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Introduction: With the development of agricultural industry clustering and 
scale expansion, agricultural carbon emissions (ACEs) have gradually formed a 
spatial association network. Clarifying the agricultural carbon emissions spatial 
correlation network (ACESCN) and its influencing factors in Shandong Province 
is crucial for advancing low-carbon agricultural development.

Methods: Based on ACE in 16 cities of Shandong Province, this study uses 
Social Network Analysis (SNA) and Quadratic Assignment Procedure (QAP) 
to investigate the spatial spillover effects and driving factors of ACESCN in 
Shandong Province from 2010 to 2022.

Results and discussion: The findings show that the following: (1) overall, ACE in 

Shandong Province has shown a trend of initially increasing and then decreasing. 

(2) the ACESCN in Shandong Province has gradually improved in both connectivity 

and robustness, forming a network structure centered around Weifang, Jinan, 

and Tai’an. However, the degree of network connectivity remains relatively loose, 

indicating that the network structure needs optimization. Within the network, 

there are significant spatial spillover and spatial agglomeration effects. (3) 

Geographical proximity, economic level, industrial structure, and the opening-

up degree have a significant impact on spatial correlation. Therefore, this study 

suggests that spatial associations should be fully utilized to enhance cross-

regional agricultural production interactions and cooperation. This approach 

will help form a rational agricultural industry agglomeration structure, providing 

a scientific basis for Shandong Province to achieve low-carbon agricultural 

development and regional coordinated emission reductions.
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1 Introduction

At present, global warming has become a major challenge for mankind. According to the 
assessment report of the Intergovernmental Panel on Climate Change (IPCC), the global 
temperature has risen by 1.1°C compared with pre-industrial times, and the frequency and 
intensity of extreme weather caused by global warming has increased, posing a threat to the 
sustainability of agricultural production (Ali et al., 2019). China’s economy has experienced 
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rapid development, and urbanization has continued to accelerate. 
China’s total carbon dioxide emission has always been higher than the 
world average level and has become the country contributing the most 
carbon emissions worldwide (Liu et al., 2023). In this grim context, 
China has set targets to reach a carbon emissions peak by 2030 and 
carbon neutrality by 2060 (Gao and Gao, 2024). Relevant studies show 
that agricultural carbon emissions (ACEs) are the most important 
source of greenhouse gases in our country, constituting roughly 17% 
of the total national greenhouse gas emissions (He et al., 2020; Pierre 
et al., 2022; Wen et al., 2022). Therefore, reducing ACE will directly 
impact the achievement of China’s dual carbon goals.

As an agricultural powerhouse, China has outlined six key tasks 
and 10 major actions in the “Implementation Plan for Agricultural 
Emission Reduction and Carbon Sequestration.” These measures aim 
to synergistically advance agricultural, ecological, and environmental 
protection and enhance the co-benefits of agricultural pollution 
reduction and carbon emission reduction. The plan includes 
developing smart emission reduction technologies and livestock gut 
fermentation suppression techniques and promoting nationwide 
manure resource utilization and agricultural soil carbon sequestration 
(Das et al., 2024). The goal is to lower agricultural greenhouse gas 
emissions by implementing a series of agricultural measures to achieve 
sustainable agricultural development. However, Shandong Province, 
a critical agricultural province in China, serves as a crucial grain 
production foundation in our country. As the swift advancement of 
its agricultural economy, significant advancements in agricultural 
techniques, and the continuous input of agricultural materials, what 
follows is the continuous increase of agricultural environmental 
pollution and agricultural greenhouse gases in Shandong Province 
(Liu et al., 2020). Simultaneously, as the regional coordinated strategy 
in Shandong Province continues to deepen, the development pattern 
of “a group, two centers and three circles” has been promoted (Song 
et al., 2024), which further promotes the formation of agricultural 
industry clusters, tightens the interdependence of ACE between cities, 
and gradually forms a correlation network with each other. Therefore, 
accurately calculating Shandong’s ACE and studying the spatial 
agglomeration and spillover effects of these emissions from a spatial 
perspective have become key research focuses.

Currently, research on ACE mainly focuses on the following aspects. 
First, in measuring ACE, scholars primarily use methods such as the 
carbon emission coefficient method, Life Cycle Assessment (LCA), and 
the mass balance method. Among these, LCA is a method used to 
evaluate the environmental impact throughout the entire life cycle of 
crops (Inés et al., 2023; Jebari et al., 2024). It covers the carbon emissions 
from all activities in the agricultural production process, providing a more 
detailed and comprehensive approach to carbon emission measurement. 
However, since LCA requires creating a unique life cycle inventory for the 
agricultural system (Thomas et al., 2023), data availability and accuracy 
are major factors affecting the evaluation. Additionally, the diverse 
sources of ACE (Lesschen et  al., 2011; Zhu et  al., 2016) can lead to 
overlooking the connections and impacts of different sources of emissions 
in the agricultural production process (Yao et al., 2024).

Second, the spatial correlation and clustering impacts have received 
extensive attention. Scholars mostly used spatial measures such as kernel 
density function, Moran index, Theil index, and Gini coefficient (George 
and Franklin, 2017; Du et al., 2024; Yang et al., 2024) to analyze and an 
input–output model to study their spatial convergence and distribution 
characteristics, which reveals the spatial correlation of ACE in a way, 

indicating significant spatial agglomeration and dependence among 
cities (George and Franklin, 2017). However, the above research only 
considers the geographical closeness of the two regions and is conducted 
by attribute data, which fails to indicate the spatial correlation of carbon 
emissions from a holistic perspective and ignores the integrity among 
different areas (Zhou and Wen, 2024), and fails to realize regional 
collaborative emission reduction. With the development of industry 
clusters and the promotion of coordinated development strategy of 
regions in recent times, the flow of agricultural production technology, 
workforce, and capital has become increasingly frequent, making the 
spatial associations of ACE more adjacency relationship in a 
geographical sense (Ji and Zhang, 2023), breaking the traditional linear 
model and presenting more complex network characteristics in space.

Finally, regarding the factors influencing ACE, most scholars have 
used methods such as the Kaya-LMDI decomposition method 
(González et al., 2014), Autoregressive Distributed Lag (ARDL) models 
(Dar et al., 2024), and Tobit models (Liu and Gao, 2022) to examine the 
impact of external factors such as economic conditions and 
technological advancements on the promotion or suppression of ACE 
(Md et al., 2023; Nsabiyeze et al., 2024), as well as the effects of internal 
factors such as industrial agglomeration and technological progress 
(Dauda et al., 2021; Wang et al., 2023). They believe that economic and 
technological advancements have varying impacts on carbon emissions 
across different regions and that implementing carbon reduction 
policies combining technological measures with agricultural 
development will effectively control ACE (Nsabiyeze et  al., 2024). 
Furthermore, some studies have explored the impact of agricultural 
management, climate change, and crop production on greenhouse gas 
emissions through field measurements (Abdul et al., 2022; Agyeman-
Richard et  al., 2023; Shannon et  al., 2024). However, these studies 
mainly focus on single factors affecting the increase or decrease of ACE 
and do not identify the factors contributing to establishing spatial 
associations of ACE between cities. By combining spatial autocorrelation 
analysis with the study of carbon emissions’ transfer and transmission 
under different driving factors, it has been found that ACE can 
be transmitted to other regions through economic activities and policies.

Given the limitations of current research, this study makes several 
innovations and contributions: (1) Previous studies have primarily 
focused on geographic proximity or adjacency between two regions 
based on attribute data. This study utilizes relational data to explore the 
spatial associations, structural characteristics, and spatial conduction 
mechanisms of a certain system, which can effectively reveal complex 
non-linear network relationships in a region. (2) This study provides a 
comprehensive analysis of the structural characteristics of the ACESCN, 
clarifying the position and function of each node within the network. (3) 
The study uses QAP regression analysis to determine the factors affecting 
the establishment of the ACESCN in Shandong Province, addressing the 
issue of multicollinearity among independent variables. (4) The findings 
of this study offer a basis for achieving low-carbon development in 
agriculture and regional collaborative governance in Shandong Province.

2 Materials and methods

2.1 Study area

Shandong Province is situated along the eastern coast of China 
and downstream of the Yellow River. It forms a terrain and landform 
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with mountains and hills as the skeleton and plains and lakes in an 
interlacing ring. Plains are mainly distributed in the west of Shandong 
Province, followed by hills and mountains, accounting for 15.39 and 
14.59%, respectively. The Shandong province has a warm temperate 
and monsoonal climate. In 2022, the average annual temperature will 
be 14.5°C, the average annual precipitation will be 861.5 mm, and the 
average annual sunshine will be 2304.5 h. The superior geographical 
location and sufficient precipitation and light provide superior 
conditions for developing agriculture in Shandong Province. As a 
crucial agricultural region in China, the total arable land in 2022 is 
6.4564 million hectares, ranking sixth in the world. The sown area of 
crops is 10.9641 million hectares, the total grain output is 55.438 
million tons, and the total rural output is 608.99 billion yuan, ranking 
third in the world. Obviously, Shandong Province, as a large 
agricultural province, has extremely rich agricultural resources.

2.2 Data

The time span of this study is 2010–2022. The social activity data 
needed are from the Shandong Statistical Yearbook and municipal 
statistical bureaus, the carbon emission coefficient data are sourced 
from IPCC and related references, and the administrative boundary 
data are from the Resources and Environment Science Data Platform. 

The calculation of distances between cities utilizes the geographical 
coordinates of cities in Shandong Province. The figures relating to 
GDP are based on 2010, eliminating the effect of price changes.

2.3 Methodology

Based on the analysis of Shandong’s ACE, this study constructs 
the spatial correlation matrix and investigates the spatial spillover 
effect and the influence factors based on SNA and QAP. The detailed 
workflow is shown in Figure 1.

2.3.1 Calculation of agricultural carbon emissions
Since the agricultural carbon sources are characterized by 

diversity (Hu et al., 2023), this study divides the ACE into three 
parts. The input of agricultural materials (Table  1) is mainly 
considered from using fertilizers, agricultural film, pesticides, diesel, 
and the area under plowing and irrigation. The release of methane 
(CH4) from rice cultivation and nitrous oxide (N2O) from other 
crops are mainly considered for crop cultivation (Table 2), and the 
release of CH4 and N2O caused by intestinal fermentation in 
livestock breeding and livestock manure are considered for livestock 
breeding (Table 3). Referring to the IPCC measurement method, this 
study establishes Shandong’s agricultural carbon emission 

FIGURE 1

Analysis flow chart.
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calculation framework and determines carbon emission coefficients 
by combining the IPCC and relevant works of literature. The formula 
is Equation 1:

 i iC T α= ∑ ×  (1)

Where C represents the ACE of Shandong Province, Ti represents 
the activity level, and αi represents the carbon emission coefficient. To 
facilitate the calculation of Shandong’s total ACE, in accordance with 
the IPCC assessment report, the impact on the greenhouse effect from 
1 t CH4 and N2O equals to 6.82tC and 81.27tC, and the greenhouse 
effect generated by CH4 and N2O is converted into standard C.

2.3.2 Modified gravity model
SNA relies on the spatial correlation matrix. To analyze the ACESCN 

in Shandong province, the initial step involves constructing the 
correlation matrix. Currently, the main methods used include the vector 
autoregressive and gravity models. However, the vector autoregressive 
model is influenced by lag orders, introducing uncertainty biases when 
describing spatial correlations. In contrast, gravity models incorporate 
economic and geographic factors, allowing for a more precise 
characterization of network features (Yu et al., 2022). So, we employ a 
modified gravity model to describe the association of ACE in Shandong 
Province and build a correlation matrix. The basic formula is Equation 2:

 

4 4

2
i i i i j j j ji

ij
i j ij

PG C A P G C ACR
C C D

=
+  

(2)

Where Rij represents the gravitational coefficient between city i and 
city j, and agricultural carbon emission is used for distribution; P, G, C 

and A, respectively, represent the rural population, per capita 
agricultural GDP, carbon emissions and agricultural sown area between 
cities i and j; Dij represents the distance between cities i and j. The 
correlation matrix can be derived from the formula, and the average 
value of each row is taken as the threshold value. If the number is higher 
than the threshold, it is set to 1, indicating that the cities in the 
corresponding rows have a correlation; otherwise, it is set to 0.

2.3.3 Social network analysis methods
Using SNA, the ACESCN in Shandong is viewed as a spatial 

network system. Each city is treated as a network node, with their 
correlations represented as edges. This study analyzes the spatial 
spillover agglomeration effect from the perspectives of overall network 
characteristics, individual network characteristics, and cluster analysis 
(Cheng et al., 2024). It also analyzes the inner state of the correlation 
network and the role of each member from the perspective of 
spatial clustering.

2.3.3.1 Network density, network efficiency, network 
connectedness, and network hierarchy are used to 
describe the overall characteristics

Network density reflects the closeness of the network members. 
The formula is Equation 3:

 ( )1
KC

N Nρ =
−  

(3)

Where Cρ represents network density, N represents the number of 
network nodes, and K represents the number of network correlations.

Network connectedness reflects the robustness of the network. 
The formula is Equation 4:

 ( )
21

1C
VC

N N
= −

−  
(4)

Where CC represents network connectivity and V represents the 
count of node pairs that are unreachable from each other.

Network efficiency reveals the number of network correlation 
lines. The formula is Equation 5:

 ( )
1

maxE
RC

R
= −

 
(5)

Where CE represents the network efficiency, R represents the 
number of redundant lines, and Max(R) represents the maximum 
quantity of possible redundant lines.

TABLE 1 Carbon emission coefficient and sources of agricultural material 
input.

Types Coefficient Reference

Fertilizer 0.8956kgc/kg ORNL

Pesticide 4.9341kgc/kg ORNL

Agricultural film 5.18 kgc/kg IREEA

Diesel 0.5927 kgc/kg IPCC

Plowing 312.6 kgc/km2 College of Biology and Technology, 

China Agricultural University

Irrigation 266.48 kgc/hm2 Duan et al. (2011), Wang et al. (2012), 

and Guo et al. (2022)

ORNL is the Oak Ridge National Laboratory. IREEA is the Institute of Agricultural 
Resources and Ecological Environment, Nanjing Agricultural University.

TABLE 2 Carbon emission coefficient and sources of crop planting.

Types Coefficient Types Coefficient Reference

Rice 0.21 t (CH4)/hm2 Vegetables 4.94 kg(N20)/hm2 Wang and Su (1993), Wang 

(1997), and Min and Hu (2012)Rice 0.24 kg (N20)/hm2 Fruits 4.21 kg(N20)/hm2

Wheat 1.75 kg (N20)/hm2 Cotton 0.4804 kg(N20)/hm2

Corn 2.532 kg (N20)/hm2 Oilseeds 0.95 kg(N20)/hm2

Potatoes 0.95 kg (N20)/hm2 Millet 0.95 kg(N20)/hm2

Soybeans 0.77 kg (N20)/hm2 Sorghum 0.95 kg(N20)/hm2
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Network hierarchy reflects the extent of asymmetry within the 
network (Li et al., 2024b), reflecting the status difference of each node. 
The formula is Equation 6:

 ( )
1

maxH
SC

S
= −

 
(6)

Where CH represents the network hierarchy, S represents the 
logarithm of symmetry approachable points, and MAX(S) represents the 
maximum quantity of possible symmetric approachable point logarithm.

2.3.3.2 Degree, closeness, and betweenness centrality are 
used to describe the individual characteristics

Degree centrality reveals the status of each node. The higher the 
point degree centrality, the stronger the node’s direct correlation with 
other nodes (Li et al., 2024a), indicating that this node occupies a central 
status and can influence neighboring nodes. The formula is Equation 7:

 1
i

i
nDC

N
=

−  
(7)

Where N represents the number of network relationships; n 
represents the number of direct relationships between city i and 
other cities.

Betweenness centrality reflects the degree of control of nodes to 
other nodes and its mediating function. The formula is Equation 8:

 

( )1 1
2

2 /

3 2

N N
jk jk

i
b i b

BC
N N

=
− +

∑ ∑
 

(8)

Where bjk(i) represents the number of shortcuts between city j and 
city k; and bjk represents the total number of shortcuts between city j 
and city k.

Closeness centrality indicates a node’s resilience in the network 
against control by other nodes (Qian and Liu, 2024). The formula is 
Equation 9:

 
1

1

N
ijj

i
d

CC
N

==
−

∑
 

(9)

Where dij represents the shortest spherical distance between city j 
and city k and N represents the number of network relationships.

2.3.3.3 Cluster analysis
The structural feature analysis of the spatial association cluster 

network describes the inner structural condition of the network and 

the status of each member of their spatial clusters (Gao and Gao, 2024), 
which can intuitively show the carbon flow and carbon transfer among 
various modules in the ACESCN. Based on the iterative correlation 
convergence method, we divide 16 node cities into four major plates 
(Lv et al., 2019; Huo et al., 2022). The bidirectional spillover plate both 
accepts and overflows relationships to other plates, and the proportion 
of intra-plate relationships is relatively low. The number of external 
relationships received by the net benefit plate is significantly higher 
than that of spillover external relations. The number of external 
relationships received by the net spillover plate is obviously lower than 
that of the spillover external relations. The number of inbound and 
outbound relationships in the agent plate is relatively large, while the 
proportion of internal relationships is relatively low.

2.3.4 QAP analysis
Since we  select relational data as variables, there is 

multicollinearity among variables, making it challenging to assess 
whether interference terms conform to a normal distribution. 
However, the QAP model operates independently of assumptions 
regarding normal distribution or independence and can effectively 
solve the multicollinearity problem between variables (Xu et  al., 
2022). Therefore, to further elucidate the influencing factors of the 
evolution of the ACESCN in Shandong Province, this study selects 
indicators such as geographical proximity (D), agricultural economic 
development level (G), agricultural production structure (S), 
agricultural production efficiency (C), scientific and technological 
level (P), agricultural energy intensity (E), and opening-up degree (O) 
(Xu and Lin, 2017; Lin and Xu, 2018; Liu et al., 2020; Gao and Gao, 
2024), and build the difference matrix of the mean values of 
influencing indicators in each region during 2010–2022. The QAP 
model is Equation 10:

 ( )AC f D,G,S,C,P,E,O=  (10)

3 Results and discussion

3.1 Temporal and spatial characteristics of 
ACE in Shandong Province

The calculation results of ACE in Shandong Province during 
2010–2022 are shown in Figures 2, 3. According to the calculation 
results, spatial visualization is performed.

From Figure 2, Shandong’s ACE mainly comes from agricultural 
input, representing more than 50%, followed by livestock breeding 
and crop planting, accounting for 31.21 and 14.70%, respectively. As 

TABLE 3 Carbon emission coefficient and sources of livestock breeding.

Types Enteric fermentation Manure management Reference sources Reference

kg (CH4)/head/a kg (CH4)/ head /a kg (N2O)/ head /a

Cow 47.8 1 1.39

Pig 1 3.5 0.53
IPCC Hu and Wang (2010), 

and Zhou et al. (2007)

Sheep 5 0.16 0.33

Poultry - 0.02 0.02

https://doi.org/10.3389/fsufs.2025.1508492
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Shan et al. 10.3389/fsufs.2025.1508492

Frontiers in Sustainable Food Systems 06 frontiersin.org

a whole, ACE demonstrates a pattern of initial increase followed by a 
decrease. From 2010 to 2012, carbon emissions exhibit an increasing 
pattern, from 1,744.99 × 104tons to 1,752.21 × 104tons, with an average 
yearly growth of 0.14%. With the improvement of agricultural 
economic levels and social living standards, Shandong Province has 
an increasing demand for livestock products. The development of the 
planting industry provides rich feed resources for animal husbandry 
and promotes the expansion of the scale and density of animal 
husbandry; the carbon emissions of livestock breeding increased from 
589.69 × 104 tons in 2010 to 611.99 × 104 tons in 2012, with an average 
yearly growth of 1.26%, which is the primary factor contributing to 
the increase of ACE. From 2012 to 2022, ACE reveals a declining 
trend, from 1,752.21 × 104 tons in 2012 to 1337.53 × 104 tons in 2022, 
a decrease of 414.68 × 104 tons, with an average yearly decline of 
2.37%. Agricultural input and livestock breeding carbon emissions 
show a consistent downward trend, which is consistent with the total 
carbon emissions. It may be because Shandong Province has actively 
responded to the national low-carbon agricultural development policy 
in recent years by promoting advanced agricultural production 
technology and equipment, implementing the national strategy on 
decreasing fertilizers and pesticide usage while enhancing efficiency, 
and implementing policies and measures such as utilizing livestock 
manure and managing straw effectively. Measures such as weight loss 
and efficiency improvement have reduced the input of agricultural 
materials and effectively controlled carbon emissions. It shows that 
Shandong Province has achieved remarkable results in adjusting 
agricultural production structure and sustainable agriculture and is 
transforming to green and low-carbon agriculture.

To guarantee the standardization and comparability of 
Shandong’s ACE at different time scales, the spatial distribution is 
obtained by dividing the ACE data into four various carbon 
emission zones (low, medium, higher, and highest carbon emission 

zones) according to 0.5, 1, and 1.5 times of the average carbon 
emission in Shandong (Figure  4). From the perspective of the 
regional structure of the ACE (Figure  3), the variations in 
agricultural economic level and industrial composition lead to 
heterogeneity (Liu et al., 2020). Heze has the highest total carbon 
emissions, reaching 2399.28 × 104 tons, while Zibo was the lowest, 
reaching 466.02 × 104 tons, only 1/5 of Heze’s. Cities with relatively 
high carbon emissions from agricultural input and crop planting 
include Weifang, Heze, Linyi, Liaocheng, Jining, and Dezhou, which 
belong to higher and highest carbon emission regions, mainly 
concentrated in western Shandong Province and northwest 
Shandong Province, where the terrain is flat and the land is fertile, 
with mainly agricultural production. The large proportion of crop 
area and high food production make these cities more suitable for 
agricultural development, resulting in higher carbon emissions. 
Heze has the highest ACE attributed to livestock breeding, which 
has the largest scale of livestock breeding, but also brings severe 
pollution and unsustainable development problems. In contrast, 
Zibo, Dongying, Weihai, and Rizhao have low ACE and belong to 
low carbon emission regions, which are mainly focused on the 
mountains and hills in central Shandong Province and the eastern 
coastal areas of Jiaodong. These cities have relatively developed 
industrial development, a small proportion of agriculture, and a 
single agricultural structure, so ACE is also low. Therefore, to 
effectively control the total amount of ACE, meanwhile taking into 
account factors such as natural calamities and the scale development 
of the planting industry, local governments should devise strategies 
based on local circumstances and restructure the industry and 
reduce ACE by reducing the application of pesticides and fertilizers, 
controlling material input, and improving agricultural utilization 
efficiency, to achieve a mutually beneficial outcome for regional 
carbon emissions and sustainable agricultural development.

FIGURE 2

Temporal changes of ACE from 2010 to 2022.
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3.2 Characteristics of spatial correlation 
network

3.2.1 Overall network characteristics
After building the modified gravity model, we  construct the 

correlation matrix of Shandong’s ACE from 2010 to 2022 to discuss 
the spatial correlation, calculate the specific values of the overall 
characteristics, and draw the network in 2010 and 2022 (Figure 5). The 
straight line represents the spatial connection between cities, and the 
square represents each city. It is observable that the ACESCN is 
relatively stable. Non-neighboring cities break through the traditional 
geographical space restrictions and produce a cross-regional linkage 
effect, and gradually form a coil-edge spatial network structure with 
Weifang, Tai an, and Jinan as the core point, without isolated nodes.

From Figure 6, the network connectedness is always 1 from 2010 
to 2022, indicating that Shandong’s ACE has a spatial correlation effect 
and is robust. All cities and regions have direct or indirect spatial 
connectivity, without isolated urban nodes. Network density, on the 
whole, presents a trend of “up-down-up,” increasing from 0.2917 in 
2010 to 0.3083 in 2022. Although there are fluctuations, the overall is 
relatively stable. The fluctuation of the network relationship number 
is small, and there is a certain gap between it and the maximum 
possible relationship number 240 (15 × 16). Its change trend is 
consistent with the network density, showing that the structural 
correlation of the ACESCN is gradually increasing, but the correlation 
degree among cities is relatively loose. The network structure requires 
optimization, and the exchange and connection of agricultural 
resources among regions need to be  strengthened. In 2020, the 
network density and its relationships reached the maximum, which is 
because the continuous development of the national economy and 

transportation, as well as the implementation of regional development 
strategies, promotes the flow and transfer of agricultural materials 
such as agricultural science and technology, labor force, and funding, 
while strengthening the spatial correlation of the ACESCN.

Moreover, the network efficiency decreases from 0.7429 to 0.7238, 
which reveals that there are additional overflow channels in the related 
network, the interaction between nodes increases, there is multiple 
superposition phenomenon, and the ACESCN is gradually steady and 
its robustness is gradually improved. However, the network hierarchy 
is consistently at 0 across 2010–2022, which indicates that there is no 
strict hierarchical structure for the network, no significant hierarchical 
relation gradient is formed among node cities, the direct difference 
between different cities was small, and the connection is relatively 
close. In general, the ACESCN is relatively steady, with common 
spatial correlation and overflow paths, but high-carbon emission 
nodes can have a negative impact on the neighboring regional 
environment through spatial spillover effects, and the increase in 
network density and the number of relationships may mean that the 
competition for resources is intensified. Shandong Province should 
further strengthen the overflow channels of agricultural production 
factors in the region. Facilitate exchange and sharing of agricultural 
resources, including technology, labor force, and capital among cities.

3.2.2 Individual network characteristics
This study uses Ucinet to calculate the individual structural 

indicator of the ACESCN during 2010–2022 and reveal the individual 
characteristics of the network.

From Figure 7, Tai’an, Weifang, Jinan, Zibo, and Jining are the 
centers of the ACESCN in Shandong Province, and their degree of 
centrality is higher than other cities, revealing that these cities have 

FIGURE 3

Measurements of ACE across different cities.
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more direct agricultural carbon emission associations with other 
cities, and act as an important function in shaping and maintaining 
the robustness of the network. Because these cities are positioned in 
the central part of Shandong Province, the geographical position is 
superior, and the geographical distance from other cities is relatively 
short. They can form a good exchange of agricultural elements with 
other areas through the transportation network. Among them, 
Weifang and Jinan are more centrally than other cities. With the 
accelerated progress of agricultural industry, perfect technology, and 
superior cultivated land conditions, these cities can quickly produce 
the siphon effect, attract the input of agricultural development factors 
from other regions, exert influence on agricultural development in 
other regions through agricultural technology transfer and other ways, 
and gradually hold the center in the network. Therefore, promoting 
agricultural technologies such as precision fertilization or water-
saving irrigation in these cities can effectively reduce ACE in the 
region. However, while promoting agricultural development, attention 
should also be paid to strengthening the supervision of environmental 
problems caused by the over-exploitation of resources to realize 

carbon emission reduction targets. On the contrary, Yantai and Weihai 
have the lowest degree of centrality. Due to geographical constraints, 
it is not easy to establish a correlation with ACE in the surrounding 
areas. They are positioned on the fringe of the network and possess a 
faint dependence on ACE with other cities, and can reduce ACE by 
developing local low-carbon agricultural development models.

From Figure 8, the closeness centrality to the center of Jinan, Zibo, 
Dongying, Weifang, Jining, Linyi, and Binzhou during 2010–2022 is 
above the average values, suggesting that these cities are more likely to 
be  connected with other regions, have a strong ability not to 
be  controlled by other cities, and play an active role in the 
ACESCN. This is attributed to the advanced agricultural economy and 
technology in these cities, their superior geographical location, perfect 
transportation, and good communication channels for agricultural 
elements, which can quickly generate spatial connections with other 
areas by exporting labor force or absorbing advanced agricultural 
technology. As centers of technology diffusion, these cities can take 
the lead in piloting low-carbon agricultural policies and driving 
carbon reduction in their surrounding areas by exporting advanced 

FIGURE 4

Spatial distribution of ACE in Shandong Province.
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agricultural technology. On the contrary, the proximity of Qingdao, 
Yantai, Weihai, and Heze to the center is relatively low. Due to their 
location at the edge of Shandong, the ability to establish spatial 
connections with other cities for carbon emissions is limited, and it is 
difficult to obtain advanced agricultural technology and funds from 
other cities, which reduces their influence in the spatial network.

From Figure 9, the betweenness centrality of six cities, namely 
Jinan, Zibo, Dongying, Weifang, Tai’an, and Linyi, is above the average 
values during 2010–2022, suggesting that these cities can effectively 
control the movement of agricultural production factors in the 
agricultural correlation network and hold an important position in 
regulating and controlling carbon emissions in other regions. It serves 
as the most important bridge in the ACESCN. Among them, Jinan and 
Weifang have the highest degree of intermediary center, which may 

be due to the rapid progress in agricultural development in the two 
cities, which affects agricultural development in other regions by 
exporting capital and technology to other cities. As key nodes in the 
network, these cities can ensure the fairness and feasibility of carbon 
reduction policies and actions across the province through 
coordinated interregional resource allocation and technology transfer. 
On the contrary, the betweenness centrality of Yantai, Weihai, and 
Heze is only between 0 and 1 and maintained at a minimal level, 
suggesting that the spatial correlation with other cities is not close, and 
they are in a dominant position in the ACESCN, with limited ability 
to control the spatial network, so making it challenging to impact the 
spatial correlation of ACE among cities. The betweenness centrality in 
Zaozhuang, Rizhao, and Liaocheng continues to increase, suggesting 
that the impact continues to strengthen.

FIGURE 5

Overall characteristic correlation network structure in 2010 and 2022.
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3.2.3 Spatial clustering features
To further reveal the internal structural features of the ACESCN 

in Shandong Province, we use the CONCOR algorithm to explore 
the clustering features of the network. The cutting depth was set to 
2, the convergence criteria to 0.2, and 16 cities in Shandong 
Province were divided into four plates. From Table 4, on the whole, 
the network comprises 39 relationships inside, which constitute 
52.7% of the total number of relationships (74), while 35 
relationships are outside the sector, representing 47.3%. This 
distribution indicates the presence of spatial spillover and spatial 

agglomeration effects in the ACESCN in various cities in 
Shandong Province.

From Table 4, Plate I  includes Jinan, Liaocheng, Dezhou, and 
Tai’an. The plate contains 11 relationships. There are 14 receiving 
relations external to the plate and nine spillover relations. The relations 
received from the external plate exceed those that spillover, the actual 
ratio of internal relations surpasses the expected ratio, which is the net 
benefiting plate. The city of this plate is situated in the economic circle 
of the provincial capital, and its geographical position is superior. They 
can influence agriculture in other areas through agricultural 

FIGURE 6

Overall network structure characteristics change trend.
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technology transfer and other ways, hold a central position within the 
network, and mainly enjoy the input of urban agricultural resources 
from other plates.

Plate II includes Zaozhuang, Jining, Linyi, and Heze; the intra-plate 
relationship number is 10, the out-of-plate receiving relationship is 7, and 
the spillover relationship is 10, which has a significant spillover 

relationship to both inside and outside, has more connections with intra-
plate relationship number, and belongs to the bidirectional spillover 
plate. These cities are located within the south of the Shandong Economic 
Circle, with a high level of domestic agricultural economy, abundant 
agricultural production resources, and a good spatial correlation effect 
within the block. They not only meet the carbon emission supply within 

FIGURE 7

Degree centrality from 2010 to 2022.

FIGURE 8

Closeness centrality from 2010 to 2022.
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the plate but also provide agricultural carbon emission materials for 
other cities, maintain close relations with other plates, and occupy a 
leading position in the spatial network. The ACE in this plate is large, and 
it is easy to spill over to other cities. Therefore, inter-regional technical 
cooperation and policy linkage should be strengthened.

Plate III includes Rizhao, Qingdao, Weihai, and Yantai; the intra-
plate relationship number is 7, the external plate reception relation is 3, 
and the spillover relation is 7. The external spillover relation is 
significantly higher than the internal and external reception relationship 
number, indicating that the cities in this plate have an obvious carbon 
spillover effect, which is the net spillover plate. Because their 
geographical location limits their ability to create spatial connections, 
resulting in the outflow of resources such as agricultural technology and 
market. These cities within this plate are mostly coastal cities with 
relatively backward agricultural development. With fisheries as the main 

industry, the agricultural development potential is limited. Emission 
reduction models suitable for local conditions, such as eco-fisheries, 
should be  explored, while cooperation with core cities should 
be strengthened to obtain more technical support and financial input.

Plate IV includes Weifang, Zibo, Dongying, and Binzhou. There 
are 11 receiving relationships outside the plate and nine spillover 
relationships. It is closely connected with members internal and 
external the plate, which belongs to the agent plate. The urban area in 
this plate is located in a superior position, connecting the movement 
of agricultural resources in southwest Shandong and eastern 
Shandong. It is a link to promote the connection of agricultural 
resources in Shandong Province, responsible for transferring 
technology and labor, and acting as an agent and bridge within the 
network. It can balance the position of each city in the network by 
strengthening the optimal allocation of resources between regions.

FIGURE 9

Betweenness centrality from 2010 to 2022.

TABLE 4 Division and characteristics of ACESCN in Shandong Province in 2022.

Plate Cities Number Reception 
relation

Spillover 
relation

Expected internal 
relationship

Actual 
internal 

relationship

Plate 
roles

Internal External Internal External

I Jinan, Liaocheng, Dezhou, 

Tai ‘an

4 11 14 11 9 20.000% 55% Net benefit

II Zaozhuang, Heze Linyi, 

Jining

4 10 7 10 10 20.000% 50% Bidirectional 

spillover

III Rizhao, Qingdao, Weihai, 

Yantai

4 7 3 7 7 20.000% 50% Net spillover

IV Weifang, Binzhou, Zibo, 

Dongying

4 11 11 11 9 20.000% 55% Agent
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To further explore the spatial relation between plates, we analyze 
the network by calculating its density matrix and image matrix 
(Table  5 and Figure  10). Taking the overall network density of 
0.3083  in 2022 as the fiducial value, the image matrix in 2022 is 
assigned 1 if the inter-plate density exceeds this value and 0 if it is not. 
The matrix provides a more direct representation of the spillover effect 
between different plates. From Table 5 and Figure 10, it is evident that 
all diagonal elements of the matrix are 1, revealing notable spatial 
correlations within the four plates. Plate IV receives the spillover 
effects spatially transmitted from Plate III and transmits them to plate 
I, indicating that plate IV acts as a bridge in the network. The spatial 
spillover effects from plate I mainly affect plate IV and also receive the 
spatial spillover effects from plate II and Plate IV, showing that the 
regions with richer agricultural production and resources are more 
likely to receive agricultural production factor inputs from other 
regions. However, plate I and plate II exhibit no correlation, indicating 
that the relation between the network needs to be improved.

3.3 Analysis of influence factors

3.3.1 QAP correlation analysis
Correlation among affecting factors is assessed based on 5,000 

random permutations. From Table 6, the correlation coefficient between 
spatial adjacency and spatial correlation degree is significantly positive 
at a 1% significance level, suggesting that D shows a significant positive 
correlation with the ACESCN. G, O, and P are significantly negative at 
the 1% level, S is significantly negative at the 5% level, and agricultural 
production efficiency shows a significant negative correlation at the 10% 
level, suggesting a negative correlation between G, O, S, and P and spatial 
correlation. The aforementioned factors significantly influence the 
formation and spatial spillover of ACE. However, E has no significance, 
suggesting that it has no significant effect on spatial association.

From the perspective of the correlation coefficient, D is most closely 
related to the formation of the ACESCN in Shandong Province, and its 
correlation coefficient value is 0.75, followed by O, G, and P, whose 
correlation coefficients are 0.37, 0.29, and 0.26, respectively. The more 
similar the level of opening up, economic development, and science and 
technology of different cities in Shandong Province, the more similar it 
is and the stronger the link between agricultural carbon emissions. In 
addition, by verifying the correlation between the seven explanatory 
variables, it is found that G and P, G and E, C and E, P and E, D and G, 
and D and P variables are all significantly correlated, so we employ QAP 
regression to eliminate the influence of multicollinearity.

3.3.2 QAP regression analysis
QAP regression analysis is a non-parametric method used to 

analyze the regression relationship between a matrix of dependent 
variables and multiple matrices of independent variables (Bai et al., 
2020). From the QAP correlation, this study excludes E that has no 
significance and obtains the regression analysis results affecting the 
spatial correlation by setting 5,000 random column and column 
substitutions (Table 7). Findings reveal that the adjusted R2 is 0.595 
and passes the 1% significance level. The selected affecting factors can 
explain 59.5% of the structural changes in the network.

From Table 7, the regression coefficient of D shows a positive 
effect at the 1% significance level, revealing that spatial proximity 
significantly promotes the formation of the network. From the first 

law of geography, closer geographical distances between cities facilitate 
the easier formation of spatial correlation (Li et al., 2007), which is 
attributed to convenient transport in neighboring areas and the 
frequent transfer and flow of agricultural factors. The spatial spillover 
influence is also obvious, with a closer spatial correlation. However, 
regions with high carbon emissions may transfer pollution to 
surrounding areas through geographical proximity, leading to spatial 
transfer of environmental problems. At the same time, the diffusion 
of technology is limited to the neighboring regions, and the regions 
far from the technology center are difficult to benefit from, and the 
inequality between regions is exacerbated.

The regression coefficient of G shows a negative effect at the 10% 
significance level, revealing that smaller disparities in the agricultural 
economy among cities are more favorable for forming the network. 
ACESCN has obvious spatial agglomeration characteristics in Shandong 
Province. Regions with better economic development will absorb 
agricultural products, labor, and other resources in neighboring areas, 
gradually narrowing the economic distance and strengthening the 
correlation between regions. Moreover, as the strategy of regional 
coordinated development deepens, regions with close agricultural 
economic development are also similar in terms of agricultural technology 
and demand, leading to more frequent exchanges of agricultural materials 
such as workforce and capital among regions with similar economic 
development. However, when the economically developed areas siphon 
the resources of the surrounding areas, it will lead to the concentration of 
resources in a few areas and aggravate the inequality between regions.

The regression coefficient of S shows a negative effect at the 10% 
significance level, revealing that the more similar the structure of the 
agricultural industry of different cities is, the more it can promote the 
establishment of ACESCN in Shandong Province. The narrowing of 
industrial structure differences between regions makes agricultural 
production and development gradually similar among regions, and 
the agricultural products and factors required are the same. Therefore, 
the exchange and circulation of factors between regions are increased, 
thus forming the agglomeration of regional industries, gradually 
strengthening the agriculture correlation, and realizing the circulation 
of factors across regions. However, regions with backward or diverse 
industrial structures may be further marginalized.

The regression coefficient of O shows a negative effect at the 1% 
significance level, revealing that smaller differences in the opening-up 
degree lead to closer ACESCN. The narrowing of the gap in the 
opening-up degree can make the circulation of agricultural industry 
factors cluster, facilitating the promotion of regional agricultural 
industry and further strengthening the accessibility of related 
networks. The opening-up degree reflects that to realize rapid 
economic development at the regional level, and due to the lack of 
agricultural infrastructure in Shandong Province, agricultural 
production is restricted. With the continuous increase of total import 

TABLE 5 Density matrix and image matrix.

Plate Density matrix Image matrix

I II III IV I II III IV

I 1 0.333 0 0.25 1 1 0 0

II 0.267 0.8 0.05 0.1 0 1 0 0

III 0 0.1 0.583 0.313 0 0 1 1

IV 0.417 0.1 0.125 0.833 1 0 0 1
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FIGURE 10

Correlation of the four plates of the ACESCN in 2022.

TABLE 6 Correlation analysis among influencing factors.

AC D G S C P E O

AC 1***

D 0.75*** 1***

G −0.29*** −0.23*** 1***

S −0.15** −0.10 0.13 1***

C 0.12* 0.13* 0.096 0.049 1***

P −0.26*** −0.2** 0.67*** 0.075 −0.057 1***

E −0.057 −0.083 0.5** 0.042 0.3* 0.39* 1***

O −0.37*** −0.33*** 0.1 −0.016 −0.074 0.075 0.2 1***

***, **, and * indicated significant correlation at 0.01, 0.05, and 0.1 levels, respectively.

TABLE 7 Result of QAP regression analysis.

Independent Un-standardized 
coefficient

Standardized 
coefficient

Proportion 
significance

Proportion as 
large

Proportion as 
small

Intercept 0.323 0.000

D*** 0.710 0.662 0.000 0.000 1.000

G* −0.182 −0.086 0.097 0.904 0.097

S* −0.127 −0.075 0.062 0.938 0.062

C 0.069 0.034 0.260 0.260 0.740

P −0.077 −0.049 0.206 0.794 0.206

O*** −0.253 −0.143 0.003 0.997 0.003

***, **, and * indicated significant correlation at 0.01, 0.05, and 0.1 levels, respectively.
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and export investment, the economic distance between regions is 
gradually narrowed, and the spatial correlation is strengthened by 
increasing the construction of agricultural infrastructure and fixed 
assets investment to promote the growth of rural residents’ income 
and economy (Liu et al., 2020).

The difference of C and P had no significant effect on the ACESCN 
in Shandong Province.

4 Conclusion and policy implications

4.1 Conclusion

As agricultural carbon reduction is a crucial aspect of achieving 
carbon neutrality targets, this study explores the ACESCN and 
clustering characteristics in Shandong Province by using SNA and 
examines the influence factors through QAP analysis after the 
calculations of ACE in Shandong during 2010–2022. Here are the 
main conclusions: (1) ACE in Shandong Province exhibits a trend of 
initially increasing and then decreasing during 2010–2022, among 
which the agricultural material input carbon emissions are the largest, 
followed by livestock farming. From the regional perspective, the 
spatial difference is obvious. Regions with high ACE are predominantly 
clustered in areas with extensive crop planting, and the level of 
sustainable development in various regions is increasingly evident. (2) 
From the overall network characteristics, the ACESCN in Shandong 
Province exhibits a notable spatial spillover effect and gradually forms 
a spatial network structure with Weifang, Tai’an, and Jinan as the core 
points, and there is no isolated region in the network. There is a 
noticeable upward trend in both network density and network 
relationships, and the changing trend of network efficiency and 
hierarchy reveals that the resilience of relational networks is gradually 
improved without forming a significant hierarchical structure. (3) 
From the perspective of individual network characteristics, Jinan, 
Weifang, Tai’an, and Zibo are in a leading position in the network, 
while Weihai, Yantai, and Heze are in an edge position in the network 
because of geographical constraints, and have a weak dependence on 
agricultural carbon emission of surrounding cities. (4) From the 
spatial clustering characteristics, the ACESCN has obvious spatial 
agglomeration characteristics and is divided into four major plates: 
Net benefit plate (Jinan, Liaocheng, Dezhou, and Tai’an), bidirectional 
spillover plate (Zaozhuang, Jining, Linyi, and Heze), net spillover plate 
(Rizhao, Qingdao, Weihai, and Yantai), and agent plate (Weifang, 
Zibo, Dongying, and Binzhou). Among them, the net benefit plate is 
primarily clustered in central and western Shandong Province, 
enjoying the input of urban agricultural resources; the net spillover 
plate is concentrated in the coastal cities with slow agricultural 
economic development and remote geographical locations; and the 
agent plate acts as a bridge in the network. (5) According to the results 
of the QAP analysis, spatial proximity has a positive impact on the 
ACESCN, while economic level, industrial structure, and the 
opening-up degree have a negative effect on the spatial correlation.

4.2 Limitations

Although this study has made valuable discoveries, there are still 
some limitations. First, this study focuses on Shandong Province, and 

its conclusions may not be universal. Future studies can be extended 
to regions with different agricultural structures, socio-economic 
conditions, or policies. Second, the statistical data comes from the 
official website of the Bureau of Statistics, and the missing data are 
processed by interpolation, but there may be a problem of lagging 
updates of the statistical data. In addition, due to the availability of 
data, the measurement of agricultural carbon emissions in this study 
was carried out only in cities with fewer network nodes. In future, 
agricultural carbon emissions at the district and county levels can 
be measured to expand the scale of the network. Finally, we use QAP 
to analyze the influencing factors of the spatial correlation network of 
carbon emissions, but only the external factors are analyzed. In future, 
the internal mechanism of the formation and evolution of the network 
can be revealed based on the exponential random graph model.

4.3 Policy implications

Based on the conclusion of this study, this study proposes the 
following policy recommendations:

Make full use of spatial correlation, optimize and adjust network 
structure, and strengthen network connectivity. First of all, the provincial 
government will set up a cross-regional agricultural technology transfer 
center, take advantage of the geographical location and economic 
advantages of core cities such as Jinan and Tai’an, play the role of 
Weifang, Zibo, and other cities as “Bridges,” optimize resource allocation, 
promote the transfer of low-carbon agricultural technology to Yantai, 
Weihai, and other marginal cities, improve the agricultural technology 
level in the surrounding areas, and reduce the excessive use of chemical 
fertilizers and pesticides. In addition, it is necessary to strengthen the 
construction of transportation and logistics network, optimize the 
regional transportation network of core cities and peripheral cities, set 
up regional logistics hubs, the distribution of complex agricultural 
materials, promote economic cooperation and exchanges between 
different regions, and the cross-regional flow of agricultural factors.

Establish a cross-regional agricultural cooperation mechanism to 
form a reasonable agricultural industry agglomeration structure, and 
thus achieve regional collaborative emission reduction. First of all, 
provincial governments should formulate inter-regional agricultural 
carbon reduction cooperation agreements, clarify the roles of 
different cities in cooperation agreements, and promote inter-
regional cooperation through the development of reward and 
punishment measures and agreement coordination mechanisms. 
Second, according to the agricultural production structure and 
economic development level of each region, the development plan of 
agricultural industrial clusters is formulated, such as developing 
efficient agriculture and green agriculture in high-carbon emission 
areas such as Weifang and Heze, building low-carbon agriculture 
demonstration zones, developing ecological fisheries in coastal cities 
such as Weihai, Yantai, Qingdao, and Rizhao, formulating 
differentiated emission reduction policies, guiding enterprises to 
concentrate in industrial cluster areas through specific policies, 
optimizing resource allocation, and avoiding “one-size-fits-all” 
carbon reduction. Achieve equitable emission reduction among 
regions. Finally, a special fund should be  set up to support the 
promotion of agricultural innovation, as well as agricultural carbon 
reduction subsidy policies to encourage farmers or enterprises to 
adopt low-carbon agricultural technologies.
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Give full play to different factors. First of all, we should narrow the 
difference in economic level, increase financial support for areas with 
less developed resources, promote agricultural modernization and the 
application of green technology, encourage economically developed 
areas to export capital, technology, and management experience to 
neighboring areas, and promote resource sharing among regions. 
Second, we should optimize the industrial structure, promote the 
coordinated development of the primary, secondary, and tertiary 
industries in rural areas, and develop new business forms, such as 
agricultural product processing and rural tourism. The government 
should increase financial subsidies to areas with backward industrial 
structure and help them promote low-carbon agricultural technologies 
through technical training and demonstration projects. Finally, the 
level of opening to the outside world should be improved, investment 
in agricultural infrastructure should be  increased, agricultural 
enterprises in Shandong Province should be promoted to carry out 
agricultural cooperation with other countries, international brands 
should be built for Shandong’s characteristic agricultural products, 
and international markets should be expanded through cross-border 
e-commerce platforms.
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