). The neuron-astrocyte
lactate shuttle is required for learning (Suzuki et al., 2011),
and its inhibition blocks learning-induced mRNA translation
in neurons (Descalzi et al., 2019). In addition, transcriptional
changes in astrocytes after learning, which are natural
conditions that elicit neuronal activity, have been reported.
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After inhibitory avoidance training, synaptic function-related
genes are differentially expressed in astrocytes, including NadK2
upregulation (Katzman et al., 2021).

Gene expression by direct manipulation of the CREB
transcription factor will further explain the importance of
astrocytic participation in synaptic activity and cognitive
function. Various transcriptional changes were induced by
CREB activation in astrocytes (Pardo et al., 2017). BDNF is
one of the proteins that are upregulated by CREB-dependent
pathway in astrocytes (Koppel et al., 2018). Astrocytes express
both BDNF (Saha et al., 2006; Koppel et al., 2018) and
TrkB (Holt et al., 2019), which have been widely studied for
their neuroprotective properties in epilepsy (Fernandez-Garcia
et al., 2020), Alzheimer’s disease (de Pins et al., 2019), and
Huntington’s disease (Hong et al., 2016).

Although CREB may or may not be activated by calcium
signaling itself, CREB activity may modulate astrocytic calcium
signaling. With regard to astrocytic calcium signaling, a study by
Eraso-Pichot et al. (2017) showed that activating CREB signaling
by transmitters and VP16-CREB reduced cytosolic astrocytic
calcium by upregulating the sigma-1 receptor that participates
in endoplasmic reticulum calcium transfer.

CREB in reactive astrocyte and
pathology

The CREB transcription factor is involved in various
neurodegenerative disorders, including Alzheimer’s disease.
Reactive astrocytes have recently gained attention as a cause of
neurodegenerative diseases, and CREB expression in reactive
astrocytes has been reported to be neuroprotective (Pardo
et al., 2016). High GFAP expression, a reporter of astrocytic
reactivity, is inversely associated with CREB content, as shown
in a neurodegenerative disease model (Pugazhenthi et al., 2011).
MAO-B is another enzyme involved in reactive astrogliosis
(Chun et al., 2022) and neurodegeneration (Mallajosyula et al.,
2008), and MAO-B promoter is known to be regulated by
the CREB transcription factor (Arige et al., 2019). Astrocytic
CREB is activated during melatonin-induced neuroprotection
(Kong et al., 2008), and is also involved in inflammatory
conditions. Astrocytes produce chemokines in response to
CCL5, which is mediated by the CREB activity (Zhang et al.,
2002).

Conclusion

We summarize various types of receptors and pathways
involved in synaptic communication that may activate CREB
in astrocytes and briefly discusses the consequences of CREB

activation. Adenosine and adrenergic receptors are GPCRs
mainly studied for neuron-astrocyte communication and
subsequent CREB activation, which is mediated by the cAMP-
PKA pathway. Although other types of receptors, such as RTKs
and Notch receptors, have been documented, these studies have
scarcely focused on the CREB pathway. Different receptors
are involved in separate downstream pathways; however, it
is yet to be determined whether they participate in CREB
activation. Finally, this review summarizes CREB-mediated
gene expression in astrocytes. It is to be noted that only
the genes that are known to be important for astrocytic and
synaptic functions were selected for discussion, and there are
many more genes regulated by CREB activation involving
complex mechanisms, which should be examined thoroughly.
In summary, the evidence presented in this mini-review suggests
the importance of CREB activation in astrocytic communication
with neuronal synapses and the possible pathways that
mediate such effects.
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