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Effects of multiple agroecological 
interventions on crop nutrient 
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With the growing focus on agroecological interventions in crop production, more 
studies are required to understand the combined effects of multiple strategies 
on soil and plant health. In this study, we adopted a functional-trait approach to 
evaluate the resource acquisition strategies of crops in response to an organic 
amendment and a growth-promoting endophytic bacterial seed inoculant. Using 
wheat and soybean as model crops, we assessed crop performance traits [leaf 
chlorophyll (μmol m−2), base diameter (mm), biomass (g), nitrogen (N) usage index] 
and root traits [specific root length (SRL, m g−1), specific root tip density (SRTD, 
tips g−1), root diameter (root D, mm), root tissue density (root TD, g cm−3), root 
nitrogen (root N; %), root carbon-to-nitrogen ratios (root C/N)], along with the 
chemical and biological properties of rhizosphere soil at the end of the growing 
season. We employed three soil amendment treatments (organic, inorganic, and 
control) and two seed inoculant treatments (with and without seed inoculation). 
Soil amendments influenced the expression of wheat root traits, promoting 
acquisitive root traits—characterized by higher SRL, SRTD, and root N, along 
with lower root D—under organic amendments. There was no impact of soil 
amendments on soybean root trait expression. In contrast, seed inoculation 
positively affected the performance traits of base diameter and the nitrogen 
usage index of wheat. The significant interactive effects of soil amendments and 
seed inoculation were minimal. In the rhizosphere soil of wheat and soybeans, 
available phosphorus was significantly lower with organic amendments, while 
active carbon (POxC) was significantly higher with organic amendments for 
wheat. Well-established significant relationships between soil properties and 
root traits were also evident. Correlations between root traits and rhizosphere 
properties were apparent, specifically positive correlations between POxC and 
SRL, and negative correlations with the root C/N ratio. The composition of the 
rhizosphere soil fungal community was significantly explained by key root traits, 
including root D and root C/N ratio. Broadly, soil amendments had a stronger 
impact on crop root responses than seed inoculants, yet seed inoculants influenced 
direct measures of crop performance. Importantly, these two agroecological 
interventions did not significantly interact, indicating opportunities for better 
integration of agroecological strategies.
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Introduction

Declining soil health, coupled with the increasing prevalence of 
various abiotic and biotic stresses due to global climate change, poses 
significant challenges for the agricultural sector (Fiodor et al., 2021; 
Hamidov et al., 2018). Consequently, farmers increasingly require 
cost-effective integrative solutions to address both soil and plant 
health issues. Agroecological interventions that incorporate ecological 
principles into farming practices, such as agroforestry (Isaac et al., 
2024), organic nutrient management (Chen et al., 2018), and the use 
of beneficial microorganisms (Batista and Singh, 2021), offer strategies 
that mitigate the adverse effects of synthetic fertilizer usage (Altieri, 
2019; Isaac et al., 2018).

Organic amendments, unlike inorganic fertilizers, produce 
distinct nutrient release patterns and influence plant nutrient uptake. 
Inorganic fertilizers are characterized by large pulses of nutrients that 
are quickly available for uptake; however, indiscriminate application 
can lead to soil nutrient imbalances and losses (Drinkwater and 
Snapp, 2007). Through microbially mediated processes, organic inputs 
can maintain slow but steady nutrient supplies. Organic amendments, 
such as vermicompost, are also effective in promoting and sustaining 
long-term soil health (Chen et al., 2018; Lal, 2015). While inorganic 
fertilizers supply specific macronutrients, organic amendments 
provide diverse sources of carbon and organic forms of nutrients that 
stimulate soil microorganisms and induce changes in soil organic 
matter, structure, and water-holding capacity (Diacono and 
Montemurro, 2010; Malik et al., 2021). However, the improvements in 
soil health resulting from organic inputs do not always lead to 
increases in crop productivity (Schrama et al., 2018), and concerns 
regarding yield limitations due to slower nutrient turnover rates have, 
in part, hindered the widespread adoption of organic amendments 
(Röös et al., 2018).

Recent advances in microbial interventions indicate that plant 
growth-promoting bacteria (PGPB) and bioinoculants can reduce 
reliance on off-farm inputs, such as synthetic fertilizers and pesticides 
(Elnahal et al., 2022) while providing a promising solution to enhance 
plant productivity and health, thereby addressing yield concerns (Negi 
et al., 2021; Sessitsch and Mitter, 2015; Timmusk et al., 2017). Bacteria 
capable of colonizing host plant tissues without causing negative 
impacts are termed endophytic; ecologically, these bacteria have the 
potential to play a significant role as an agroecological intervention. 
Growth-promoting microorganisms inhabit areas within or around 
plant tissues and facilitate plant growth and responses to abiotic and 
biotic stresses through several mechanisms, including the production 
of 1-aminocyclopropane-1-carboxylate (ACC)-deaminase (Khan 
et al., 2016), various phytohormones (Sharma et al., 2023), volatile 
organic compounds (Almeida et al., 2023), siderophores (Loaces et al., 
2011), and antibiotics (Narayanan and Glick, 2022). This contributes 
to the modulation of processes such as photosynthesis, pathogen 
resistance, and nutrient uptake.

One of the most recognized benefits of PGPB is its ability to 
mediate plant ethylene levels through the enzyme ACC-deaminase 
(Kang et al., 2019; Khan et al., 2016; Maxton et al., 2018). Ethylene, a 
stress-responsive hormone, typically elevates in plants undergoing 
various stressors, including injury, metal contamination, and extremes 
of soil salinity and water content (Orozco-Mosqueda et al., 2020). 
ACC-deaminase-producing bacteria help lower plant ethylene levels 
and thus promote growth by mitigating the plant stress response. 

Plantibacter flavus strains have been reported as endophytic 
inhabitants of wheat tissues (Robinson et al., 2016; Muvingi et al., 
2023; Alikhani and Emami, 2020) and in the rhizosphere and 
rhizoplane of wheat (Braun-Kiewnick et  al., 2024; Alikhani and 
Emami, 2020), indicating compatibility with wheat and the potential 
for optimizing inoculation procedures. However, the plant’s response 
to inoculating different PGPB can vary depending on host genotype 
and physiology (Elnahal et al., 2022; Mayer et al., 2019; Sessitsch and 
Mitter, 2015).

Beyond yield measurements, strong evidence indicates that 
functional traits—the morphological, chemical, and physiological 
components of plants that affect and respond to environmental factors 
(Bardgett et al., 2014; Reich, 2014; Violle et al., 2007; Martin and Isaac, 
2015)—can be used as indicators of plant plasticity and trait trade-offs 
in relation to above- and belowground conditions (Gagliardi et al., 
2015; Isaac and Borden, 2019; Freschet et al., 2021a; Yaffar et al., 2022), 
including those resulting from management regimes and 
interventions, such as organic amendments (Nimmo et al., 2023). 
Variations in plant functional traits are associated with agroecosystem 
functioning, including soil carbon dynamics (Buchanan et al., 2022), 
soil greenhouse gas fluxes (Buchanan et al., 2024), and yield (Martin 
and Isaac, 2021). Furthermore, plant traits may moderate positive soil 
outcomes from agroecological interventions (Rolhauser and Isaac, 
2024). Morphological traits, such as high specific leaf area (SLA), and 
chemical traits, like increased leaf nitrogen content (leaf N), are 
generally classified as resource acquisitive traits, characterized by a 
fast-growing strategy and enhanced resource foraging capacity. In 
contrast, the opposite traits are defined by a slower-growing strategy 
and greater resource conservation capacity (Violle et al., 2007). While 
leaf functional trait trade-offs align with this universal spectrum of 
resource acquisition to resource conservation (Wright et al., 2004), 
root functional traits and resource acquisition present greater 
complexity, reacting to multiple soil nutrient and microbial 
characteristics and forming various root economic spectra (Bergmann 
et  al., 2020). Root systems regulate metabolic construction costs, 
rhizosphere properties, and interactions with biota (Lynch et  al., 
2021). Morphological root traits can be  classified as resource 
acquisitive, e.g., high root nitrogen content (root N) and high specific 
root tip densities (SRTD), or as resource conservative, e.g., high root 
C/N ratio and high root tissue density (root TD) (Isaac et al., 2021). 
They can also display do-it-yourself strategies, e.g., increased foraging 
through high specific root length (SRL) coupled with low root 
diameter (root D), or outsourcing strategies via fungal partnerships, 
e.g., enhanced fungal microbial symbiosis characterized by high root 
D paired with low SRL (Bergmann et al., 2020). Such root functional 
traits facilitate changes in rhizosphere nutrient availability and 
microbial community composition through the production and 
secretion of exudates such as amino acids, organic acids, sugars, and 
extracellular enzymes, such as phosphatases (Bargaz et  al., 2017; 
Canarini et al., 2019; Han et al., 2022). Root acquisition strategies play 
a large role in inducing whole-plant fitness by modifying nutrient 
uptake and affecting key soil biological properties, including 
enzymatic activity and microbial communities (Fulthorpe et al., 2020; 
Spitzer et al., 2021).

In this study, we  measured root functional trait responses, 
aboveground performance, and the chemical and biological properties 
of the rhizosphere in two important field crops, Triticum aestivum 
(wheat) and Glycine max (soybean), to examine the individual and 
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combined effects of organic amendments and a growth-promoting 
endophyte bacterial seed inoculant. We  hypothesized that the 
combination of the organic amendment and growth-promoting 
bacteria would influence root traits and shape resource acquisition 
strategies. Additionally, we hypothesized that root traits would affect 
rhizosphere properties, including fungal community composition, 
acid phosphatase activity (Apase), rhizosphere labile carbon, total N, 
root C/N ratio, and available phosphorus. Finally, we measured crop 
performance through aboveground biomass, base diameter, leaf 
chlorophyll content, and the Nitrogen Usage Index to assess the 
impact of seed inoculation and the combined treatment on 
aboveground plant performance traits. While research on the use of 
organic amendments and plant growth-promoting bacteria (PGPB) 
in sustainable agriculture is expanding, our understanding of the 
combined effects of multiple agroecological interventions and the 
mechanisms underlying interactions in these complex plant–soil-
microbe matrices remains limited.

Methods

Study site and research design

This study was conducted in experimental plots at the University 
of Toronto Scarborough Campus Farm (43.793, −79.186). The site had 
been left fallow for several years before being repurposed for 
educational research. The year prior to this study, the plots were used 
to grow soybeans and wheat. In May 2021, nine blocks measuring 
5 m × 5 m were tilled. Three blocks received inorganic fertilizer, three 
were treated with vermicompost (worm castings containing 
approximately 32% carbon and approximately 2% nitrogen) as an 
organic amendment, and three were left unamended. Inorganic 
fertilizers and organic amendments were added at a rate of 
75 kg N ha−1 and mixed into the top 2 inches of soil.

Spring wheat (variety AAC Brandon) and soybean were planted 
in 75 cm × 75 cm plots within the blocks. Wheat was sown in three 
rows per plot, spaced 20 cm apart, with a seeding density of 69 seeds 
per plot. Soybean was sown in three rows per plot, also spaced 20 cm 
apart, with a seeding density of 42 seeds per plot.

One hour prior to planting, half of the seeds for both species were 
inoculated with a novel growth-promoting bacterial endophyte 
(Lumactud et al., 2016; Lumactud et al., 2017; Lumactud and 
Fulthorpe, 2018; Mayer et al., 2019). The inoculum was prepared using 
the Plantibacter flavus strain 251, along with a liquid formulation 
containing 2 g xanthan gum, 50 ml glycerol, 1 L distilled water, and 
4 g polyvinyl alcohol. This formulation was sterilized using an 
autoclave before the bacteria were introduced.

The bacterial cultures were grown for 48 hours at 30°C at 
250 rpm in 30 ml of R2A liquid broth in 50 mL falcon tubes. Cell 
densities were enumerated using optical densities at 600 nm 
calibrated with plate counts. Seeds were coated with 4% of their 
weight in the bacterial formulation, supplemented with 1 × 1010 cells 
per seed. Control seeds were coated with the liquid formulation 
without bacteria at the same 4% seed weight ratio. All seed coatings 
were applied inside a biological safety hood in a sealed plastic bag 1 h 
before planting in the test plots.

Six plots of inoculated and uninoculated wheat and soybean were 
established in each amendment treatment, resulting in a total of 36 

plots per species. The seed inoculation treatments (uninoculated/
inoculated) were nested within each amendment treatment (inorganic 
fertilizer, organic amendment, no amendment). One soybean plot 
(inorganic fertilizer, inoculated) exhibited low germination and was 
removed from the dataset, reducing the total number of soybean plots 
from n = 36 to n = 35.

Performance measurements

Soybean and wheat were sampled in late August 2021, at 70 days 
post-germination, with wheat at Feekes stage 11 (head ripening) and 
soybean at stage R6. We selected three plants per plot for analysis 
based on location (not along the edge of the plot), representativeness 
(average size within the plot), and health (not showing signs of disease 
or pests). For each of the three plants per plot, we measured base 
diameter (mm) using electronic calipers. We  also assessed leaf 
chlorophyll content (μmol m−2) utilizing a portable chlorophyll meter 
(MC-100, Apogee Instruments Inc., Utah, USA) in accordance with 
the leaf chlorophyll measuring protocols established by Hayes et al. 
(2019), as this is a crucial leaf trait reflecting crop health. Aboveground 
biomass (g) was calculated from one whole plant sample per plot after 
drying at 60°C for 48 h. Nitrogen content was then scaled to the dry 
aboveground biomass, and a nitrogen usage index, as defined by 
Siddiqi and Glass (1981), was calculated as (aboveground biomass) * 
(aboveground biomass/nitrogen content of aboveground biomass).

Root trait measurements

One whole plant root per species per plot was analyzed for root traits 
following protocols adapted from Martin et al. (2019) and Isaac et al. 
(2017). Root samples were scanned using a flatbed scanner and analyzed 
with WinRHIZO imaging software (Reagent Instruments Inc., Quebec) 
to obtain average root D (mm), total root volume, total root length, and 
total number of root tips. The root samples were dried at 60°C for 48 h 
and weighed to determine dry root mass (g). From the root dry mass, 
total root TD (g cm−3) was calculated as the dry root mass divided by the 
total fresh root volume per diameter class (Freschet et al., 2021b). SRL 
(m g−1) was calculated as the total root length per dry mass of root, while 
SRTD (the number of tips g−1) was calculated from the number of tips per 
dry mass of root. Root chemical traits, including root N and root C (%), 
as well as root C/N, were determined from the dried root samples using 
a LECO elemental analyzer.

Rhizosphere soil measurements

In the field, a root from each whole plant sample was gently shaken, 
and the soil that remained tightly adhered was collected and divided 
into three subsamples. An air-dried portion was used to analyze 
inorganic phosphorus (P). These air-dried samples were shaken with a 
Bray’s extracting solution and filtered into vials using P5 filter paper. 
The samples were analyzed for inorganic P (mg l−1) using a Lachat 
QuikChem 8,500 Series 2 Flow Injection Analyzer (Lachat Instruments, 
Loveland, CO, USA). An oven-dried subsample was used to analyze 
total nitrogen (N) and carbon (C). To quantify total soil N (%) and C 
(%) on a mass basis, a subsample of the soil was dried at 105°C for 72 h. 
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The sample was then ground and analyzed in the same manner as the 
root samples using a LECO elemental analyzer. A subsample was placed 
in sterile vials and stored at −20°C (Munroe et al., 2015) for molecular 
analyses. Soil pH was determined with a pH meter on air-dried soil 
using a 1:2.5 soil-water ratio (FAO, 2021). Soil pH averaged 
[7.65 ± 0.30].

Permanganate oxidizable carbon (POxC-mg kg−1 soil), or active 
soil C, in rhizosphere soils was measured following the protocols 
outlined in Weil et al. (2003). Briefly, a mass of 2.5 g of air-dried 
rhizosphere soil was diluted with 18 ml of deionized water, and 2.0 ml 
of 0.2 M KMnO4 was added. The tubes were shaken for 2 min at 240 
oscillations per minute. After the tubes were shaken, they were left to 
settle for 10 min in the dark. A volume of 0.5 ml of the supernatant 
was diluted with 49.5 ml of deionized water, and the absorbance was 
recorded using a UV–VIS spectrophotometer at 550 nm. POxC was 
calculated as the quantity of potassium permanganate reduced in 
each soil sample. Therefore, the lower the absorbance reading, the 
higher the POxC values. Final POxC values were calculated following 
Weil et al. (2003).

The soil enzyme Apase was measured according to Bargaz 
et  al. (2012). A mass of 62.5 mg of fresh rhizosphere soil was 
mixed with 500 μl of 0.2 M sodium acetate buffer (pH < 6.5) and 
125 μl of disodium p-nitrophenyl phosphate (p-NPP, 10 mM). 
The samples were incubated at 37°C for 1 h. After incubation, the 
reaction was stopped by adding 125 μl of CaCl2 (0.5 M), followed 
by 500 μl of NaOH (0.5 M). The samples were centrifuged at 
20,000 g for 5 min, and the supernatant was analyzed using a 
UV–VIS spectrophotometer at 405 nm. Apase activity was 
expressed as the amount of p-nitrophenol (PNP) produced by the 
soil from the p-nitrophenyl phosphate substrate per gram of soil 
per unit of time (μM PNP/g soil/min).

Molecular analysis

Samples of rhizosphere soil were collected and immediately 
frozen at −20 °C until DNA extraction via DNAeasy PowerSoil 
Pro kits (Qiagen). DNA quality and concentrations were 
confirmed using the Qubit dsDNA HS Assay Kit (Thermo Fisher 
Scientific Inc.). Amplification and sequencing of fungal ITS 
fragments was performed by Metagenom Bio (Waterloo, Ontario, 
Canada) using primers BITS: 5′ ACCTGCGGARGGATCA and 
B58S3: 5′ – GAGATCCRTTGYTRAAAGTT (Bokulich and Mills, 
2013). Demultiplexed sequences were processed using DADA2 
v1.8 (Callahan et al., 2016) managed through QIIME 2 v.2019.7 
(https://qiime2.org/, Caporaso et al., 2010). Both forward and 
reverse reads were truncated at decreasing quality (225 forward 
and 200 reverse), and paired reads were assembled after modeling 
and correcting for Illumina sequencing errors. Subsequently, 
chimeric amplified sequence variants (ASVs) were removed by 
reconstruction against more abundant parent ASVs. An ASV 
table was then constructed for downstream analysis. Taxonomy 
was assigned to representative sequences using a naive Bayesian 
classifier implemented in QIIME 2 with scikit-learn (v.0.21.3) 
trained against UNITEdb v.8, which is dynamically clustered for 
fungal ITS. Assignments were accepted above a 0.7 confidence 
threshold. Raw reads were deposited in the NCBI Short Read 
Archive (PRJNA1216962).

Statistical analyses

All statistical analyses were conducted using RStudio version 
2021.09.1 + 372 (R Foundation for Statistical Computing, Vienna, 
Austria). Data were assessed for outliers, while residuals were assessed 
for normality, and all data underwent tests for homoscedasticity. Traits 
that were not normally distributed were log-transformed prior to 
analysis. To examine differences among soil amendment treatments, 
seed inoculation treatments, and their interactions regarding the 
measured plant traits, a two-way analysis of variance (ANOVA), 
followed by Tukey’s honestly significant difference (HSD) post hoc test, 
was performed. The impacts of the treatments on root trait variation 
were assessed by calculating coefficients of variation (CVs) as the ratio 
of the standard deviation to the mean for each root trait, grouped 
separately by soil amendment and seed inoculation treatments. Root 
functional traits were analyzed using principal component analysis 
(PCA) to identify multivariate patterns of root trait variation among 
the treatments. To determine whether the PCA scores significantly 
differed between the amendment treatments, the inoculation 
treatment, and their interaction, a multivariate permutational analysis 
of variance (PerMANOVA) was conducted using the “vegan” package.

To test for differences among soil amendment treatments on Apase, 
POxC, rhizosphere total N, total C, C/N ratio, and rhizosphere available 
P, a one-way analysis of variance (ANOVA) followed by Tukey’s 
honestly significant difference (HSD) post hoc test was employed. To 
assess the relationship between root traits and the measured rhizosphere 
properties, Pearson correlation coefficient matrices were computed. To 
examine the characteristics of the rhizosphere fungal community, 
fungal ASV abundance data were converted to percentages of total 
reads for each species pool, grouped by crop (analyzed separately). The 
most numerically abundant strains were ordered, retaining those 
within the top 30 ranked abundances, along with three of the most 
abundant AMF species (Fulthorpe et al., 2020). This resulted in 32 
fungal genera being retained for both wheat and soybean. Nonmetric 
multidimensional scaling (NMDS) from the ‘vegan’ package was 
employed to determine whether fungal communities significantly 
differed between the amendment regimes, the inoculation treatment, 
and the interaction between the two, utilizing Bray–Curtis dissimilarity 
values transformed using a Wisconsin double standardization. The 
results of the NMDS were analyzed with a PerMANOVA via the adonis 
function. To evaluate whether fungal communities were significantly 
predicted by root functional traits, redundancy analyses (RDA) were 
conducted using Hellinger-transformed phylotype abundance data. The 
function “ordiR2step” with forward selection was used to reduce the 
number of root traits. The significance of each variable was assessed 
using a PerMANOVA implemented with the ‘anova.cca’ function in the 
‘vegan’ R package (with 9,999 permutations employed).

Results

Root trait response to combined 
agroecological interventions

There was a significant amendment effect on wheat root traits 
(Table 1). Wheat SRL (p = 0.007) was highest in the organic treatment 
(17.31 ± 9.84 m g1; Table 2), significantly higher than in the inorganic 
fertilizer treatment (9.75 ± 2.21 m g1). However, the no amendment 
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wheat (11.73 ± 2.95 m g1) did not significantly differ from either the 
organic or inorganic fertilizer treatments. Wheat SRTD (p = 0.002) 
was also highest in the organic treatment (4857.4 ± 2057.6 # of tips g 
1), which was significantly different from the inorganic fertilizer 
treatment (3005.3 ± 543.8 # of tips g1) and the no amendment 
treatment (3170.9 ± 685.2 # of tips g1). Wheat root D (p = 0.0002) was 
lowest in the organic treatment (0.46 ± 0.04 mm), which significantly 
differed from both the inorganic fertilizer treatment (0.57 ± 0.06 mm) 
and the no amendment treatment (0.54 ± 0.04 mm). Wheat root N 
content was also significantly affected by the amendment treatment 
(p = 0.049). Although the organic treatment (0.96 ± 0.28%) did not 
significantly differ from the inorganic fertilizer (0.82 ± 0.16%) or the 

no amendment treatment (1.03 ± 0.22%), the N content was 
significantly lower in the inorganic fertilizer treatment compared to 
the no amendment treatment. The inoculation treatment and the 
interaction between the amendment and the inoculation did not 
significantly affect wheat or soybean root traits. Additionally, there 
were no significant effects of either the amendment or the inoculation 
detected on soybean root traits.

The organic amendment resulted in higher CVs for wheat SRL, 
SRTD, TD, and root N, as well as for soybean SRL, SRTD, and TD, 
compared to root trait CVs under inorganic fertilizer (Table 2). This 
finding suggests low trait plasticity when crops are cultivated with 
inorganic fertilizers. Notably, across all root traits except for root D in both 

TABLE 1 Results of a two-way analysis of variance for both root traits and performance traits of wheat and soybean for amendments, inoculation, and 
their interactions.

Trait Source Wheat Soybean

F value (p-value) F value (p-value)

Root traits

SRL (m g−1)

Amendment 5.931 (0.007) 0.544 (0.586)

Inoculation 0.240 (0.627) 0.265 (0.611)

Amendment × Inoculation 0.277 (0.759) 0.246 (0.783)

SRTD (tips g−1)

Amendment 7.963 (0.002) 1.052 (0.362)

Inoculation 0.573 (0.455) 0.032 (0.859)

Amendment × Inoculation 0.141 (0.869) 0.295 (0.747)

Root D (mm)

Amendment 11.820 (0.000) 1.852 (0.175)

Inoculation 0.618 (0.438) 1.635 (0.211)

Amendment × Inoculation 0.730 (0.490) 0.040 (0.961)

Root TD (g cm−3)

Amendment 0.232 (0.794) 0.338 (0.716)

Inoculation 0.003 (0.960) 0.001 (0.982)

Amendment × Inoculation 0.282 (0.756) 0.243 (0.786)

Root N (%)

Amendment 3.363 (0.049) 1.547 (0.230)

Inoculation 0.591 (0.296) 0.000 (0.990)

Amendment × Inoculation 1.129 (0.337) 0.076 (0.927)

Root C/N

Amendment 2.938 (0.069) 0.922 (0.409)

Inoculation 0.001 (0.981) 0.328 (0.571)

Amendment × Inoculation 0.569 (0.572) 0.037 (0.963)

Performance traits

Leaf Chlorophyll (μmol m−2)

Amendment 5.500 (0.005) 0.202 (0.818)

Inoculation 0.644 (0.424) 0.486 (0.487)

Amendment × Inoculation 0.342 (0.711) 1.406 (0.250)

Base Diameter (mm)

Amendment 4.439 (0.014) 2.004 (0.140)

Inoculation 9.558 (0.003) 1.224 (0.271)

Amendment × Inoculation 0.128 (0.880) 0.922 (0.401)

Biomass (g)

Amendment 1.319 (0.283) 0.169 (0.845)

Inoculation 0.791 (0.381) 0.018 (0.893)

Amendment × Inoculation 1.530 (0.233) 0.137 (0.873)

N usage index

Amendment 1.166 (0.325) 0.129 (0.879)

Inoculation 4.189 (0.050) 0.039 (0.844)

Amendment × Inoculation 1.245 (0.303) 0.165 (0.849)

Wheat SRL, SRTD, root N, base diameter, and aboveground biomass were log-transformed prior to analysis. Soybean SRL, SRTD, root TD, root C/N, and aboveground biomass were log-
transformed prior to analysis. Bolded denotes significance (p ≤ 0.05).
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wheat and soybeans, the inoculation treatment resulted in lower trait 
variation than the uninoculated treatment. In the inoculated treatment, 
the CVs for the root traits ranged from 11.8 to 39.1% for wheat and 13.1 
to 44.4% for soybean. Conversely, uninoculated plants exhibited CVs 
ranging from 11.8 to 61.0% for wheat and 14.9 to 104.3% for soybean.

Performance trait response to combined 
agroecological interventions

The effects of the amendment treatment were observed on 
performance traits (Table 1). Wheat base diameter (p = 0.014) and 
nitrogen usage index (p = 0.050) demonstrated significant differences 
among inoculation treatments. Inoculation with the growth-promoting 
bacterial inoculant led to a notable increase of 28.5% in mean wheat 
base diameters and a 38.7% rise in the mean nitrogen usage index 
(Table 3). The mean leaf chlorophyll content was 45.9% higher in the 
inorganic fertilizer treatment compared to the no amendment 
treatment (p = 0.005). The mean base diameter was 32.1% larger in the 
inorganic fertilizer treatment than in the organic treatment (p = 0.014).

Multivariate root trait variation

To measure multivariate root trait variation, PCAs were conducted 
for both crops. In wheat, the first two PCA axes accounted for a total 
of 75.7% of the variation in root functional traits (Figure 1). PCA axis 
1 accounted for 44.8% of the variation in wheat root traits and was 

positively associated with conservative traits, root D, root C/N, and 
root TD, while being negatively associated with root acquisitive traits 
such as SRL, SRTD, and root N. PCA axis 2 accounted for an 
additional 30.9% of the variation in wheat root traits and was 
positively associated with root C/N, SRL, and SRTD, while negatively 
associated with root N and root TD.

For soybeans, the first two PCA axes explained a total of 83.2% of 
the variation in root functional traits (Figure 1). Similar to wheat, the 
first PCA axis accounted for the majority of the variation in soybean 
root traits (62.0%) and was positively associated with root acquisitive 
traits, root (N, SRL, and SRTD) while negatively associated with 
conservative traits, root D, root TD, and root C/N. The second PCA 
axis explained an additional 21.2% of the variation in soybean root 
traits and was negatively associated with root D, root C/N, SRL, and 
SRTD, while positively associated with root N and root TD.

PerMANOVA indicated that wheat multivariate traits varied 
significantly as a function of the amendment only, with a pairwise test 
indicating that the organic amendment and the inorganic fertilizer 
treatment significantly varied from each other (p = 0.021). Soybean 
multivariate traits did not vary significantly as a function of any of 
the treatments.

Rhizosphere soil properties between 
amendments and inoculation treatments

The mean and standard error for rhizosphere Apase, POxC, 
available P, total N, total C, and C/N ratio are shown in Table  4. 

TABLE 2 Means, standard deviation (SD), and CV of wheat and soybean root functional traits [SRL; SRTD; root N; root C: N; root D; root TD] across three 
amendment treatments and two inoculation treatments.

No amendment Organic 
amendment

Inorganic 
fertilizer

Uninoculated Inoculated

Mean (SD) CV % Mean (SD) CV % Mean (SD) CV 
%

Mean (SD) CV % Mean (SD) CV %

Wheat root traits

SRL (m g−1) 11.73 (2.95) 25.2 17.31 (9.84) 56.9 9.75 (2.21) 22.7 13.66 (8.33) 61.0 12.20 (4.77) 39.1

SRTD (# of 

tips g−1)
3170.9 (685.2) 21.6 4857.4 (2057.6) 42.4 3005.3 (543.8) 18.1 3876.0 (1831.7) 47.3 3479.8 (1131.0) 32.5

Root N (%) 1.03 (0.22) 21.8 0.96 (0.28) 29.4 0.82 (0.16) 19.1 0.96 (0.28) 29.5 0.91 (0.19) 20.4

Root C/N 37.7 (7.5) 20.0 39.8 (8.0) 20.2 45.9 (9.2) 20.0 41.2 (10.4) 25.3 41.1 (7.2) 17.5

Root D 

(mm)
0.54 (0.04) 7.47 0.46 (0.04) 8.10 0.57 (0.06) 11.0 0.52 (0.06) 11.8 0.54 (0.06) 11.8

Root TD 

(g cm−3)
0.396 (0.104) 26.2 0.396 (0.152) 38.5 0.427 (0.109) 25.6 0.407 (0.13) 31.6 0.405 (0.12) 28.8

Soybean root traits

SRL (m g−1) 8.58 (3.2) 36.8 12.36 (12.7) 102.4 7.77 (3.3) 42.1 9.99 (10.4) 104.3 9.23 (4.1) 44.4

SRTD (# of 

tips g−1)
1479.0 (498.4) 33.7 2668.8 (3382.2) 126.7 1620.3 (906.4) 55.9 2150.9 (2858.7) 132.9 1698.9 (617.5) 36.3

Root N (%) 1.42 (0.17) 11.8 1.56 (0.17) 10.9 1.50 (0.23) 15.1 1.49 (0.22) 14.9 1.49 (0.16) 10.9

Root C/N 27.3 (4.7) 17.2 24.7 (4.1) 16.5 25.5 (4.7) 18.5 26.4 (5.4) 20.6 25.3 (3.3) 13.1

Root D 

(mm)
0.54 (0.09) 15.9 0.50 (0.10) 20.0 0.59 (0.13) 22.1 0.56 (0.12) 21.4 0.51 (0.09) 17.7

Root TD 

(g cm−3)
0.201 (0.03) 14.0 0.226 (0.15) 68.5 0.180 (0.02) 12.5 0.211 (0.13) 60.0 0.194 (0.03) 15.4
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Significant differences were found in the available P of wheat 
rhizosphere soil among the amendment treatments (p = 0.017), with 
notably higher values observed in the inorganic fertilizer treatment 
(24.8 ± 3.6 mg kg−1) compared to the organic treatment 
(5.9 ± 1.3 mg kg−1). Additionally, significant differences were noted in 
the POxC of wheat rhizosphere soil (p = 0.028), which was 
significantly lower in the inorganic fertilizer treatment 

(584.0 ± 20.5 mg C kg−1) compared to the organic treatment 
(761.3 ± 26.7 mg C kg−1). No significant differences were detected for 
wheat rhizosphere N, C, or C/N ratio, nor for Apase.

Significant differences were also observed in the available P of the 
soybean rhizosphere in response to the amendment treatment 
(p = 0.007). Higher values were detected in the inorganic fertilizer 
treatment (18.8 ± 2.2 mg kg−1) compared to the organic treatment 

TABLE 3 Means, standard deviation (SD), and the CV of wheat and soybean performance traits across three amendment treatments and two inoculation 
treatments.

No Amendment Organic 
Amendment

Inorganic 
Fertilizer

Uninoculated Inoculated

Mean (SD) CV % Mean (SD) CV % Mean (SD) CV % Mean (SD) CV % Mean (SD) CV %

Wheat performance traits

Chlorophyll 

(μmol m-2)
224.2 (111.2) 49.6 274.2 (124.5) 45.4 327.1 (124.5) 45.2 264.7 (133.2) 50.3 285.0 (135.8) 47.7

Base Diameter 

(mm)
7.19 (3.17) 44.1 6.49 (2.82) 43.4 8.57 (3.40) 39.7 6.49 (2.71) 41.7 8.34 (3.46) 41.5

Biomass (g) 2.70 (1.38) 51.1 2.46 (1.42) 57.8 3.39 (1.90) 55.7 2.48 (1.12) 45.1 3.22 (1.91) 59.2

N usage index 88.8 (40.9) 46.1 71.8 (42.9) 59.8 96.6 (44.8) 46.4 71.84 (31.5) 43.8 99.6 (49.0) 49.2

Soybean performance traits

Chlorophyll 

(μmol m-2)
478.0 (63.3) 13.2 485.4 (66.2) 13.6 477.2 (49.7) 10.4 476.2 (56.5) 11.9 484.6 (63.7) 13.1

Base Diameter 

(mm)
6.77 (1.53) 22.6 6.45 (1.20) 18.5 7.09 (1.20) 16.9 6.63 (1.36) 20.4 6.90 (1.31) 19.0

Biomass (g) 14.68 (9.34) 63.7 12.27 (5.75) 43.9 13.11 (5.75) 47.5 13.22 (6.08) 46.0 13.56 (8.18) 60.3

N usage index 295.3 (181.7) 61.5 288.7 (119.8) 41.5 264.5 (125.5) 47.5 287.7 (132.0) 45.9 278.6 (155.6) 55.9

FIGURE 1

Principal component analysis (PCA) depicting the relationships among the six measured root functional traits: SRL, SRTD, root N, root C:N ratio, root D, 
and root TD in multivariate space for wheat and soybean. The shapes represent the two inoculation treatments, while the ellipses denote the three 
amendment treatments. Sample size n = 35.
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TABLE 5 Redundancy analysis for percent variance of fungal community composition explained by wheat root traits.

Retained Wheat Root Traits Variance (%) F-value p-value Adj r2

Log Root D (mm) 2.0 3.00 0.018

Root C/N 1.8 2.72 0.010

Residual 9.41

Model 5.50 2.72 0.002 0.233

The global model contained SRL, SRTD, root N, root C, root C/N, root D, and root TD. The results are based on 9,999 permutations. Bold values indicate significant factors.

(5.3 ± 1.2 mg kg−1) and the no amendment treatment 
(6.2 ± 1.0 mg kg−1). The C/N ratio of the soybean rhizosphere was 
significantly influenced by the amendment treatment (p = 0.001), 
being higher in the inorganic fertilizer treatment (20.2 ± 0.54) relative 
to the organic treatment (17.0 ± 0.16) and the no amendment 
treatment (16.9 ± 0.30). Additionally, alkaline phosphatase (Apase) 
activity in the soybean rhizosphere was significantly affected by the 
amendment treatment (p = 0.039). Apase levels were lower in the 
inorganic fertilizer treatment (203.1 ± 8.9 μmol g−1 h−1) compared to 
the organic amendment (253.3 ± 8.7 μmol g−1  h−1). No significant 
differences were found for soybean rhizosphere N, C, or POxC.

Root trait relationships with rhizosphere 
properties

The results of a redundancy analysis (RDA) indicated that wheat 
root functional traits explain fungal community composition, whereas 
soybean root functional traits do not (Table 5). Forward selection 
applied to the wheat RDA identified root D (p = 0.018) and root C/N 
ratio (p = 0.010) as the most significant traits for explaining fungal 
community composition, yielding a final model of R2 = 0.233 
(p = 0.002). Rhizosphere fungal analysis revealed that the most 
abundant fungal genera across all measured wheat samples were 
(excluding unidentified genera) Mortierella (38.28%), Pyrenochaetopsis 

(4.62%), and Alternaria (2.72%). The most abundant genera across all 
soybean samples were (excluding unidentified genera) Mortierella 
(42.8%), Pyrenochaetopsis (4.90%), and Fusarium (1.92%). An NMDS 
analysis showed that fungal community composition did not 
significantly vary between the soil amendment treatments, the seed 
inoculation treatment, or the interaction between the soil amendment 
and seed inoculation treatments for both wheat and soybean.

A Pearson correlation coefficient matrix was computed to assess 
the linear relationship between individual root traits and rhizosphere 
POxC, Apase, total N, total C, C/N ratio, and available P (Figure 2). In 
soybeans, SRL was found to be significantly positively correlated with 
POxC (r = 0.35, p = 0.041), total N (r = 0.40, p = 0.017), and total C 
(r = 0.35, p = 0.040), while being negatively correlated with C/N 
(r = −0.34, p = 0.046). Additionally, for soybeans, POxC was 
negatively correlated with root carbon (r = −0.34, p = 0.046) and the 
root C/N ratio (r = −0.35, p = 0.040).

Discussion

Combined agroecological strategies for 
root traits and resource management

Our results reveal that resource acquisition strategies are 
influenced by amendment regimes in wheat; organic amendments 

TABLE 4 Rhizosphere soil properties by amendment treatment with means and standard error (SE) for total N, total C, C/N ratio, available P, active C 
(POxC), and Apase activity.

No amendment Organic amendment Inorganic fertilizer

Wheat rhizosphere

N (%) 0.45a ± 0.02 0.46a ± 0.02 0.37a ± 0.02

C (%) 7.7a ± 0.35 8.2a ± 0.30 6.5a ± 0.29

C/N 17.6a ± 0.35 17.9a ± 0.27 18.0a ± 0.36

Available P (mg kg−1) 7.6a ± 1.6 5.9a ± 1.3 24.8b ± 3.6

POxC (mg C kg−1) 744.6ab ± 31.1 761.3a ± 26.7 584.0b ± 20.5

Apase (μmol g−1 h−1) 204.1a ± 8.7 209.6a ± 9.8 195.7a ± 8.3

Soybean rhizosphere

N (%) 0.44a ± 0.02 0.47a ± 0.02 0.34a ± 0.02

C (%) 7.4a ± 0.36 7.9a ± 0.36 6.6a ± 0.33

C/N 16.9a ± 0.30 17.0a ± 0.16 20.2b ± 0.54

Available P (mg kg−1) 6.2a ± 1.0 5.3a ± 1.2 18.8b ± 2.2

POxC (mg C kg−1) 806.0a ± 50.8 811.8a ± 33.0 728.3a ± 57.2

Apase (μmol g−1 h−1) 258.2a ± 8.3 253.3a ± 8.7 203.1a ± 8.9

Lower-case letters denote significant differences (p ≤ 0.05), as determined by a one-way ANOVA followed by Tukey’s HSD post hoc test.
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induce root trait expression toward the acquisitive end of the RES 
(Figure 1). We measured an increase in wheat root acquisitive traits, 
largely characterized by shifts in SRL and SRTD, as a result of adding 
the organic amendment compared to both the inorganic treatment 
and the no amendment treatment (Table 3). The substantial increase 
in SRL noted suggests that organic amendments induce changes in 
trait expression that allow for an increase in the volume of soil 
explored per unit investment of carbon. It has been proposed that 
thin, acquisitive root traits have a greater potential to adapt to 
fluctuating soil resources (Eissenstat et al., 2015). Given that organic 
amendments are characterized by heterogeneous nutrient cycling, 
resulting in nutrient hotspots, this may represent an advantageous 
resource strategy in agroecosystems (Borden et al., 2020). Similar 
shifts in root traits are also evident in long-term studies; Siddiqui et al. 
(2022) identified long-term root adaptations to organic versus 
conventional cropping systems. Organic-adapted populations were 
characterized by thin root Ds, longer roots with narrow root angles, 
larger surface areas, increased root mass density, and a greater number 
of metaxylem vessels, whereas conventionally adapted populations 
exhibited larger root volumes, thicker diameters, and fewer 
metaxylem vessels.

In contrast to wheat, soybean did not show any significant changes 
in root traits due to the treatments (Table 1). It is possible that soybean, 
as an N2-fixer, may have been more effective at managing organic 
forms of nitrogen and, therefore, exhibited fewer significant changes 
in root trait expression due to nutrient differences compared to wheat. 
Additionally, the dosage of fertilizer used in this study (75 kg N ha−1) 
may not have been sufficient to induce variation in soybean root 
functional traits. For example, McCoy et  al. (2018) reported no 
difference in soybean root length and area when N fertilizer levels 

were applied at a rate of 45 kg ha−1 N; however, changes in root length 
and area were observed when N fertilizer was applied at a rate of 
135 kg ha−1 N.

Despite minimal shifts in root traits in soybeans with treatments, 
variations in root traits, as measured through CVs, differed among 
treatments (Table  2). The root trait CVs increased in response to 
organic amendments for many individual root traits, specifically root 
acquisitive traits such as SRL and SRTD in both wheat and soybean. 
This indicates higher variability in a more heterogeneous environment. 
Siddiqui et al. (2022) found increased genetic variation in barley root 
system traits under organic conditions. Interestingly, while individual 
root traits were not significantly affected by inoculation, seed 
inoculation led to a general decrease in root trait variation in both 
soybean and wheat, as indicated by the CVs for each root trait 
(Table 2). The observed lower CV values suggest a tighter and more 
stable expression of root traits, which may indicate a fitness advantage 
in certain stable environments and may help in predicting trait 
outcomes (Dalal et al., 2017). Given the known positive effects of plant 
growth-promoting bacteria (PGPB) on enhancing plant stress 
responses (Glick, 2005; Grover et al., 2021), it is possible that the 
increased ability of inoculated plants to mediate stressful changes in 
the soil environment resulted in a more constrained or stable 
expression of root functional traits.

PGPB inoculation effects on performance 
traits

Although changes due to the inoculation treatment were not 
observed at the root level, significant effects were noted above 

FIGURE 2

Pearson correlation matrix depicting relationships among the six measured root functional traits [SRL; SRTD; root N; root C/N; root D; root TD] and the 
six measured rhizosphere soil properties [total N, total C, C/N ratio, available P (PO4), active C (POxC), and Apase activity]. Significance is denoted by 
asterisks, where * p = 0.05, ** p = 0.01, *** p = 0.001. Wheat rhizosphere total N, C, C/N, and P and root SRL, SRTD, and root N and soybean 
rhizosphere POxC, total N, C, C/N and P and root SRL, SRTD, root TD, and root C/N were log-transformed prior to analysis.
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ground, particularly for wheat. This indicates a decoupling of above- 
and belowground processes in response to the combined 
agroecological interventions (Table  1). Potential relationships 
between performance traits and root traits, as well as the effects of 
inoculation on root traits due to changes in overall plant fitness, may 
have been obscured by the plastic response of traits that respond 
differently to above- and belowground resources (Isaac et al., 2017; 
Weemstra et  al., 2022). Several studies have also shown that 
endophyte bacteria can simultaneously upregulate and downregulate 
plant genes and metabolites (Timm et al., 2016; Weston et al., 2012). 
It is possible that overlapping signals from the inoculation masked 
certain belowground plant trait responses (Henning et al., 2016). 
Additionally, low or heterogeneous inoculation success may have 
occurred in the crops. Furthermore, the PGPB may have induced 
changes in earlier developmental stages that were not measured in 
this study, which focused on the later stages of phenological  
development.

Inoculation-induced changes have also been shown to be host-
specific (Henning et al., 2016). This study noted host-specific changes. 
For wheat, significant positive effects were detected for the base 
diameter and the nitrogen usage index (Table 1). The positive effects 
on above-ground traits for wheat are intriguing, as larger base 
diameters may create stronger structural support, thereby promoting 
lodging resistance (Niu et al., 2022). Mayer et al. (2019) demonstrated 
that this particular strain positively affected the growth of Arabidopsis, 
basil, lettuce, and bok choy in laboratory settings. The observed 
increase in the N usage index is also favorable for nutrient 
management since optimizing nitrogen usage is an important strategy 
for maximizing yield and agronomic potential while reducing nitrogen 
inputs (Baligar et al., 2001). It is possible that the significant effect of 
inoculation on performance traits indicates a higher degree of trait 
integration; however, further research is needed to investigate and 
confirm this. A higher degree of integration may benefit crops in cases 
where a coordinated above-ground phenotype is required to combat 
a potentially stressful environment (Matesanz et al., 2021).

Root traits as drivers of rhizosphere 
properties

In soybeans, the relationships between root traits and 
rhizosphere properties are evident, with SRL emerging as a key trait 
(Figure 2). Soybean SRL is positively correlated with permanganate 
oxidizable carbon (POxC), total nitrogen (N), and total carbon (C), 
while it is negatively related to the carbon/nitrogen (C/N) ratio. 
Other studies have reported positive correlations between SRL and 
root exudation rates (Guyonnet et al., 2018; Meier et al., 2020). These 
positive relationships between rhizosphere properties and SRL may 
be  explained by increases in exudation corresponding to higher 
SRL. Additionally, root C/N is negatively correlated with soybean 
rhizosphere POxC. Permanganate oxidizable carbon, or labile 
carbon, is measured by the amount of potassium permanganate 
(KMnO4) reduced in soil, indicating the active carbon pool in soils. 
Research suggests that POxC serves as a sensitive indicator of 
changes in soil organic carbon resulting from various soil 
management practices (Culman et al., 2012). A negative correlation 
between root carbon content and the C/N ratio may be related to 
increased exudation rates, leading to higher POxC content in the 

rhizosphere. In contrast, POxC is not associated with root traits in 
wheat. Variations in POxC among amendment regimes in wheat 
rhizosphere samples are likely due to changes in labile carbon 
resulting from the amendments or differences in microbial action, 
rather than changes induced by roots. Furthermore, we demonstrated 
that soil available P and Apase are negatively correlated in both 
soybean and wheat rhizospheres, highlighting the strong 
relationships between nutrient availability and the enzymatic activity 
required to release nutrients from organic sources—a crucial 
dynamic in organic agricultural systems a crucial dynamic in organic 
agricultural systems.

Fungal community redundancy analysis (RDA) indicated that, for 
wheat, individual root traits help explain fungal community 
composition (Table 5). Fungal communities, particularly arbuscular 
mycorrhizal fungi, are expected to be closely linked with SRL and root 
D due to a proposed trade-off between foraging and outsourcing 
strategies (Bergmann et al., 2020; Sweeney et al., 2021). Fulthorpe 
et al. (2020) also demonstrated that low root nitrogen, large root Ds, 
and high root C/N ratios were strong predictors of fungal endophyte 
community composition. In this analysis, RDA showed that wheat 
root D and root C/N were significant predictors of wheat rhizosphere 
fungal community composition, further suggesting an outsourcing  
strategy.

Root exudation and its effects on nutrient pools and fungal 
community characteristics are often complex and interconnected. 
Root functional traits are proposed to regulate the degree and extent 
of rhizosphere alteration, and the magnitude of the rhizosphere effect 
may depend on plant resource strategies, which can be categorized 
into acquisitive and conservative patterns (Han et al., 2020). Increased 
root exudation is negatively correlated with conservative root traits 
(Sun et al., 2021). Here, we demonstrate that the properties of the 
rhizosphere are influenced by root trait expression. It is reasonable to 
expect that treatments affecting root traits will produce corresponding 
effects on rhizosphere properties. Roots are recognized as key 
contributors to the alteration of the physical, chemical, and biological 
properties of the rhizosphere through root trait expression and 
exudation (Canarini et al., 2019). Rhizodeposits are diverse and may 
include carbohydrates, enzymes, hormones, proteins, organic acids, 
and amino acids, many of which are associated with nutrient 
acquisition (Hunter et al., 2014). Additionally, it is important to note 
that rhizodeposition can be complex and influenced by factors beyond 
root trait expression, including plant nutrient status, ontogeny, and 
environmental conditions (Dakora and Phillips, 2002).

Conclusions: outlook for implementing 
multiple agroecological strategies

In this study, we demonstrated that using an endophyte bacterial 
inoculant can lead to limited interactive effects among fertility 
treatments. This indicates a more significant impact of soil 
amendments on belowground traits when agroecological interventions 
are combined. We also show that the magnitude of above-ground 
benefits can remain relatively consistent across soil conditions within 
a specific crop. Microbial solutions can complement the integration of 
best management practices for soil health (e.g., organic amendments, 
crop rotation, reduced tillage) (Hartman et  al., 2018; Norris and 
Congreves, 2018). However, it is essential to recognize that 
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considerable work is required to identify suitable strains for specific 
hosts and effective solutions for scaling efficacy to field conditions. 
Rapid advancements in microbial products are anticipated, and 
research and industry partners should ensure they inform growers of 
realistic product expectations, development timelines, and potential 
limitations (Batista and Singh, 2021).

Our findings also indicate a need to optimize organic-adapted 
genotypes, as conventionally adapted genotypes may exhibit traits 
that do not maximize the agronomic potential in organic systems 
(see, Isaac et  al., 2021; Warschefsky et  al., 2014). Field crops like 
wheat and soybean have undergone significant aboveground selection 
pressure for traits that maximize yield. However, in low-input 
systems, these traits may not always be beneficial. For example, Li 
et  al. (2021) examined the loss of functional traits for nutrient 
exploration and uptake due to selection under high nutrient 
availability. Efforts should be  made to optimize genotypes for 
beneficial trait expression in agroecological cropping systems. 
Overall, soil amendments had a more substantial impact on crop root 
response than seed inoculants, although seed inoculants positively 
affected direct measures of crop performance. Importantly, these two 
agroecological interventions did not significantly interact, 
highlighting opportunities for improved integration of 
agroecological strategies.
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