AUTHOR=Bartol Thomas M. , Keller Daniel X. , Kinney Justin P. , Bajaj Chandrajit L. , Harris Kristen M. , Sejnowski Terrence J. , Kennedy Mary B. TITLE=Computational reconstitution of spine calcium transients from individual proteins JOURNAL=Frontiers in Synaptic Neuroscience VOLUME=7 YEAR=2015 URL=https://www.frontiersin.org/journals/synaptic-neuroscience/articles/10.3389/fnsyn.2015.00017 DOI=10.3389/fnsyn.2015.00017 ISSN=1663-3563 ABSTRACT=
We have built a stochastic model in the program MCell that simulates Ca2+ transients in spines from the principal molecular components believed to control Ca2+ entry and exit. Proteins, with their kinetic models, are located within two segments of dendrites containing 88 intact spines, centered in a fully reconstructed 6 × 6 × 5 μm3 cube of hippocampal neuropil. Protein components include AMPA- and NMDA-type glutamate receptors, L- and R-type voltage-dependent Ca2+ channels, Na+/Ca2+ exchangers, plasma membrane Ca2+ ATPases, smooth endoplasmic reticulum Ca2+ ATPases, immobile Ca2+ buffers, and calbindin. Kinetic models for each protein were taken from published studies of the isolated proteins