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Conventional aquaponics conserve water used in aquaponics whereas the

literature suggests a certain level of freshwater replenishment or freshwater

exchange for good water quality, fish and plant wellbeing, and the overall

productivity of the system. This paper deals with the determination of an optimal

freshwater replenishment rate for a standard aquaponics system. IoT devices

and sensors were used for this project data collection. This paper used linear

regressions and ensemble methods to determine the optimal rate of periodic

water replenishment to maintain the water quality parameters that determine

the yield and productivity of aquaponics systems. Cubic spline and Lagrange

interpolation were applied to raw and simulated data. Results were evaluated and

compared using statistical error estimation approaches. The bestmodel amongst

the investigated machine learning models was gradient boost with an optimal

replenishment rate of 19L per week and a water quality of 4.86 for an aquaponic

tank of 100 L capacity. The error estimations were a Mean Squared Error of

0.0224, Mean Absolute Error of 0.1137, Root Mean Squared Error of 0.1499, and

R2 of 0.7208. This was within 1% of the value obtained from raw and interpolated

data using a polynomial regression. These findings suggest that the water quality

of an aquaponics system can be maintained at the desired optimal level with a

weekly 19% water replenishment, thereby contributing to the improvement of

productivity and resource e�ciency.

KEYWORDS

Internet of things (IoT), aquaponics, water quality, water replenishment, machine

learning

1 Introduction

The apparent fast growth of the world population and ever-increasing need for food

alongside pressure to achieve sustainable goals has driven changes from conventional

farming approaches to sustainable agriculture ones. Aquaponics is an agricultural approach

that combines fish and soilless plant production in a recirculating ecosystem where

natural bacteria convert fish waste into plant nutrients (Delaide et al., 2017). A coupled

aquaponic system contains aquatic organisms, bacteria, and plants that benefit from each
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other in a closed recirculated water body (Goddek et al., 2019).

That is, fish and plants are grown together in a closed system

with a regular water recirculation between plants growbed and

the fishtank. In a standard coupled aquaponics system, generally,

the plants are grown on a growbed media and the fishtank is

kept under the plants growbed Fish water is nutrient rich, and

the plants take up these nutrients from the water to grow whilst

purifying the water which returns to the fish tank. All toxic

chemicals accumulated in the water, which are dangerous for the

fish life, would be removed when the water is passed over the

plants growbed. The quality of water that circulates between the fish

tank and the plant determines the productivity of the aquaponics

system. Conventional aquaponics conserves the water and the

replenishment of water, which consists in exchanging fish water

with the same amount of fresh water is somehow empirical. Indeed,

water is generally topped up when the water level is decreased

due to evaporation or evapotranspiration whilst the literature

shows a broad range of water replenishment from 1% to 100%. A

study on different aquaculture systems found that a rapid flow of

water causes rapid flushing of waste from water which could be

beneficial in waste and solid disposal from fish water (Ebeling and

Timmons, 2007). A water exchange of 5–10% has been reported

to be beneficial for recirculating aquaponics (Gnanasagar et al.,

2020) whereas another research suggested that a 3.6% daily water

replenishment caused massive nutrient loss when investigating

nutrient balances and plant and fish growth performance (Delaide

et al., 2017). A project performed a 70% daily water exchange in

their aquaponic system during their study on the economic viability

of aquaponics systems (Bich et al., 2020). They found that their

aquaponics with 70% daily water exchanged have a reduced NH3

level by five times when compared to a standard aquaponic system.

An article studied the water level management using bell-siphons

in aquaponics and found that water replenishment helps maintain

levels of dissolved oxygen between 5 and 10 which is within that

acceptable range for good performance (Romano et al., 2023). The

range of acceptable values is shown in Table 1. Another research

analyzed that the energy and water usage of a raft aquaponics and

found about 1% water loss per day and an average of 35,950 L for

replenishment per year to cope with this water loss (Love et al.,

2015). They applied a maximum of 10% water replenishment only

to cope with the water loss. They also used chemical combinations

to maintain the water quality. A study reported that higher

feeding rates and lower water replenishment may cause nitrite and

other toxic chemicals to accumulate in fish water quickly (Rakocy

et al., 2004). Another experiment replenished 6.3% of water in

their study on tomato production in aquaponics systems where

manual methods were used to monitor water quality (Suhl et al.,

2016) whereas 9% replenishment of fish water was used by other

authors during their study on nutrient recycling from fish water

(Graber and Junge, 2009). Moreover, it has been found through

a predictive modeling of pH using different regression analyses

that pH levels drop over time and chemicals must be applied

to maintain good water quality (Mori et al., 2021). The impact

of low and high rates of water replenishment is summarized in

Figure 1.

The current literature thus reveals that most of the aquaponics

systems have either no daily water replenishment or water

TABLE 1 Aquaponics water quality parameters with their acceptable

limits (adapted from Nhan et al., 2019; Bich et al., 2020; Sallenave, 2022).

Parameter Acceptable range

pH 6.4–7.4

Dissolved oxygen >5

Total ammonia nitrogen <1 ppm

Nitrates 5-150 ppm

Nitrites <1 ppm

Water temperature 65–85◦F

Water hardness (CaCO3) 0-75 ppm

Turbidity >5 NTU

replenishment values ranging from as low as below 10% (Graber

and Junge, 2009; Suhl et al., 2016; Blanchard et al., 2020; Rakocy

et al., 2022; Shaw et al., 2022) to complete or 100% water

replenishment (Nhan et al., 2019). Moreover, water replenishment

has not been applied intentionally in any system or any fixed rate

of replenishment identified for a defined amount of fish water.

Also, a very little or no explanation were evident in current

literature regarding the replenishment rate used or regarding its

impacts. Understanding the effect of a regular and fixed rate

of water replenishment on an aquaponics system is important

for the growth of the plants and fish and thus, needs a deeper

analysis, which is currently missing in the literature. Similarly,

very limited studies focus on the application of machine learning

to analyse and control water quality and the impacts of water

replenishment on fish and plants. Therefore, the main research

problem addressed on this paper is the determination of the

optimal water replenishment rate for an aquaponics system.

This was achieved by estimating the water quality index from

the data collected through sensors and IoT devices followed by

the application of statistical approaches and machine learning

algorithms to identify the best water replenishment rate. The words

water replenishment, water exchange and flush rate have been used

interchangeably, in this article.

2 Research methodology

2.1 Testbed specification

The experiment was done in an indoor aquaponics system

installed at the University of Wolverhampton, England. This

aquaponic testbed is of dimensions 2m high by 1m width and

0.5m thick. The testbed consists of three sections of which the

first shelf from the top has the growbed with clay balls. The lower

shelf is used to keep the fish tank at 100 Liters capacity. The

middle shelf is used to keep sensors and IoT devices (Figure 2).

The system also has an automatic fish feeder (Smart Feeder-AF-

2019B) and artificial lighting (LikeSun LED Grow Light). Six Swiss

chard (Beta Vulgaris var. cicla) and 6 Cold water Carp fish of 0.127

meters (5 inches) long, were used as initial growing materials. The

weight of each fish was total density of the fish were 25 grams
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FIGURE 1

Schematic diagram of the e�ect of water replenishment on aquaponics system. (A) E�ect of high and low replenishment rate; (B) Benefits of optimal

water replenishment.

FIGURE 2

IoT communication system for this project. Sensor data collected is transmitted to a PC through an Arduino UNO microcontroller and is processed in

a PC. Data is stored in ThingSpeak cloud and in the PC.

and 0.15 kg/m3, respectively The ratio between fish and plants

used in this experiment was 1:1, that is the test bed contains 6

plants and 6 fish. Timers were used for water recirculation and

LED lighting in a way that water was recirculated for 15min every

30min with a flow rate of 350 L/h maximum. The LED lighting

was turned on from 6 pm to 6 am, every day. A fish feeder

dispersing 12 grams of Walters Nutrimix (2 grams per fish) was

used to feed the fish around 1 pm every day. The feed quantity

was calculated to meet the fish feed requirement according to

their biomass.
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2.2 Sensors and IoT devices

The main sensors used in the aquaponics system

include sensors for: water temperature (DFROBOT

DS18B20 digital), water pH (DFROBOT Gravity Analog-

SEN0161), water turbidity (DFROBOT Analog), dissolved

oxygen (DFROBOT Analog DO), total dissolved solids

(DFROBOT Analog TDS), CO2 (DFROBOT Infrared).

These sensors were connected to the fish water tank for

data collection. The sensors were attached to the Arduino

UNO Microcontroller and an ESP8266 Wi-Fi module

which is connected to a standard PC. The data collection,

analysis, and processing were done on the local computer.

All these sensors and IoT were operated on the USB power

from the connected PC. Ammonium strips were used to

collect the Nitrate and Nitrite values. The DO and pH

sensors were calibrated at 25◦C before use. Calibrating

solutions were used according to the manufacturer’s

specifications. All sensors were from DFRobot Gravity

manufacturer (www.dfrobot.com). ESP 8266 module was

used to send the sensor data directly to the cloud server

(www.thingSpeak.com). The sensor data was also downloaded

locally to the computer as a backup plan. Figure 2 shows the IoT

communication setup.

2.3 Experiment process

The replenishment was done once every 7 days. The 7-

day interval was planned to ensure that any fluctuation in

water quality parameters due to precedent water replenishment

has faded out and the equilibrium is reached before a new

replenishment has been applied. Water replenishment was planned

with 6%,10%,14%,18%, and 22% of the total volume of the fish

water, which is 100 L in the current study. The selection of this

replenishment range was based on the literature and consultation

with aquaponics farmers, based in Ipswich (www.aquapona.com)

and Chester (www.urbanag.uk) in England. Also, preliminary

experimentations with 5% replenishment showed little or no

changes in the water quality. Too much water replenishment

can be detrimental to the system (Bich et al., 2020). Water

quality data such as pH, DO, TAN, nitrites, nitrates, carbonate

root, free chlorine, water hardness, electrical conductivity, total

dissolved solids, and water temperature were collected every 7 days.

Environmental parameters such as humidity, room temperature,

and CO2 values were also recorded. Three sets of water quality

data were collected during the experimentation. In dataset 1, the

water quality data was collected from the freshwater to be used

for replenishment, and dataset 2 was collected from the fish water

before its replenishment. Dataset 3 was collected from fish water

after the replenishment was completed. Water replenishment was

repeated, and data was collected once every 7 days. Fresh water

was used from the same source during the entire experiment.

Freshwater was pre-processed and dechlorinated to ensure safe use

for the fish. Figure 3 shows images of the testbed and the data

collection process.

2.4 Data collection and processing

Figure 4 is a schematic diagram of the data processing. This

includes data preparation, data analysis, and data validation. Data

preparation comprised data collection and outlier analysis as part

of data refinement. Data normalization, correlation and regression

analysis form part of the data analysis step. The results were

then evaluated and compared using statistical error estimation

approaches in Python.

2.4.1 Data collection
The data collected for the optimal replenishment rate

calculation was done from June 2022 to June 2023. More than 1,800

data were collected for processing, including the 11 water quality

values and environmental parameters.

2.4.2 Outlier analysis
The z-score method was used to detect outliers of the data

values and the boxplot was used to visualize the analyzed results.

Boxplot analysis showed the values deemed as outliers. For

example, the threshold value of turbidity was 0.3 and some outliers

were detected as 5, which was far different from the normal

threshold. The outlier values of 5 were replaced with a threshold

value of 0.3. It identified that the wrong value of 5 has been sensed

by the sensor probably due to foam in the water surface affecting

the turbidity sensor reading. The same approach was used for all

other parameter values to clean data before the analysis.

2.4.3 Data analysis
2.4.3.1 Water quality index (WQI)

The optimal rate of freshwater replenishment determination

requires the calculation of the water quality value of the fish tank

at different levels or percentages of water replenishment. A water

quality index is a significant numerical value that represents the

total water quality. The water quality index (WQI) model is a well-

recognized tool for water quality evaluation especially in many

fields based on local water quality criteria and has been used since

its development in the 1960s (Uddin et al., 2021). WQI models

generally consist of four consecutive stages: (1) selection of the

water quality parameters, (2) generation of sub-indices for each

parameter (3) calculation of the parameter weighting values, and

(4) aggregation of sub-indices to compute the overall water quality

index. The optimal water replenishment rate can then be obtained

by applying the machine learning algorithms between different

replenishment rates and corresponding water quality indices to

generate a singular quality value that represents the overall fish

water quality. The water quality index can be calculated using

Equation (1) (Ahmed et al., 2019; Srivastava and Kumar, 2023;

Water Quality Indices, 2023).

WQI = Qvalue × β (1)

Where Qvalue is the quality value corresponding to the

water quality parameter and β is the Weighting factors of
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FIGURE 3

(A) Aquaponic testbed. (B) During data collection. (C) Sensors collecting water data.

FIGURE 4

Schematic diagram of data preparation, analysis, and results validation.

different water parameters as shown in Table 2 (Ahmed et al.,

2019; Srivastava and Kumar, 2023; Water Quality Indices,

2023).

Figure 5 shows a correlation between Qvalue and parameters

such as pH, Dissolved Oxygen, Total Ammonia and Nitrogen

(TAN), Temperature change, and Turbidity which uses the optimal
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TABLE 2 Parameters and weighting factors to calculate quality index.

Parameter Weighting factor (β)

pH 0.11

Temperature 0.10

Dissolved oxygen 0.17

Turbidity 0.08

Total ammonia and nitrates 0.10

water quality parameters ranges as discussed in Table 1, and quality

indices are generated according to Equation (1) (Ahmed et al., 2019;

Srivastava and Kumar, 2023; Water Quality Indices, 2023).

2.4.3.2 Min-Max normalization

Once the water quality index has been calculated for a set

of data values of a particular parameter, the resulting WQIs are

normalized using Min-Max normalization. This normalization

approach standardizes the values using Equation (2).

Xscaled =
X − Xmin

Xmax − Xmin
(2)

Where Xscaled is the normalized value, Xmin is the minimum

value in the list and Xmax is the maximum value in the list. Min-

max normalization was applied to all quality indices calculated for

all water quality parameters so that all WQIs were standardized to

a value between 0 and 1. That means the lowest quality index will

be 0 and the highest index will be 1. For example, if the pH value

read from the sensor is 4.2, then, the corresponding Qvalue will be

multiplied by the pH weighting factor 0.11 to get a WQI of 1.21 for

the sensor read pH of 4.2. The minimumWQI andmaximumWQI

were determined when all WQIs were calculated. In the sample

data, the minimum WQI is 0 and the maximum WQI is 10.12.

Therefore, for the pH parameter,

pHscaled =
1.21− 0

10.12− 0
= 0.119,

which is the normalized WQI for pH 4.2. This calculation was

applied to all the collected data. Finally, all the collected data were

used to determine the corresponding WQI using Equation (1) and

normalized using Equation (2).

2.4.3.3 Interpolation

The obtained values of WQIs for different replenishment rates

from 6% to 22 % were used to predict the WQIs and missing

replenishment rates. That is, WQIs were measured for 6,10,14,18,

and 22L multiple times, and resulting data was used to determine

WQIs for 7,8,9,11,12,13,15,17,19,20, and 21L.

2.4.3.4 Correlation analysis

Water temperature, pH, Dissolved Oxygen, TDS, and CO2 data

were chosen to perform the correlation analysis using Python.

2.4.3.5 WQI calculation for replenishment rates

The water quality index of a particular water replenishment

rate was calculated by adding up the individual WQIs of the five

parameters such as Turbidity, temperature, DO, pH and TAN using

Equation (1) to get an aggregate WQI out of five parameters using

the Equation (3).

α
(

Total
)

= α
(

pH
)

+ α (DO) + α (TAN) + α
(

temperature
)

+α
(

turbidity
)

(3)

where α is the Water Quality Index (WQI).

For example, when 6% of the total fish water was used, that is

6 L was replaced with 6 L of fresh water, and the parameter readings

were taken before and after the replenishment, WQI of 6% was

calculated using Equation (3). The process is repeated for 10%,14%

18%, and 22%. The replenishments and WQI calculations were

done every week. The impact of replenishment on the water quality

parameters was analyzed before the next replenishment was done,

ensuring that previous replenishment had not influenced the water

quality measures.

The sensor data analysis showed that there was no considerable

change in TDS and CO2 values with respect to the water

replenishment. Therefore, TDS was not considered for the

WQI calculation.

2.5 Regression analysis

Three standard regression models such as polynomial

regression, multiple linear regression, Ridge regression and three

ensemble approaches, decision tree regression, random forest

regression, and gradient boosting were chosen for regression

analysis. While standard models give predictions with a single

estimator, ensemble models combine mutiple estimators to

perform predictions. Ensemble models were included to avoid any

potential bias, low accuracy or high variance in standard models.

The literature suggests that the chosen models are the best for

water quality predictions (Ahmed et al., 2019). Machine learning

algorithm-based regression analysis was applied to the entire data

set to find out the optimal freshwater replenishment rate that

gives the best water quality index. Standard regressions such as

polynomial regression, multiple linear regression, Ridge regression,

and Ensemble methods such as Decision Tree regression, Random

Forest regression, and Gradient boosting were selected to perform

regression analysis. Linear regression shows the linear relationship

between between input values and output values. Random forest

is a decision-tree-based approach that uses the subset of a given

data set to make decisions. Gradient boosting is an efficient

optimization approach that uses a stage-wise boosting method to

optimize a differentiable loss function (Ahmed et al., 2019; Water

Quality Indices, 2023).

2.6 Algorithm design

Python was used to perform the regression analysis, plotting

resultant graphs, and evaluation of the results. Sklearn library

was used to implement the regressions in the code. A learning

rate of 0.1 was used for Gradient boosting and polynomial of

degree 2 was applied for polynomial regression. The algorithm
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FIGURE 5

Graphs representing the correlation between water quality values and (A) pH, (B) Nitrate, (C) Turbidity, (D) Dissolved Oxygen, and (E) Temperature

Change. Graphs represent water quality indices of these parameters within a given range. In all graphs, the X-axis gives the water parameter, and the

Y-axis is the corresponding quality index.

received the input as a CSV file that contains quality values

and percentages. First, the raw data without interpolation was

input. Then the interpolated data was input to the algorithm

and finally, simulated data was given as input. Regressions were

applied in these three results with error estimations. Mean Square

Estimations (MSE), Mean Absolute Estimation (MAE), Random

mean square estimations (RMVE), and R2 estimations were used

for validations.
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3 Result and discussion

3.1 Water quality indices as function of
replenishment rate

The Water Quality Index was generated using Equation (3)

for every replenishment as described in the method section. WQI

represented the quality of water for each replenishment. Data was

plotted and it was decided to apply standard as well as ensemble

regressions. Cubic spline as well as Lagrange interpolation and

regressions were applied to the correlation between WQI, and the

corresponding replenishment rate. Results were obtained based on

the optimized quality for a given replenishment.

3.2 Correlation between di�erent water
quality parameters

Table 3 shows the correlation between different water quality

parameters investigated. A correlation of 1 in the table shows

the strongest correlation and 0 is assumed to be the weakest

correlation. A positive turbidity correlation was observed between

water and temperature whereas a negative correlation was observed

between turbidity, DO, CO2, and pH. Temperature positively

correlated with TDS and CO2 while negatively correlated with DO

and pH. TDS positively correlates with turbidity and temperature

while negatively correlates with DO and CO2. DO negatively

correlated with all other parameters CO2 positively correlated with

temperature and pH while negatively correlated with turbidity,

TDS, and DO. pH positively correlated with TDS and CO2 while

negatively correlated with turbidity, temperature, and DO.

3.3 Algorithm design for interpolation

Figure 6 shows the interpolation results with the raw data,

means values, Cubic spline and Lagrange interpolation curves,

simulated data, and the correlation between variance in quality

values with percentage of water replenishment. These results

were obtained from data that were sorted according to the

percentage values. Then the means and variances were calculated

for quality parameter values (Sallenave, 2022) before applying the

interpolation between 0 and 23 values since the data ranges from 5

to 22. The interpolation intervals were set as 1 and 10 simulated

quality values were generated for each percentage value from 5

to 22. The algorithm generated the sorted simulated data for the

corresponding raw. Both interpolations showed that the variance in

quality tends to decline as the percentage of replenishment values

increases.

3.4 Determination of the optimal water
replenishment rates

Figure 7 shows a plot of various regressions applied to the data.

Ahmed et al. (2019) used various regression models to find out

water quality indices and Gradient Boost with a learning rate of

0.1 and polynomial regression with a degree of two appeared to be

the best machine learning approaches to predict the water quality

indices (WQIs). In this research data, regressions performed on raw

data showed polynomial regression as the model that gives the best

water quality of 4.91 with an optimal water replenishment of 18

liters per week per 100 L aquaponics system. The error estimations

were 0.0181 (MSE), 0.1061 (MAE) 0.1346 (RMSE), and 0.6589 (R2

score).When the interpolated data values were given as input, again

Polynomial Regression appeared as the best model with the same

water quality of 4.91 and optimal water replenishment value of

18 L. The error scores were 0.0109 (MSE), 0.07213 (MAE), 0.1046

(RMSE), and 0.7175 (R2). However, when the simulated data was

applied, results showed 19 L as the optimal water replenishment

per week. percentage with the best quality of 4.86. Error scores for

simulated data were 0.0224 (MSE), 0.1137 (MAE) 0.1499 (RMSE),

and 0.7208 (R2). It was evident that the gradient boost regression

model generated better results. Table 4 shows the best water quality

and water replenishment percentage values and the corresponding

error estimates. R2value close to 1 generally shows a better fit of

the model to the data. The R2 value from the regression using raw

data was 0.6589 which can be inferred as around 65.89% variability

observed in the water quality explained by the model R2value for

the interpolated data, 0.7175 shows a better fit for the model with

71.75% variability on the replenishment rate. When simulated data

is used, a value of 0.7271 was resulted which shows the best fit

among all R2values received.

Results showed that when the raw data, that is the data received

from the experimentation directly as well as the interpolated data

were used, 18 L was the optimal replenishment rate for a 100 L fish

tank with the best water quality of 4.91 obtained from a polynomial

regression as the best model. However, when simulation was

performed and regression applied to simulated data, the optimal

rate changed to 19 L with a best quality of 4.86. The result with

simulated data is assumed to be more precise since more data

points were generated and hence precision of the result is improved.

Nevertheless, the values of the replenishment rate obtained from

both models are very close with a difference of 1 L/100 L system

which only corresponds to 1% and a 1% error is reasonably

acceptable. It should be noted that the results showed exact integer

values of replenishment rates such as 18 or 19 because the algorithm

was designed to perform with an interval of 1 in the x-axis values,

which represents the replenishment rates. This decision was made

as variations of less than a percentage point would not have an

impact on the water quality maintenance. Moreover, During the

experimentation, the change in water quality parameter values was

recorded before and after every replenishment and the change

x was non-linear. That is, x and corresponding WQIs have

shown different values for the same replenishment rate which was

repeated. Hence, it was decided to use machine learning to find out

the optimal replenishment rate.

3.5 Limitation and sensitivity of the
research

The data and results could be influenced by the number and

types of fish and plants grown as well as the environmental
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TABLE 3 Correlation matrix of water quality parameters.

Turbidity Temperature TDS DO CO2 pH

Turbidity 1.000000 0.112173 0.146905 −0.043757 −0.091589 −0.010261

Temperature 0.112173 1.000000 0.059646 −0.006122 0.069645 −0.086606

TDS 0.146905 0.059646 1.000000 −0.213239 −0.028291 0.127810

DO −0.043757 −0.006122 −0.213239 1.000000 −0.144879 −0.087965

CO2 −0.091589 0.069645 −0.028291 −0.144879 1.000000 0.064920

pH −0.010261 −0.086606 0.127810 −0.087965 0.064920 1.000000

FIGURE 6

Water quality as a function of percentage of water replenishment. (A) Cubic spline and Lagrange interpolation were applied to Raw and Simulated

data. (B) Variance declines for both interpolations. Interpolation details and data chosen are also shown inside the graphs.

FIGURE 7

Resultant graph plots of all regressions on (A) raw data (B) interpolated data and (C) simulated data. In all graphs, the x-axis shows the percentage of

replenishment, and y-axis has the corresponding water quality. Names of the regressions applied are shown inside the graphs.

conditions. The type of aquaponics used could be another

influencing factor in optimal replenishment rate calculation. This

project is carried out in a standard indoor coupled aquaponics

system within a controlled environment. The results discussed

above were generated with the data collected from a specific

aquaponics system as described in the method section. However,

the outcome of this research may open a new avenue for potential

research aspects in aquaponics water replenishment and could
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TABLE 4 Regression results with error estimations.

Data used Best
regression

Best quality Optimal
percentage

MSE MAE RMSE R squared

Raw data Polynomial

regression

4.91 18 0.0181 0.1061 0.1346 0.6589

Interpolated data Polynomial

regression

4.91 18 0.0109 0.07213 0.1046 0.7175

Simulated data Gradient boost 4.86 19 0.0224 0.1137 0.1499 0.7208

inform water quality optimisation of aquaponics systems at an

industrial scale. The replenishment rate calculated in the project

was sensitive to the aquaponics tank capacity used. This project

used a 100 L water tank and optimal rate, and water quality

was calculated accordingly. The experimentation was carried out

inside a closed room where artificial lighting was provided. Results

may have an impact on the room environment, especially when

environmental parameters such as humidity, room temperature,

and carbon dioxide levels are used in correlation analysis for the

water quality index calculation. Artificial light operation timing,

water recirculation timing, feed timing, and feed quantity may

influence the results obtained. The formula to calculate the water

quality index was adapted from a study that computed the water

quality index of river water. This might be an influencing factor on

the results.

4 Conclusion and future work

Water quality data of indoor recirculated aquaponics have been

collected by sensors and IoT devices. Important water quality

parameters were then chosen to estimate the water quality indices

corresponding to various rates of water replenishment. Various

regression algorithms were applied to determine the optimal

replenishment rate that gives the best water quality index as

well as the best regression model that was validated using the

error estimations for raw data, interpolated data, and simulated

data sets. Both polynomial regression and gradient boost models

look promising for estimating the optimal replenishment rate

and water quality of an aquaponics system. The present study

showed an optimal water replenishment value of 18% per week

with the best water quality of 4.9 when using raw data and

interpolated data whereas the gradient boost model generated an

optimal replenishment rate of 19% with the best quality of 4.86

using simulated data. The difference between the simulated and

the experimental data is only 1%. Therefore, this paper proposes

an innovative way of estimating the optimal replenishment rate

and water quality index of aquaponic water using sensors, IoT,

and machine learning, avoiding time-consuming laboratory water

analysis. Additionally, no chemicals were used to stabilize the pH

levels other than adding water to the tank which is an improvement

to the conventional approach.

This research could be further expanded by applying the

same approach to other types of aquaponics systems including

semi-closed, decoupled, or outdoor systems, with different

environmental and water conditions to investigate any variability

in the optimal water replenishment and their impact on aquaponic

water quality and to further validate the proposed method.

Different machine learning or deep learning approaches can be

applied other than what have been used in this project, to find out if

the results are affected. Studies on fish and plant health before and

after water replenishment may be further explored.
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