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In eastern India, the rice-wheat cropping system (RWCS) faces challenges

like poverty, fragmented landholdings, and resource overexploitation, with

smallholder farmers prioritizing short-term gains through excessive water and

nitrogen use. To address these issues, our study combined field experiments

and the DNDC crop simulation model to evaluate the resilience, viability, and

environmental sustainability of RWCS under conservation agriculture (CA) with

varying irrigation methods and nitrogen rates at the International Rice Research

Institute-South Asia Regional Center (ISARC), Varanasi, India. The treatments

included: (1) Puddled transplanted rice followed by zero-tilled wheat with flood

irrigation (PTR-ZTW-F), (2) Direct-seeded rice followed by ZTW with flood

irrigation (DSR-ZTW-F), (3) DSR followed by ZTW with surface drip fertigation

(DSR-ZTW-SD), and (4) DSR followed by ZTW with subsurface drip fertigation

(DSR-ZTW-SSD), evaluated under 75% and 100% recommended nitrogen dose

and nitrogen control plots. The DNDCmodel accurately predicted soil mineral N

(NO−
3
: R2 = 0.74, RRMSE= 52.9%; NH+

4
: R2 = 0.79, RRMSE= 63.5%), water-filled

pore space (R2 = 0.85, RRMSE = 20.9%), soil temperature (R2 = 0.91, RRMSE

= 4.6%), redox potential (R2 = 0.82, RRMSE = 24.1%), system productivity (R2

= 0.93, RRMSE = 7.8%), and nitrogen uptake (R2 = 0.86, RRMSE = 18.1%).

DSR-ZTW systems with drip fertigation significantly enhanced sustainability and

productivity compared to PTR-ZTW system, where CH4 emissions were reduced

by 70%–80% and global warming potential reduced by 56%, despite higher

N2O emissions. Additionally, DSR-ZTW-SSD achieved the highest system yield

(12.8 t ha−1), minimized water losses, and improved nitrogen use e�ciency.

Also, TOPSIS analysis ranked DSR-ZTW-SSDF as the most sustainable system,

achieving the highest yield and resource use e�ciency, while significantly
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reducing GHG emissions. The study underscores the potential of integrating

CA, drip fertigation, and DSR to enhance productivity, conserve resources, and

improve the sustainability of RWCS.

KEYWORDS

conservation agriculture, crop modeling, drip fertigation, greenhouse gas emissions,

sustainability

1 Introduction

The rice (Oryza sativa L.)–wheat (Triticum aestivum L.)

cropping system (RWCS) is crucial for global food security,

providing essential staples for a significant portion of the world’s

population (Banjara et al., 2021; Dhanda et al., 2022). This system is

widely practiced across Asia, spanning 13.5 Mha, with 57% located

in South Asia, predominantly in the Indo-Gangetic Plains. In India,

RWCS spans ∼10 Mha, producing 130 Mt of rice and 106 Mt

of wheat, contributing around 75% of the nation’s cereal output

and playing a vital role in food security and economic stability

(Ladha et al., 2009; ICAR Annual Report, 2023). Traditionally, rice

in RWCS is cultivated through puddled transplanted rice (PTR),

involving intense puddling, followed by seedling transplanting,

while wheat is grown under conventional tillage (CTW) following

rice residue burning and multiple tillage operations (Peramaiyan

et al., 2023). The continuous adoption of PTR has deleterious

effects on the subsequent CTW crop due to subsoil compaction and

structural degradation of soil, impairing root architecture andwater

movement (Chauhan et al., 2012). Additionally, these traditional

practices lead to soil health deterioration, groundwater depletion,

residue burning hazards, resource inefficiency, yield stagnation,

reduced profitability, multi-nutrient deficiency, and increased

energy use (Humphreys and Gaydon, 2015). The resource-, energy-

, and labor-intensive nature of RWCS, coupled with its significant

greenhouse gas (GHG) emissions, poses substantial challenges to

its sustainability (Gupta et al., 2016).

India is considered as the world’s third-largest emitter of

GHGs, with agriculture contributing ∼16% of total emissions.

Among them, 74% of emissions are attributable to methane

(CH4), primarily from livestock (38.9%) and rice cultivation

(36.9%), and the remaining 26% from N2O emissions (Vetter

et al., 2017). Climate change, population growth, and depleting

natural resources further exacerbate these challenges, making an

imperative demand for adoption of sustainable interventions in

the RWCS to ensure environmental stewardship and economic

resilience. Research must focus on cost-effective, resource-efficient,

and eco-friendly practices to sustain this vital agricultural

system. Approaches such as conservation agriculture (CA),

direct-seeded rice (DSR), and micro-irrigation are emerging

as promising solutions. These practices not only improve

productivity, profitability, and sustainability but also reduce

environmental impacts, thereby supporting food security and

livelihoods across South Asia (Parihar et al., 2017; Kumar et al.,

2023; Sharma et al., 2023).

CA has emerged as a key strategy for sustainable farming,

enhancing productivity and long-term sustainability through

residue retention, minimal tillage, and crop diversification (Parihar

et al., 2018; Patra S. et al., 2023). Globally, CA is practiced on

∼205 Mha (12.5% of total cropland), primarily in developed

countries. Adoption in Asia and Africa remains limited, with

only 13.9 Mha and 1.5 Mha, respectively, due to small-scale and

subsistence farming (Jat et al., 2020). In India, CA is more prevalent

in the northwest IGPs due to favorable conditions and robust

infrastructure, while the eastern IGP lags behind, necessitating

region-specific research and its strategic promotion (Kumar et al.,

2024a). DSR offers an alternative to PTR, conserving resources and

labor, primarily by eliminating puddling and transplanting (Kumar

and Ladha, 2011; Panneerselvam et al., 2020; Reddy et al., 2025).

Further, with increasing water scarcity, transitioning from flood

irrigation tomicro-irrigation systems is critical for enhancing water

productivity in RWCS (Rana et al., 2023). Drip irrigation has gained

momentum as a cost-effectivemethod for crops likemaize, rice, and

wheat (Sidhu et al., 2019). Subsurface drip fertigation (SSD) further

optimizes resource use by eliminating lateral repositioning required

in surface drip fertigation (SD), extending system longevity, and

improving nitrogen efficiency by subsurface placement (Hagin

et al., 2003; Patra K. et al., 2023). Integrating these resource-

saving technologies (CA, DSR, and SSD) in the eastern IGP could

enhance RWCS productivity and sustainability while minimizing

environmental impact.

Crop models are essential tools for evaluating the productivity

and sustainability of agricultural systems, simulating complex

interactions between crops, the environment, and management

practices (Kumar et al., 2024b). These models integrate knowledge

from agronomy, soil science, meteorology, and plant physiology to

assess the impacts of factors like climate change, soil properties,

irrigation, and nutrient management on crop performance (Kumar

et al., 2024c). By enabling researchers to optimize agricultural

practices, crop models enhance efficiency and sustainability,

offering critical insights for decision-making and advancing

hypothesis testing without extensive field trials. They play a

pivotal role in steering sustainable agriculture to meet global

food demands while preserving ecological integrity (Chen et al.,

2018; Zhao et al., 2020). Unlike traditional models, biogeochemical

and process-based models such as DayCent (Begum et al., 2019),

DeNitrification-DeComposition (DNDC) (Zhao et al., 2020), and

water and nitrogen management model (Chen et al., 2018) apply

scientific principles to simulate agricultural systems. These models

evaluate the effects of water management, nitrogen application,

and organic amendments on GHG emissions and crop yield under

various soil and climate conditions (Minamikawa et al., 2014;

Chun et al., 2016). The DNDC model, for instance, integrates C

and N cycling processes within the soil-plant-atmospheric system,

enabling researchers to explore scenarios related to sustainable

agriculture, climate change adaptation, and resource management.
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By leveraging these models, users can make data-driven decisions

to improve crop productivity, enhance resource efficiency, and

mitigate environmental impacts.

The DNDC model has demonstrated strong performance

under diverse agroclimatic conditions in simulating crop growth,

soil water and N dynamics, and GHG emissions (Jiang R. et al.,

2019; Zhao et al., 2020; Abdalla et al., 2022). However, its

application in system-based studies, coupled with adoption of

CA and drip fertigation remains limited globally. To address this

gap, a detailed investigation is necessary to evaluate the DNDC

model’s performance under these conditions. Hence, the study

aims to address the following objectives: (1) calibrate and evaluate

the DNDC model (v9.5) using measured soil parameters (NO−
3 ,

NH+
4 , WFPS, temperature, redox potential), crop yield, and N

uptake; (2) estimate GHG emissions (CH4 and N2O) and assess

N and water balance across different treatments; (3) evaluate the

overall performance of CA, DSR, and micro-irrigation systems in

the RWCS.

2 Materials and methods

2.1 Description of experimental site and
details

The field experiment was initiated in 2019, and since its

inception, a CA-based rice-wheat rotation has been implemented

with the specified irrigation methods (Table 1) at the ISARC

experimental farm, Varanasi, India (25.310◦N, 82.970◦E; elevation:

80.71m above mean sea level). The present study was conducted

during the kharif (rainy) and rabi (winter) seasons of 2022–23

and 2023–24. The experimental station is located in the eastern

IGPs with a humid subtropical climate, with an average annual

temperature of 26◦C, annual rainfall of 1,100mm, and an average

of 9.7 h of sunshine per day. Weather conditions during the study

period are illustrated in Figure 1, and soil properties at the time of

initial setup of the model are detailed in Supplementary Table 1.

The field experiment followed a randomized complete block

design with three replications. Treatment and management

specifications are described in Table 1 and Supplementary Table 2.

Each experimental plot measured 35 m2 (7.0m × 5.0m). Drip

irrigation systems (SD and SSD) were installed at 60 cm spacing,

with SSD positioned 10 cm below the soil surface.

2.2 Field measurements

Soil samples for measuring mineral N (NH+
4 N and NO−

3

N) were collected and analyzed at 1-,3-, 5-, and 9-days post-

fertilization, and then weekly basis using the micro Kjeldahl

distillation method (Prasad et al., 2006). Soil water-filled pore space

(WFPS) was measured using the PR2 soil moisture profile probe

(Delta-T Devices, UK). These probes were calibrated at specific

field sites, ensuring readings were within 1%−2% of soil moisture

content determined volumetrically. The volume (%) readings were

converted to WFPS (%) for evaluation with the DNDC model.

Soil Eh and temperature were measured using the Hanna ORP

tester and a soil thermometer, respectively. All these soil properties,

TABLE 1 Details of imposed treatments in the experiment.

Treatment description Abbreviation

Puddled transplanted rice (PTR) fb zero-tilled wheat

(ZTW) under flood irrigation with 0% nitrogen

PTR-ZTW-F-0

PTR fb by ZTW under flood irrigation with 75%

nitrogen

PTR-ZTW-F-75

PTR fb by ZTW under flood irrigation with 100%

nitrogen

PTR-ZTW-F-100

Direct seeded rice (DSR) fb ZTW under flood irrigation

with 0% nitrogen

DSR-ZTW-F-0

DSR fb ZTW under flood irrigation with 75% nitrogen DSR-ZTW-F-75

DSR fb ZTW under flood irrigation with 100% nitrogen DSR-ZTW-F-100

DSR fb ZTW under surface drip fertigation with 75%

nitrogen

DSR-ZTW-SD-75

DSR fb ZTW under surface drip fertigation with 100%

nitrogen

DSR-ZTW-SD-100

DSR fb ZTW under sub-surface drip fertigation with

75% nitrogen

DSR-ZTW-SSD-75

DSR fb ZTW under sub-surface drip fertigation with

100% nitrogen

DSR-ZTW-SSD-

100

except mineral N, were recorded at 7–10 days intervals. Grain yield

has been obtained from a 10 m2 area omitting the border rows and

reported at 14% moisture content. N uptake has been calculated by

analyzing the N concentration in grain and straw samples using the

Kjeldahl digestion method (Prasad et al., 2006).

2.3 DNDC model

In this study, the DNDC model version 9.5 (http://www.dndc.

sr.unh.edu/) was employed to simulate biogeochemical fluxes of

C and N in agricultural ecosystems. Originally developed by Li

et al. (1992a, 2012), the DNDC model captures the complex

interactions between soil and crop dynamics, including parameters

such as SOC, temperature, moisture, pH, redox potential, and

substrate concentration gradients. By integrating environmental

data, crop growth parameters, and management practices, the

model estimates daily fluxes of C andN and emissions of trace gases

(CO2, N2O, CH4, NH3) (Li et al., 1992b; Li, 2000; Giltrap et al.,

2010). These simulations are crucial for assessing the impacts of

agricultural practices on GHG emissions and soil health, offering

insights for sustainable farming. The DNDC model comprises

two main components: the physio-chemical and biochemical sub-

models. The physio-chemical sub-model simulates soil, climate,

crop growth, and decomposition processes in response to ecological

drivers such as climate, soil properties, and anthropogenic

activities, predicting key soil environmental parameters (Li, 2000).

The biochemical sub-model focuses on nitrification, denitrification,

and fermentation processes, estimating trace gas emissions based

on physio-chemical inputs (Li et al., 1992b; Zhang F. et al., 2018;

Zhang Y. et al., 2018). The model incorporates the “anaerobic

balloon” concept to track GHG emissions at the field level. Using

the Nernst and Michaelis–Menten equations, it simulates redox

reactions producing GHGs (Li et al., 1992a). CH4 production
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FIGURE 1

Monthly averages of weather parameters during the rice-wheat growing seasons in 2022–23 and 2023–24.

is modeled by calculating substrate concentrations and tracking

reductive reactions involving electron donors [H2 and dissolved

organic carbon (DOC)] and acceptors (O2, NO
−
3 , Mn4+, Fe3+,

SO2−
4 , CO2), with production occurring when soil Eh falls below

−150mV. CH4 consumption is simulated as an oxidation reaction

under aerobic conditions. N2O emissions are predicted through

nitrification and denitrification processes, with reaction rates

determined by the Michaelis–Menten equation (Li et al., 2004).

2.3.1 Model inputs
The DNDC model requires comprehensive input data to

accurately simulate biogeochemical processes. These include: (1)

daily meteorological data such as temperature, precipitation, wind

speed, solar radiation, and relative humidity; (2) initial soil

conditions like SOC, NO−
3 and NH+

4 content, field capacity,

wilting point, bulk density, pH, and texture; and (3) agricultural

management practices, including planting and harvest dates,

crop parameters, tillage methods, and fertilizer application rates.

For this study, meteorological data were obtained from the

automatic weather station at the ISARC experimental farm

in Varanasi, with daily weather trends shown in Figure 1.

Experimental data from 2022–23 and 2023–24 was used for model

calibration and evaluation, respectively, as described in Section

2.3.2. Management practices, including tillage, planting dates,

and fertilization schedules, are detailed in Supplementary Table 2.

Default crop parameters were fine-tuned to minimize RMSE

for simulated variables and align with observed crop maturity,

improving model accuracy.

2.3.2 Calibration and evaluation of the model
The DNDC model was executed continuously over a 2-year

rice-wheat rotation to capture the persistent effects of CA. Dataset

from 2022–23 was used for calibration, while 2023–24 dataset was

reserved for evaluation. Calibration was performed separately for

DSR and PTR, usingN control and 100%N treatments representing

stressed and unstressed conditions, respectively. Simulated outputs

for NO−
3 , NH

+
4 , soil temperature, WFPS, Eh, crop yield, and N

uptake were calibrated against field data collected from 2022–23

cropping season, following methods described by Thomas and

Hao (2017). The calibration process involved optimizing crop

growth parameters such as maximum biomass, biomass fraction,

C/N ratio, thermal degree days, water demand, and optimal

temperature, as outlined by Abdalla et al. (2020) and Zhang

et al. (2024). Finalized calibration parameters are detailed in

Supplementary Table 3. Validation was performed using the 2023–

24 dataset, assessing the model’s performance across all variables.

2.3.3 Model sensitivity analysis
Sensitivity analysis of the DNDC model was performed to

evaluate the influence of various input parameters on crop yield

and cumulative CH4 and N2O emissions. The 2022–23 dataset with

100% N treatments was used as the baseline scenario after model

calibration and validation. Each parameter was independently

adjusted while keeping others constant, and simulations were

conducted to measure the effects of changes in soil pH (+2,

−2), SOC (+200%, −200%), bulk density (+50%, −50%), field

capacity (+50%,−50%), porosity (+50%,−50%), residue quantity

(100%, 0%), microbial activity (0.5, 1), flooding duration (+20

days, −20 days), and N and P application rates (kg ha−1) (+100%,

−100%). Following the independent adjustment of each parameter,

a sensitivity index (SI) was calculated using the equation proposed

by Zhao et al. (2020):

Sensitivity Index (SI) =
(Rmax− Rmin)/Ravg

(Pmax− Pmin)/Pavg
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Where, Pmax and Pmin are the maximum andminimum input

parameters, respectively; Pavg is the average of Pmin and Pmax;

Rmax and Rmin are the corresponding output values to Pmax and

Pmin; and Ravg is the average of Rmax and Rmin. When the value

of SI is 1, the simulated values will change by the same proportion

as the mean, while the input value changes by a certain proportion

relative to the mean. A negative value of SI indicates a negative

correlation between the simulated values and input parameters, and

positive values of SI indicate greater effects of the input parameters

on the simulation value. The SI values can compare the model’s

sensitivity under different parameters.

2.3.4 Simulating GHG emission, nitrogen and
water balance

After successful calibration and validation (Section 2.3.2), daily

GHG emissions were simulated for each treatment, and seasonal

emissions were calculated by summing daily fluxes from sowing

to harvest. CH4 and N2O emissions, initially reported in kg C

ha−1 and kg N ha−1, were converted to kg CH4 ha
−1 and kg N2O

ha−1 using factors of 1.33 and 1.57, respectively. These emissions

were then standardized to CO2-equivalent terms using GWP values

over 100 years, with CH4 and N2O multiplied by factors of 27

and 273, respectively (Forster et al., 2021; IPCC, 2021). Further,

the model was employed to simulate components of water and

nitrogen balances, estimating the pathways of these components

within each cropping system over 2 years. Water and nitrogen

mean balance errors (WMBE and NMBE) were calculated by

subtracting the sum of all components and balance from the total

input and dividing by the total input, providing a measure of

model accuracy.

2.4 Statistical evaluation of the model

The efficacy of the model was assessed through the application

of six distinct statistical metrics, namely: the coefficient of

determination (R2), the root means square error (RMSE), the

relative root means square error (RRMSE), the Nash-Sutcliffe

efficiency (NSE), Willmott’s index of agreement (d-stat), and the

mean absolute error (MAE). Thesemetrics were utilized to appraise

the model’s performance by comparing the simulated data against

the observed measurements (Nash and Sutcliffe, 1970; Willmott,

1982; Jamieson et al., 1991; Moriasi et al., 2007).

(a) R2

R2 =
(
∑n

i=1 (Oi − O)(Si − S))
2

∑n
i=1 (Oi − O)2

∑n
i=1 (Si − S)2

(b) RMSE

RMSE =

√

√

√

√

n
∑

i=1

(Si−Oi)
2

n

(c) RRMSE

RRMSE =

√

∑n
i=1

(Si−Oi)
2

n

O
x 100

(d) NSE

NSE = 1−

∑n
i=1 (Si − Oi)

2

∑n
i=1 (Oi − O)2

(e) d-stat

d − stat = 1−

∑n
i=1 (Si − Oi)

2

∑n
i=1

(

|Si − S|)+ (|Oi − O|
)

)
2

(f) MAE

MAE =

∑n
i=1

(

|Si − Oi|
)

n

Where Oi is the observed value, Si is the simulated value,

O is the mean of the observed value and S is the mean of the

simulated value.

2.5 TOPSIS analysis

We employed multicriteria decision analysis using the

Technique for Order Preference by Similarity to Ideal Solution

(TOPSIS) to evaluate and rank the treatments based on

seven criteria: system yield, system profitability (data given in

Supplementary Table 4), GWP, nitrogen uptake, nitrogen loss,

water use, and non-productive water loss. The criteria were

classified as benefits (system yield, system profitability, nitrogen

uptake) or costs (GWP, nitrogen loss, water use, water loss),

with weights assigned to reflect their importance: system yield

(0.2), system profitability (0.2), GWP (0.2), nitrogen uptake (0.1),

nitrogen loss (0.1), water use (0.1), and non-productive water

loss (0.1). The analysis involved normalizing the data using

vector normalization to ensure comparability, followed byweighted

normalization to incorporate the assigned weights. Ideal and

negative-ideal solutions were determined to represent the best and

worst performances for each criterion. Euclidean distances to these

solutions were used to calculate the closeness coefficient, which

quantified the proximity of each treatment to the ideal solution.

Higher closeness coefficients indicated better overall performance,

and treatments were ranked accordingly (Hwang and Yoon, 1981;

Chakraborty, 2022). All analyses and visualizations were conducted

using “topsis” package in R statistical software (RCore Team, 2022).
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3 Results

3.1 Calibration and evaluation of the DNDC
model

The DNDC model was calibrated by fine-tuning crop

parameters listed in Supplementary Table 3, enhancing its ability to

simulate crop performance and soil dynamic properties. The well

calibrated and validated model showed high accuracy in replicating

observed crop growth and soil parameters for the RWCS.

3.1.1 Soil properties
The DNDC model demonstrated robust performance in

simulating soil properties. Performance statistics for calibration

and evaluation phases are provided in Supplementary Table 5,

highlighting the model’s accuracy and reliability. The metrics

underscore themodel’s ability to consistently replicate observed soil

property dynamics.

3.1.1.1 Soil mineral N (NO−

3
N and NH+

4
N)

Observed and simulated data indicated that NH+
4 –N

dominated mineral N in rice growing season, while NO−
3 –N was

more prevalent in wheat growing season (Figure 2). During the

rice phase, NO−
3 –N concentrations were lower in PTR plots but

significantly higher in DSR across treatments. In 100% N-applied

plots, the highest and lowest mineral N concentrations were

observed in SSD and flooded DSR plots, respectively. Among

flooded treatments, mineral N concentrations were higher in PTR

than DSR during rice growth, while concentrations were higher in

wheat following DSR compared to wheat following PTR, likely due

to the puddling effect. The model effectively simulated soil mineral

N dynamics (NO−
3 –N and NH+

4 –N) across N rates (0%, 75%,

100% RDN) and various establishment and irrigation methods,

achieving mean R2 values of 0.85 for NO−
3 –N and 0.79 for NH+

4 –N.

However, moderate NSE values (0.76 for NO−
3 –N and 0.73 for

NH+
4 –N) and high RMSE (0.93 kg N ha−1 and 2.11 kg N ha−1)

and RRMSE (52.9% and 62.5%) suggest room for improvement in

model accuracy.

3.1.1.2 Water-filled pore space (WFPS)

The DNDC model effectively simulated daily WFPS trends,

which were largely influenced by precipitation and irrigation

(Figure 3). Simulated WFPS are closely aligned with seasonal

measurements across treatments, except during the wheat-growing

period in both the calibration (2022–23) and evaluation (2023–

24) phases. Temporal variations in flooded plots under PTR

and DSR systems were accurately predicted, while WFPS was

significantly overestimated in SD and SSD treatments of DSR-based

systems. The correlation between observed and simulated values

confirmed themodel’s strong performance in simulatingWFPS% at

0 cm−20 cm depth, with metrics including an R2 of 0.85, RMSE of

0.12, RRMSE of 20.42%, and NSE of 0.84. During the rice growing

season, mean WFPS% was higher in flooded plots (PTR and DSR)

compared to SD and SSD plots. However, no significant difference

was observed during the wheat-growing season.

3.1.1.3 Soil temperature

The DNDC model effectively simulated daily soil temperature

variations at 0 cm−5 cm depth throughout the calibration and

evaluation phases of the RWCS, with minor overestimations

during calibration and underestimations during evaluation

(Figure 4). Observed fluctuations in soil temperature were

primarily influenced by air temperature at the experimental site,

and no significant differences were noted across treatments. The

model captured temperature variations more accurately during the

wet season (kharif rice) than the dry season (rabiwheat) (Figure 4).

Performance metrics demonstrated high accuracy, with an R2 of

0.91, RMSE of 1.28◦C, RRMSE of 4.58%, and NSE of 0.93.

3.1.1.4 Redox potential

Ehmeasurements were taken exclusively during the rice season.

The DNDC model tended to overestimate Eh, particularly after

the drainage of flood water (Figure 5). Eh responded predictably to

irrigation events, decreasing after re-flooding and increasing post-

drainage. In PTR treatments, with frequent flooding, Eh showed

significant variability, whereas in DSR-flooded treatments, where

flooding was controlled, Eh remained mostly positive. In SD and

SSD treatments, Eh dropped below 0mV only during rainfall-

induced flooding and remained above 100mV otherwise. The

model demonstrated a strong correlation between observed and

simulated values, with an R2 of 0.82. Performance metrics included

an RMSE of 91.6mV, RRMSE of 24.0%, and NSE of 0.82, indicating

good model accuracy. The Figure 6 explains the relation between

the simulated and observed soil dynamic properties (soil mineral

N, WFPS, soil temperature and Eh) along with the 2-year mean

evaluation statistics.

3.1.2 Rice-wheat system productivity and
nitrogen uptake

During both experimental years, the highest observed and

simulated system productivity (in terms of rice equivalent yield)

was recorded in SSD plots with 100% RDN (12.6 t ha−1 and 13.0 t

ha−1, respectively). Yields in SD and PTR plots with 100% RDN

were comparable in both years. Across treatments, observed and

simulated system yields showed good agreement, though simulated

yields were slightly overpredicted, with an RRMSE of 7.8%. The

model’s accuracy was further validated by a 2-year average RMSE

of 779 kg ha−1 and an R2 of 0.93 (Figure 7; Supplementary Table 5).

In contrast, simulated system N uptake was consistently lower than

observed values, with mean RMSE and RRMSE of 36.4 kg N −1 and

18.1%, respectively, and an R2 of 0.86.

3.2 GHG emissions

Following successful calibration and evaluation, the DNDC

model was used to assess GHG emissions across different

crop establishment techniques, irrigation methods, and nitrogen

management treatments as a surrogate approach. Simulated SOC

at the end of each cropping cycle closely matched observed

data, with minimal variation. Among crop establishment methods,

CH4 emissions were highest in PTR plots and lowest in DSR

plots. Within DSR, flood-irrigated plots emitted the highest CH4
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FIGURE 2

Observed and simulated soil NO−
3 N and NH+

4 N of the 0 cm−20 cm soil layer across di�erent treatments of crop establishment techniques, irrigation

methods and N rates during a 2-year rice-wheat cropping cycle. The dashed line distinguishes the 2022–23 (calibration phase) and 2023–24

(evaluation phase).

emissions, while micro-irrigated plots (SD and SSD) emitted the

lowest (Figure 8; Table 2). N2O emissions were significantly higher

in DSR plots, with minimal emissions in PTR plots. N management

significantly influenced emissions, with 75% and 100% RDN plots

emitting more CH4 than N control plots, although no significant

difference was observed between the 75% and 100% RDN plots.

N2O emissions were highest in 100% RDN plots, followed by

75% RDN plots, and lowest in N control plots. Yearly variations

showed higher CH4 emissions in 2023–24, likely due to increased

rainfall during the rice season, while N2O emissions were greater

in 2022–23, reflecting optimal conditions for denitrification.

Overall, the GWP was 31% lower in DSR plots compared

to PTR plots, with SD and SSD plots achieving substantial

GWP reductions of 65% and 58%, respectively, compared

to PTR.

3.3 Sensitivity and correlation analysis

The DNDC model’s sensitivity to input parameters, such as

pH, SOC, BD, FC, porosity, microbial activity, residue quantity,

flooding duration, and fertilizer (N and P) application rates

were evaluated for simulating system grain yield, CH4, and

N2O emissions in RWCS under different treatments. The model

exhibited varying degrees of sensitivity to these parameters

(Figure 9). Grain yield was highly sensitive to pH (−0.2 to

−0.69), N fertilizer rate (0.13–0.71), and flooding duration (0.48–

0.76). Yield response to N application was significant across

treatments except for SSD (0.13). Moderately positive effects on

yield were observed for microbial activity, SOC, BD, and FC,

while residue quantity had negligible impact (Figure 9). CH4

emissions were most sensitive to microbial activity (0.69–1.24),

flooding duration (0.71–0.92), and BD (0.55–0.90), with moderate

responses to SOC, FC, and porosity. N and P application rates,

pH, and residue quantity had moderate effects on CH4 emissions.

N2O emissions showed strong sensitivity to N application rates

(0.44–1.30), SOC (0.58–0.83), BD (0.27–1.20), FC (0.23–0.95),

and microbial activity (0.43–1.00). In contrast, pH, porosity, and

flooding duration negatively influenced N2O emissions, while

residue quantity and P application rates had negligible impact.

Correlation analysis revealed significant interactions between CH4

flux and soil parameters, with strong correlations to WFPS (R2

= 0.84), Eh (R2 = −0.87), and pH (R2 = −0.91), and moderate

correlations with meteorological parameters. Conversely, N2O flux

showed no substantial correlations with soil or weather parameters

(Figure 10).
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FIGURE 3

Observed and simulated WFPS (%) of the 0 cm−20 cm soil layer across di�erent treatments of crop establishment techniques, irrigation methods and

N rates during a 2-year rice-wheat cropping cycle. The dashed line distinguishes the 2022–23 (calibration phase) and 2023–24 (evaluation phase).

3.4 Water balance of rice-wheat system

Among all the simulated components of water balance,

transpiration and cumulative evaporation (from both water surface

and soil) were identified as the primary water loss pathways.

Among crop establishment methods, PTR and flood-irrigated

DSR plots used about 40% of the total water for transpiration,

while SD and SSD plots utilized ∼50% and 64%, respectively.

On a 2-year average, SSD plots exhibited the lowest cumulative

evaporation losses (571.3mm), followed by SD (721.3mm). The

highest evaporation losses were recorded in flood-irrigated PTR

(990.2mm) and DSR (861.5mm) plots. Leaching losses were

highest in PTR-flooded plots (629.7mm), followed by DSR-

flooded plots (570.8mm). In comparison, SD (160.8mm) and SSD

(163.3mm) plots had significantly lower leaching losses, accounting

for about 10% of total water loss (Table 3). Runoff was minimal

in micro-irrigation systems (∼2%) but highest in PTR (∼7%) and

flood-irrigated DSR (∼5%) plots. MWBE were low and positive in

PTR and DSR-flooded plots, while they were high and negative

in SD and SSD plots, indicating potential overestimation in the

later systems.

3.5 Nitrogen balance under rice-wheat
system

The DNDC model provided insights into the major N losses

(such as denitrification, volatilization, and leaching) and uptake

patterns in different treatments. In addition to fertilizer N, the

model accounted for ∼30 kg N ha−1 from residue retention in

all plots except control plots (∼10 kg N ha−1; Table 4). Further,

during the rice-growing season, an additional 10–20 kg N ha−1 was

contributed through atmospheric N fixation, which was a model

default value, and it depends on the soil, atmosphere and growing

conditions of the rice crop. Gaseous N losses (N2O, NO, and N2)

reached up to 4 kg ha−1 across all treatments. N2 accounted for a

significant portion of total gaseous losses, especially in PTR plots,

where N2O losses were relatively low. N leaching was ∼3.0 kg N

ha−1 across most treatments but increased to ∼6.0 kg N ha−1 in

SSD plots with 100% RDN. NH3–N volatilization was a major loss

pathway, ranging from 21%−27% of total N input in PTR plots

to 33%−40% in DSR flood-irrigated plots. SD plots also had high

NH3–N losses (34%−39%), while SSD plots recorded substantially

lower losses (∼11%; Table 4). The MNBE revealed higher negative
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FIGURE 4

Observed and simulated soil temperature of the 0 cm−20 cm soil layer across di�erent treatments of crop establishment techniques, irrigation

methods and N rates during a 2-year rice-wheat cropping cycle. The dashed line distinguishes the 2022–23 (calibration phase) and 2023–24

(evaluation phase).

errors in 75% RDN plots across all treatments, whereas 100% RDN

plots generally exhibited lower and positive errors, except in SD

plots (Table 4).

3.6 TOPSIS ranking for sustainability
evaluation

Treatments integrating DSR with SSD (DSR-ZTW-SSD-

75 and DSR-ZTW-SSD-100) ranked highest, with TOPSIS

scores of 0.78 and 0.76, respectively, indicating their superior

performance in system productivity, profitability, resource use

efficiency, and reduced environmental impacts (Figure 11).

SD treatments (DSR-ZTW-SD-75 and DSR-ZTW-SD-100)

followed closely, demonstrating the effectiveness of micro-

irrigation in minimizing water losses and improving nitrogen

efficiency. Among flood-irrigated treatments, DSR-ZTW-F-75 and

DSR-ZTW-F-100 achieved mid-level rankings, outperforming

conventional PTR systems due to improved profitability and

resource use efficiency. Conventional practices (PTR-ZTW-F-75

and PTR-ZTW-F-100) ranked lowest, reflecting their limitations

in reducing GHG emissions, high water use, and poor nitrogen

efficiency (Figure 11). These results highlight the potential of CA

practices, particularly those integrating DSR with drip fertigation,

to optimize productivity and profitability while minimizing

environmental impacts.

4 Discussion

4.1 Model calibration

Calibrating the DNDC model is crucial for adapting it to

local conditions, given the variability in crop types, management

practices, and environmental conditions. Originally designed

for temperate climates, parameters such as thermal degree

days, optimum temperature, biomass fractions, and C/N ratio

must be adjusted for sub-tropical conditions in South-East

Asia. Accurate calibration ensures precise simulation of crop

growth, nutrient dynamics, and GHG emissions (Zhang and

Niu, 2016). In this study, the model was successfully calibrated
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FIGURE 5

Observed and simulated redox potential of the 0 cm−5cm soil layer across di�erent treatments of crop establishment techniques, irrigation methods

and N rates during a 2-year rice-wheat cropping cycle. The dashed line distinguishes the 2022–23 (calibration phase) and 2023–24 (evaluation

phase).

for different soil parameters (mineral N, WFPS, Eh, soil

temperature), crop yield, and N uptake, aligning well with

experimental observations.

4.2 Evaluation of the DNDC model

4.2.1 Soil parameters
The higher simulated levels of soil inorganic N during the

growing season, with NH+
4 and NO−

3 concentrations 27% and 5%

higher than observed values, may be due to slower N transport

and transformation processes. This discrepancy likely stems from

suboptimal simulation of key processes, including mineralization,

nitrification, denitrification, and NO−
3 leaching (Abdalla et al.,

2020). The model may also underestimate N immobilization in

CA systems, as noted by Brilli et al. (2017). Moreover, higher

simulated WFPS appears to have inhibited nitrification and slowed

NO−
3 transport between soil layers, increasing NH+

4 and NO−
3

concentrations (Drury et al., 2024). High RRMSE of 53% for

NO−
3 and 64% for NH+

4 further highlight these issues, consistent

with previous studies (Abdalla et al., 2014; Uzoma et al., 2015;

He et al., 2018; Jiang R. et al., 2019). As this study only

assessed soil N at a single depth, profile-wide accuracy remains

uncertain, underscoring the need for improved algorithms to

better simulate nitrogen dynamics in systems with continuous

cropping. Further, DNDC model satisfactorily simulated WFPS

across different crop establishment techniques, irrigation methods,

and nitrogen management treatments, though with slightly less

accuracy than soil temperature in the 0 cm−5 cm depth. Consistent

with Macharia et al. (2021), the model overestimated WFPS,

particularly in control N treatments, likely due to uncertainties

in estimating potential evapotranspiration and underestimating

crop canopy interception of soil water (Krobel et al., 2010;

Uzoma et al., 2015). Similar overestimations have been reported

in diverse cropping systems (Abdalla et al., 2014; Cui et al.,

2014; Li et al., 2017). Improving the DNDC water module,

crop-specific root distribution algorithms, and soil heterogeneity

simulation is necessary for better accuracy (Smith et al., 2019).

WFPS significantly influences soil conditions, promoting anaerobic

conditions that increase CH4 production through methanogenesis

(Ussiri and Lal, 2012), while reducing N2O emissions through

enhanced water use and lower gas diffusivity (Kuang et al., 2019).
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FIGURE 6

The plots visualize the correlation between the observed and simulated data points for (A) soil NO−
3 , (B) soil NH

+
4 , (C) soil temperature, (D) WFPS, and

(E) redox potential, respectively.

The DNDC model effectively simulates soil temperature,

primarily due to its robust representation of heat transfer processes

between soil layers, driven by thermal conductivity, temperature

gradients, and soil heat capacity (Zhang et al., 2021). This

aligns with findings by Cui et al. (2014) and Li et al. (2017),

who reported strong correlations (R2: 0.97–1.0 and 0.89–0.97,

respectively) between simulated and observed soil temperatures.

In wet soils during the rice season, increased heat capacity results

in fewer temperature fluctuations, improving prediction accuracy

compared to dry-season wheat. However, the present study

observed frequent overpredictions, with a RRMSE of 4.6%, likely

due to overestimating crop residue insulation and underestimating

cumulative crop canopy effects (Jiang et al., 2023). Similar

overestimations (2%−6%)were reported by Li et al. (2017), whereas

Smith et al. (2008) and Uzoma et al. (2015) noted underestimations

(5%−8%) under different agroecological conditions. Accurate soil

temperature simulation is critical for modeling CH4 and N2O

emissions, as it influences SOC decomposition, water dynamics,

microbial activity, and plant growth processes (Wennman and

Kätterer, 2006; Hu et al., 2012). Model overestimated Eh, with

a mean simulated value of 432mV compared to the observed

381mV. While observed Eh showed gradual changes with soil

drainage or re-flooding (Islam et al., 2018), the model simulated

Eh with abrupt changes, likely contributing to this discrepancy.

The DNDC model estimates Eh using the Nernst equation, which

depends on oxidation-reduction reactions influenced by WFPS (Li

et al., 1992b). Overestimated WFPS as discussed earlier in this

section, likely contributed to this overestimation. Since, Eh is a key

factor affecting GHG emissions and is critical for simulating carbon

and N dynamics in cropping systems (Tao et al., 2024). Enhancing

the accuracy of Eh simulations is essential for improving overall

model performance.
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FIGURE 7

Comparison of simulated and observed rice-wheat system yield and nitrogen uptake for each treatment in the 2022–23 and 2023–24 growing

seasons. Error bars represent standard error. (A) RW system yield (2022–23), (B) RW system yield (2023–24), (C) RW system N uptake (2022–23), (D)

RW system N uptake (2023–24).

FIGURE 8

CH4 and N2O fluxes under di�erent crop establishment techniques, irrigation methods and N rates under rice-wheat system over 2-year rotation

(model predicted). CH4 emissions are reported only for the rice growing period, while N2O emissions are reported for both the rice and wheat

growing seasons. The dashed lines indicate the separation between the rice season and the rice-wheat season for CH4 and N2O emissions,

respectively.
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TABLE 2 E�ect of di�erent crop establishment techniques, irrigation methods, and N rates on accumulated CH4 and N2O emissions (in kg ha−1) and

GWP (kg CO2-eq.) during the 2-year rice-wheat growing seasons (model predicted).

Treatments CH4 emissions N2O emissions GWP

Rice Rice Wheat RW system

2022–23 2023–24 2022–23 2023–24 2022–23 2023–24 2022–23 2023–24

PTR-ZTW-F-0 35.91 31.92 0.31 0.31 0.16 0.00 1,098 948

PTR-ZTW-F-75 73.15 78.47 0.47 0.47 0.16 0.16 2,146 2,290

PTR-ZTW-F-100 71.82 82.46 0.47 0.47 0.16 0.16 2,111 2,398

DSR-ZTW-F-0 19.95 19.95 0.79 0.94 0.00 0.00 753 796

DSR-ZTW-F-75 31.92 33.25 1.73 2.20 0.16 0.16 1,376 1,541

DSR-ZTW-F-100 32.32 34.58 2.04 2.36 0.16 0.31 1,473 1,662

DSR-ZTW-SD-75 13.30 15.23 1.88 1.10 0.16 0.16 916 774

DSR-ZTW-SD-100 13.74 15.96 2.04 1.41 0.16 0.16 959 860

DSR-ZTW-SSD-75 14.63 17.29 2.67 1.26 0.16 0.16 1,167 853

DSR-ZTW-SSD-100 15.96 18.35 2.67 1.41 0.16 0.47 1,202 1,010

FIGURE 9

Radar chart illustrating sensitivity indices for yield, CH4, and N2O emissions in the rice-wheat system influenced by di�erent soil properties [pH, soil

organic carbon (SOC), bulk density (BD), field capacity (FC) and porosity] and management practices [residue retention (0–1), microbial activity (0–1),

flooding duration (days), nitrogen and phosphorous application rates (kg ha−1)]. (A) PTR-ZTW-F, (B) DSR-ZTW-F, (C) DSR-ZTW-SD, (D) DSR-ZTW-SSD.
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FIGURE 10

Correlation analysis of CH4 and N2O emissions with soil parameters (WFPS, redox potential, soil NH+
4 and NO−

3 , soil temperature, pH) and weather

elements (maximum temperature, minimum temperature, radiation, relative humidity). Red boxes mean negative correlation and blue boxes mean

positive correlation.

4.2.2 System yield and n uptake
Overall, the model effectively simulated system yields. In

flooded DSR and PTR plots, system yields were consistently

overestimated across all N-applied treatments, though the model

captured yield variations at different N rates well. Possible

reasons include simplification of soil microbial dynamics and root

interactions, inadequate local calibration and mainly, the exclusion

of stress factors like pests, and diseases (Jiang R. et al., 2019;

Zhao et al., 2020). Conversely, the model underestimated yields in

micro-irrigation treatments (SD and SSD), likely due to its inability

to fully capture and represent the enhanced N and water use

efficiency in drip fertigation systems. Meta-analyses indicate that

surface and subsurface drip fertigation can boost yields by 20% and

32%, respectively, through improved resource efficiencies (Bhuiyan

et al., 2023; Delbaz et al., 2023). Model’s N uptake predictions

were consistently underestimated, with a mean RMSE of 36.4 kg N

ha−1. This discrepancy may stem from simplistic representations

of N transformation processes, overestimating losses like leaching

and volatilization, consequently leading to lower predicted uptake

(Abdalla et al., 2022). Additionally, higher simulated mineral

N availability with lower uptake could explain the results, as

noted in Section 3.5. To improve accuracy, the DNDC model

requires enhancements in its algorithms for crop growth, nutrient

uptake, and their interactions under diverse environmental and

management conditions (Li et al., 2022).

4.3 GHG emission

The DNDC model has been widely evaluated for its

performance in simulating GHG emissions, yielding satisfactory

results across diverse studies ( He et al., 2018; Cui and Wang,

2019; Macharia et al., 2021; Abdalla et al., 2022; Gheisari et al.,

2023; Jiang et al., 2023). DNDC models CH4 emissions by

simulating production, consumption, and transport processes

through intricate soil, plant, and atmospheric interactions.
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TABLE 3 The model predicted components of water balance under di�erent crop establishment techniques, irrigation methods, and N rates in the

2-year rice-wheat cropping system (in mm ha−1).

Treatments Total water
input

Transpiration Evaporation Leaching Runo� MWBE
(%)

2022–
23

2023–
24

2022–
23

2023–
24

2022–
23

2023–
24

2022–
23

2023–
24

2022–
23

2023–
24

2022–
23

2023–
24

PTR-ZTW-F-0 2,555 2,618 253 237 1,171 1,350 810 729 220 209 4.0 4.3

PTR-ZTW-F-75 2,555 2,618 810 860 874 896 623 572 155 168 3.7 3.9

PTR-ZTW-F-100 2,555 2,618 1,060 996 842 808 492 552 103 127 2.3 2.8

DSR-ZTW-F-0 2,055 2,175 242 233 976 992 688 781 57 145 4.5 3.3

DSR-ZTW-F-75 2,055 2,175 684 666 838 783 487 573 57 113 −0.5 0.4

DSR-ZTW-F-100 2,055 2,175 842 753 816 764 384 512 57 76 −2.1 0.1

DSR-ZTW-SD-75 1,525 1,559 685 710 747 736 149 178 30 38 −5.7 −9.8

DSR-ZTW-SD-100 1,525 1,559 759 791 714 688 140 176 50 29 −9.1 −11.3

DSR-ZTW-SSD-75 1,465 1,483 860 808 581 586 158 179 50 12 −12.6 −7.6

DSR-ZTW-SSD-100 1,465 1,483 922 955 576 542 134 182 50 5 −16.2 −14.3

Where, Total water input=Water input from precipitation and irrigation, Evaporation= Cumulative evaporation from the water surface and soil, and MWBE=Model water balance error.

TABLE 4 The model predicted components of nitrogen balance under di�erent treatments in the rice-wheat cropping system (in kg ha−1).

Treatments Total N input N uptake NH3 Volt Gas N loss N leaching MNBE (%)

2022–
23

2023–
24

2022–
23

2023–
24

2022–
23

2023–
24

2022–
23

2023–
24

2022–
23

2023–
24

2022–
23

2023–
24

PTR-ZTW-F-0 22.6 23 70.6 73.5 2.4 2.2 2.3 2.0 0.5 0.5 −235 −240

PTR-ZTW-F-75 231.9 233.2 180.6 187.8 60.7 49 2.9 3.1 0.7 1.0 −5.6 −3.3

PTR-ZTW-F-100 297.8 300.9 197.8 207.9 81.8 78.1 3.1 3.4 0.8 1.7 4.8 3.3

DSR-ZTW-F-0 21.1 21.87 73.4 71.4 1.4 1.3 0.7 0.8 0.4 0.2 −259 −237

DSR-ZTW-F-75 224.7 226 197.2 193.9 74.8 74.8 3.1 3.9 0.7 1.0 −22.7 −21.1

DSR-ZTW-F-100 291.7 289.4 189.3 187.6 112 116.5 2.5 4.6 0.9 1.9 −4.5 −7.3

DSR-ZTW-SD-75 228.9 229 181.9 185.3 78.1 79.8 2.8 2.8 1.4 1.4 −15.4 −17.6

DSR-ZTW-SD-100 291.4 287.8 217.7 222.1 114.5 107.6 3.2 4.0 2.9 2.4 −16.1 −16.8

DSR-ZTW-SSD-75 229.3 226.5 206.4 208.9 25.4 26.6 3.8 3.4 0.7 0.9 −3.1 −5.9

DSR-ZTW-SSD-100 290 286.6 223.5 230.6 33.5 28.3 3.7 4.0 3.98 6.9 8.7 5.9

Where, Total N input = N input from fertilizer, crop residue and biological fixation, NH3 Volt = Ammonia volatilization, Gas N loss = Cumulative gaseous N loss (N2O, NO, and N2), and

MNBE=Model nitrogen balance error.

CH4 production is driven by substrate availability from SOC

decomposition and root activities. This was followed by reductive

reactions between electron donors and acceptors when soil Eh

falls below −150mV under saturated conditions (Li et al., 2004;

Hakemain and Rosenzweig, 2007). SOC decomposition generates

DOC, influenced by soil temperature and moisture (Li et al., 1992a,

2012). CH4 consumption occurs via oxidation reactions involving

electron exchange between CH4 and oxygen, while transport

involves plant-mediated pathways, effusion, and diffusion (Fumoto

et al., 2008; Zhang et al., 2014). N2O emissions are regulated by

nitrification and denitrification processes, activated when soil Eh

is below +500mV and moisture is under 60% WFPS, with NO−
3

acting as a substrate (Jamali et al., 2016).

During the experimental period, prolonged saturation in PTR

plots resulted in higher CH4 emissions and lower N2O emissions.

Conversely, DSR-flooded, SD, and SSD plots exhibited higher

N2O and lower CH4 emissions due to reduced soil moisture

(Johnson-Beebout et al., 2009; Reddy et al., 2025). Control

treatments showed lower CH4 emissions compared to 75% and

100% RDN treatments, as the model correlates emissions with

above-ground and root biomass. By accurately capturing the

dynamics of soil moisture, temperature, mineral N, Eh, and

plant growth, the DNDC model provides realistic estimates of

GHG emissions.

4.4 Sensitivity and correlation analysis

Sensitivity analysis is a key component of the study, enabling

identification of critical parameters influencing carbon and N

dynamics in agroecosystems. Increasing soil pH reduces proton

(H+) activity, promoting volatilization through transformation
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FIGURE 11

TOPSIS score and ranking of di�erent treatments as e�ected by di�erent crop establishment techniques, irrigation methods, and nitrogen levels.

Treatments were evaluated for seven criteria: system yield, system profitability, GWP, nitrogen uptake, nitrogen loss, water use, and non-productive

water loss.

of NH+
4 to NH3 and creating less favorable conditions for

denitrification, thereby lowering N2O emissions (Ingraham and

Salas, 2019). However, higher soil pH often results in yield penalties

due to reducedmacro- andmicronutrient availability and increased

nutrient losses. The slightly alkaline nature of the experimental

soil suppressed CH4 emissions, consistent with findings by Malyan

et al. (2016), though some studies report negligible effects of pH

on CH4 emissions (Guo et al., 2023). SOC and microbial activity

were positively sensitive to system yield and GHG emissions.

SOC enhances N mineralization, increasing soil N availability and

contributing to higher emissions of N2O and CH4. Increased N

availability enhances nitrification and denitrification, raising N2O

emissions (Ding et al., 2023). Higher SOC levels in anaerobic rice

fields support methanogenic bacteria, enabling CH4 production,

while also improving nutrient availability, soil structure, and

microbial activity for better root growth and productivity (Jiang

et al., 2023). Moderate increases in soil BD and FC enhance yields

by improving moisture retention and nutrient uptake but create

anaerobic conditions, increasing N2O andCH4 emissions (Gheisari

et al., 2023; Zhang et al., 2024). Compacted soils restrict root

growth, while higher porosity in drip-fertigated systems boosts

yield. Mixed findings on the effects of soil compaction on GHG

emissions highlights the need for further investigations (Schmidt

et al., 2018; Cui and Wang, 2019).

Crop residue or straw incorporation slightly reduces system

yield due to N immobilization during early decomposition,

temporarily limiting its availability to plants (Islam et al., 2022).

Balanced carbon and N inputs from straw may stabilize microbial

processes, leading to negligible effects on soil N2O emissions

(Chen et al., 2014). Upland conditions and increasedmethanotroph

activity can offset straw-mediated CH4 emissions, preventing a

net increase (Zou et al., 2004). Flooding duration significantly

affects rice yield and GHG emissions. Extended flooding promotes

anaerobic conditions, resulting in higher CH4 emissions and lower

N2O emissions (Arenas-Calle et al., 2024). These conditions also

enhance rice productivity by improving nutrient availability and

suppressing weed competition, creating an optimal environment

for rice growth (Sudhir-Yadav et al., 2011).

Higher N application significantly boosts system yield but

also increases CH4 and N2O emissions. As the most limiting

nutrient, N enhances plant growth by improving photosynthetic

and metabolic rates, resulting in higher yields (Li et al., 1992b).

However, excessive N application stimulates nitrification and

denitrification, exponentially increasing cumulative and yield-

scaled N2O emissions beyond the optimal rate (Song X. et al., 2019).

Elevated N inputs also lower the C:N ratio, enhancing substrate

decomposition, increasing DOC availability for methanogens, and

raising CH4 production (Fumoto et al., 2008; Drury et al., 2024).

Enhanced plant growth further facilitates CH4 transport to the

atmosphere. In contrast, P application has minimal effects on

yield and emissions in non-limiting soils. Additional P supply

does not significantly influence crop productivity or processes like

denitrification and methanogenesis, leading to negligible changes

in CH4 and N2O emissions (Song T. et al., 2019; Gebremichael

et al., 2022).

HighWFPS promotes soil saturation and anaerobic conditions,

creating an ideal environment for methanogenesis. Similarly, low

Eh values indicate reduced conditions favoring methanogens,

which thrive in the absence of electron acceptors like O2 (Li et al.,

1992a). High soil pH (>8.8) negatively correlates with CH4 flux,

as it affects substrate availability (acetate and hydrogen), which

are essential for methanogenesis (Malyan et al., 2016). Further,

alkaline conditions also enhance sulfate-reducing bacteria activity,

competing with methanogens for hydrogen and reducing CH4

production (Malyan et al., 2016). N2Oflux showed poor correlation

with soil and weather parameters, contrary to studies linking it to

NO−
3 -N, NH+

4 -N, and WFPS (Jiang R. et al., 2019; Wu et al.,

2023). This discrepancy likely stems from prolonged saturated and
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anaerobic conditions during the rice season, which reduce N2O

emissions by favoring complete denitrification to N2 and lowering

NO−
3 availability (Gupta et al., 2016).

4.5 Water balance

The DNDC model reliably predicted water balance, accurately

simulating WFPS (%) at regular intervals. In flooded PTR and

DSR plots, high irrigation levels resulted in high evaporation

losses (Mousavi et al., 2009). Conversely, micro-irrigated systems

(SD, SSD) exhibited lower evaporation losses due to controlled

irrigation. Transpiration losses correlated with plant growth

and yield, as higher biomass production required increased

transpiration (Rana et al., 2023). Leaching losses were higher

in flooded systems due to excess irrigation beyond saturation

(Sudhir-Yadav et al., 2011). Although previous studies suggest

higher leaching in DSR compared to PTR due to the absence

of puddling, the model showed similar losses in both systems,

likely due to limited irrigation and silty loam soil texture with

low hydraulic conductivity (Jiang Y. et al., 2019). Leaching

and evapotranspiration losses observed were lower and more

consistent than in continuous flooding systems reported for

similar regions (Sudhir-Yadav et al., 2011). Water savings from

alternate wetting and drying, compared to continuous flooding,

were primarily due to reduced deep drainage with minimal

impact on evapotranspiration (Arora, 2006; Belder et al., 2007;

Bouman et al., 2007). In micro-irrigation systems, frequent

but limited water applications minimized leaching and runoff,

except during precipitation events (Patra K. et al., 2023).

Whereas in flood-irrigated DSR and PTR plots, significant runoff

occurred although the model did not fully capture these losses.

The model failed to predict the seepage losses, even though

these losses might be minimal. Positive and negative MWBEs

observed in flooded and micro-irrigated plots may stem from

structural uncertainties and suboptimal water budgeting by

the model.

4.6 Nitrogen balance

Nitrogen balance simulations revealed substantial NH3

volatilization losses under high soil temperature and moisture

following N application. Urea hydrolysis, driven by urease activity,

is influenced by soil pH, temperature, and moisture, with higher

pH accelerating NH3 volatilization (Cabrera et al., 1991; Kissel

et al., 2008; Fisher et al., 2017). Flood and SD-irrigated DSR

plots experienced higher volatilization losses than flood-irrigated

PTR plots, as puddling in PTR neutralized soil pH, reducing

volatilization losses. The slightly alkaline soil conditions in DSR

plots further intensified volatilization (Gupta et al., 2016). SSD

systems, however, reduced volatilization losses by 76% compared to

surface-applied flooded DSR systems, aligning with meta-analyses

showing up to 86% reduction of NH3 volatilization in paddy crops

with SSD fertigation (Bhuiyan et al., 2023). Leaching losses were

low in surface-applied systems (0.7 kg N ha−1−2.9 kg N ha−1),

attributed to high volatilization and low N availability. In SSD

systems, leaching losses were higher (4.0 kg N ha−1–6.9 kg N

ha−1), especially at 100% RDN, due to subsurface application and

reduced volatilization (Drury et al., 2024). Higher N application

(100% RDN) also increased gaseous N losses due to lower N

use efficiency. PTR plots exhibited higher denitrification under

anaerobic conditions, reducing NO−
3 to N2, resulting in cumulative

gaseous losses comparable to those in DSR systems, despite DSR

having higher N2O emissions (Zhao et al., 2020). The MNBE was

high in 75% RDN-treated plots but low in 100% RDN-treated

plots, indicating the model’s limitations in accurately capturing N

use efficiency at varying application rates.

4.7 TOPSIS ranking for sustainability
evaluation

Adoption of DSR with SSD under CA emerged as the most

efficient system, combining high productivity, reduced GHG

emissions, improved nitrogen uptake, and lower water use. This

efficiency is further amplified by a∼25% reduction in N application

without much compromising with productivity, showcasing

significant input savings and environmental benefits. These

findings align with previous studies indicating that SSD systems

enhance resource productivity by minimizing evaporation leaching

and volatilization losses while improving nutrient availability in the

root zone (Bhuiyan et al., 2023; Rana et al., 2023). Themeta-analysis

conducted by Bhuiyan et al. (2023) also states that SSD can save 30%

of N without yield penalty and lowers GHG emissions. Similarly,

SD treatments demonstrated strong performance, supporting

the efficacy of micro-irrigation technologies in reducing non-

productive water losses and addressing nitrogen inefficiencies

(Delbaz et al., 2023). In contrast, conventional systems such as

PTR with flood irrigation ranked lowest due to their resource-

intensive nature. High water use, significant nitrogen volatilization

and elevated GHG emissions, primarily CH4 due to prolonged

anaerobic conditions, have been widely documented in these

systems (Kissel et al., 2008; Sudhir-Yadav et al., 2011; Schmidt

et al., 2018). These limitations highlight the pressing need of

transitioning to low-emission systems such as DSR. However,

DSR with traditional flooding alone is insufficient. To fully realize

the potential of DSR, integrating it with CA and precision

irrigation methods like SSD is essential to enhance resource

efficiency, maximize nitrogen uptake, and ensure environmental

sustainability (Sidhu et al., 2019; Patra K. et al., 2023). This

integrated approach offers a scalable solution to address challenges

in resource-constrained agricultural ecosystems.

Thus, optimizing yield emission trade-offs in the RWCS

enhances system resilience in terms of productivity, profitability

and environmental sustainability. By this way, utilization of DNDC

model insights into eco-optimization of the RWCS can be an

important tool in evaluating the overall sustainability of the

agricultural system.

5 Conclusion

The present study evaluated the DNDC model’s performance

in simulating soil parameters, system productivity, and
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environmental impacts in a 5-year long RWCS experiment

in the eastern IGPs of India. The calibrated model effectively

simulated soil mineral N (NO−
3 and NH+

4 ), WFPS, Eh, soil

temperature, system yield, and nitrogen uptake with reasonable

accuracy. Sensitivity analysis highlighted the importance of

soil and management factors in maintaining a yield-emission

balance. Integrating resource-conserving technologies like CA,

drip fertigation, and DSR improved productivity and resource

efficiency while reducing CH4 emissions by 70%−80%. Although

N2O emissions increased 2.5 times, the overall GWP was reduced

by 58%−65%, showcasing the environmental benefits of these

technologies. The TOPSIS analysis further supported the field

results, ranking DSR-ZTW-SSD system as the most sustainable

treatment, achieving the highest grain yields, improved nitrogen

uptake, reduced GHG emissions, and minimized water losses.

Despite the model’s robust performance, further refinement

is required to adapt its algorithms to tropical and subtropical

conditions. This study emphasizes the potential of integrating

CA, drip fertigation, and DSR to enhance yields, conserve

resources, and lower GWP, thereby ensuring the sustainability

of RWCS in the challenging agroecological zones like the

eastern IGP.
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