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Soil mesofauna critically support organic matter decomposition and nutrient cycling, 
as well as regulating pests and diseases. Agricultural activities can physically and 
chemically influence soil mesofauna communities, thereby impacting the ecosystem 
services they provide. Conserving natural features in agricultural environments 
is well known to support biodiversity and associated ecosystem services, yet soil 
mesofauna communities and their functions in such features require further study. 
We sampled the soil mesofaunal communities (focusing on Acari [mites] and 
Collembola [springtails]) in agriculturally-dominated landscapes in southeastern 
Ontario, Canada. Semi-natural features were represented by drainage ditch banks 
with varying amounts of woody vegetation to different kinds of forested blocks. 
Specimens were extracted using Berlese funnels, and COI metabarcoding was 
conducted on the bulk specimen samples. A total of 585 operational taxonomic 
units (OTUs; a proxy for species) were identifiable based on DNA sequences, 
390 of which belonged to either Acari (273) or Collembola (117); however, it 
was rarely possible to identify specimens to species-level. Mesofaunal richness 
did not differ among habitat types but community composition varied between 
low woody-vegetation drainage bank sites and forested blocks. Maintaining 
heterogeneous natural and semi-natural features appears to increase the overall 
diversity of mesofauna on the landscape, and even small forest patches support 
forest-associated soil biodiversity in this agricultural region.
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1 Introduction

Soil is home to a vast number of species, including microorganisms (e.g., bacteria, fungi, 
protists); microfauna (<200 μm in size, e.g., nematodes, rotifers); mesofauna (~0.2–2 mm, e.g., 
mites, springtails, enchytraeids); and macrofauna (>2 mm, e.g., earthworms, snails, many 
insects) (Lavelle et al., 2006; FAO et al., 2020). This fauna is critically important for maintaining 
essential ecosystem functions, such as soil formation, nutrient and carbon cycling, and pest 
and disease control in both natural and human-dominated landscapes (Lavelle et al., 2006; 
Barrios, 2007; Mishra and Singh, 2020; Guerra et al., 2021). Threats to soil biodiversity such 
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as habitat loss and fragmentation, agricultural intensification/
extensification, and soil erosion may consequently degrade the 
important functions that these communities provide (Gardi et al., 
2013; Geisen et al., 2019; Tibbett et al., 2020; Prăvălie et al., 2021). 
However, the extreme complexity and sheer diversity of these 
communities make it especially challenging to monitor their taxa 
(Thakur et al., 2020; Gongalsky, 2021; FAO, 2022), which is a key step 
in identifying how their diversity (and its loss) will impact ecosystem 
services across the globe (Remelli et al., 2024).

Agricultural activities can cause large reductions in the abundance 
and richness of soil fauna by physically disrupting the soil habitats via 
tillage and field traffic (Ouellet et al., 2008; Müller et al., 2022), and 
through chemical influences like fertilizer and pesticide use (de Graaff 
et al., 2019). Recent efforts to conserve soil biodiversity and soil health 
have focused on within-field methods to conserve soil biodiversity, 
such as conservation tillage or cover cropping (van Capelle et al., 2012; 
Carmona et al., 2021). However, landscape-based approaches have the 
potential to benefit both agricultural productivity and local 
biodiversity (Haan et al., 2021). In particular, a mosaicked landscape 
that retains forest patches and linear features, such as hedgerows, fence 
lines, and watercourse margins, among agricultural plots can provide 
crucial habitat and refugia for soil biodiversity in otherwise 
depauperate zones (Rusch et al., 2010; Schirmel et al., 2016; Udawatta 
et al., 2019; Bennewicz and Barczak, 2020; Montgomery et al., 2020). 
While these features may reduce the amount of arable land, introduce 
shading influences on crops, and provide refugia for pests, such cases 
are context dependant (Mesman, 2016; Rempel et al., 2017; Marais 
et al., 2022). Increasingly, natural features are being lost at the expense 
of agricultural and urban development, as documented in the focal 
region of this study—eastern Ontario, Canada (Noteboom et  al., 
2021), and many other regions in the world (Hu et al., 2021; Pendrill 
et al., 2022). An additional yet often overlooked semi-natural feature 
that may act as effective refugia for soil biodiversity in agro-ecosystems 
includes uncultivated and semi-cultivated field margins (Clark et al., 
2006; de Zwaan et al., 2024; Guo et al., 2024), but these features remain 
poorly documented in the context of soil mesofaunal communities.

Understanding how agricultural extensification or conversely, 
mosaicked landscapes affect soil mesofaunal diversity is a missing 
component in soil health surveys. A number of relevant soil health 
indices and models have been developed for soil physicochemical 
properties (Vereecken et al., 2016; Vogel et al., 2019; Maurya et al., 
2020). Despite the increasing interest in developing similar indices 
and models for soil fauna (Parisi et al., 2005; Caoduro et al., 2014; 
Menta et al., 2018; Buchkowski and Lindo, 2020), there remain large 
gaps in our knowledge of how mesofauna interact with their physical 
and chemical environment (Deckmyn et  al., 2020; Potapov et  al., 
2022). Collecting baseline data on soil faunal communities and the 
physical and chemical matrix in which they reside is an essential step 
in developing testable hypotheses about soil ecological processes, and 
ultimately, the development of more robust soil health models 
and indices.

The soil mesofauna is dominated by microarthropods, of which 
the most diverse and abundant taxa are mites (Acari) and springtails 
(Collembola) (Behan-Pelletier, 2003). Acari, in particular, are one of 
the most diverse and abundant arthropod taxa within soil 
communities and fill a wide range of ecological roles (Beaulieu et al., 
2019). For example, predatory mites, such as Mesostigmata 
(Parasitiformes) and some Prostigmata (Trombidiformes), can 

influence prey populations by exerting top-down effects on the 
abundance of prey taxa (e.g., nematodes, Collembola) (Koehler, 1999; 
Schneider and Maraun, 2009), and have even been used as biological 
control for arthropod pests, such as thrips and phytophagous mites 
(McMurtry et  al., 2015; Knapp et  al., 2018). Conversely, oribatid 
(Sarcoptiformes) mites are responsible for nutrient cycling within the 
soil by feeding on dead organic matter and microbial residues and 
contribute strongly to soil structural development by producing 
nutrient rich faecal pellets that act as a natural fertilizer (FAO et al., 
2020; Potapov et al., 2022). While Collembola are often less diverse 
than Acari, they are frequently as abundant in soil systems and serve 
as an important prey source for other small arthropods, such as 
beetles, mites, and spiders (Bilde et al., 2000). They also contribute to 
nutrient-cycling by breaking down organic matter and impact soil 
food-webs by feeding on microorganisms (Coulibaly et al., 2019).

Due to the vast abundance and diversity of soil mesofauna, 
assessing species richness and composition of the entire community 
is rarely feasible using pure morphological methods; for this reason, 
most studies focus on selected taxa (Postma-Blaauw et  al., 2012; 
Baumann, 2021), or else only identify organisms to high taxonomic 
levels (Ruf and Beck, 2005; Meehan et al., 2019). In contrast, DNA 
metabarcoding couples DNA taxonomy with high-throughput 
sequencing to identify multiple species within a given sample (Coissac 
et  al., 2012). This method shows great promise for efficiently and 
accurately assessing soil communities (Yang et al., 2014), including for 
Acari (Arribas et al., 2016; Hoage, 2018; Young and Hebert, 2022) and 
Collembola (Saitoh et al., 2016). While metabarcoding has been used 
to assess soil arthropod communities within a variety of different 
ecosystems: i.e., Arctic, temperate, tropical, freshwater, and grassland 
habitats (Arribas et al., 2016; Oliverio et al., 2018; Schenk et al., 2020; 
Basset et  al., 2022; Young and Hebert, 2022), its application in 
agricultural settings is very limited (Kestel et al., 2022).

The objectives of this study were: (a) to conduct a baseline survey 
of soil mesofauna (Acari and Collembola) in natural and semi-natural 
features in an agricultural landscape in eastern Ontario, Canada; (b) 
to analyze soil mesofaunal diversity and community composition in a 
variety of semi-natural habitats (ranging from grassy un-treed field 
margins to larger forested blocks), using specimen-based 
metabarcoding; and (c) to explore relationships between soil 
physicochemical parameters and the mesofaunal community at 
each site.

2 Methods

2.1 Study area and experimental design

This study was conducted east of Ottawa, ON, Canada in the 
South Nation river watershed (Figure 1). This region has a temperate 
climate, categorized as Dfb (cold winter, no dry season, warm 
summer) in the Köppen-Geiger climate classification system (Beck 
et al., 2018). The area is primarily agricultural and has experienced a 
notable loss of natural features, as 4.1% of its forest was lost in just 
6 years (Mesman, 2016). The region’s main agricultural land uses are 
livestock/cash corn, soybean, and forage (i.e., hay and alfalfa for 
livestock feed) (Ontario Data Catalogue, 2024). The average field size 
in the study area is approximately 8.3 ha, based on calculations in 
ArcGIS, and fields are typically bordered by linear features, such as 
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hedgerows, vegetated fencelines, and agricultural drainage ditches (de 
Zwaan et al., 2024; Guo et al., 2024). The banks of these drainage 
ditches are generally semi-natural, uncultivated habitats, ranging from 
narrow strips of herbaceous vegetation, which may or may not include 
scattered trees and shrubs, to (less commonly) wider, forested areas. 
The study region is dominated by soils classified as Orthic Humic 
Gleysols and Gleyed Melanic Brunisols (Canadian System of 
Soil Classification).

We collected soil samples along agricultural drainage ditch 
margins and forested areas along waterways in this agricultural matrix 
in June 2022 (Figure  1). Twelve sites were selected and were 
categorized as one of four habitat types, with three replicates of each 
type. Two site categories were classified as “unforested,” including “No 
trees” = agricultural ditches brushed of woody vegetation (as per Guo 
et al., 2024) and “Scattered trees” = agricultural ditches with a few 
scattered shrubs and trees (less than 20% tree canopy cover). These 
uncultivated strips, including the ditch proper, were less than 10 m in 
width and were dominated by grasses, particularly smooth brome 
grass (Bromus inermis), and included both native herbaceous plants 
(e.g., Solidago canadensis [Canada goldenrod]) and invasive alien 
species (primarily Pastinaca sativa [wild parsnip]) (Supplementary  
Table S1). At most ditch sites, the litter layer was predominantly a 
dense cover of dead brome grass that protected the soil surface from 
excessive soil desiccation during drier periods. The other two 
categories were classified as “forested” and included “Small 
forest” = small patches of forest ranging from 30 to 300 m in width 
and either isolated, or narrowly connected to larger forested areas, and 

“Large forest” = large patches of forest ranging from 400 to 2,000 m in 
width, and connected to more extensive forested areas (Figure 2). Due 
to the availability of suitable sites, there was limited ability to 
standardize the vegetation composition of these forested stands. 
However, they were mostly deciduous-dominated (one site was 
mixed-wood), with the most common native trees being Fraxinus 
americana (white ash), Acer saccharum (sugar maple), Fagus 
grandifolia (American beech) and Tsuga canadensis (Eastern 
hemlock); the most common non-native tree was Rhamnus cathartica 
(European buckthorn), which was particularly abundant in the small 
forest sites (Supplementary Table S1). The forests had distinct canopy, 
shrub, and herb layers; at many sites, the herb layer (most commonly 
fern-dominated) was sparse, with the moist forest floor primarily 
covered in deciduous leaf litter. Soil texture across all sites was highly 
variable, though clay soils were more common in the ditch sites 
compared to the forested sites (Supplementary Table S1).

Six sampling points were randomly selected at each of the 12 sites 
by first overlaying each site with a 10 m × 10 m grid in Google Earth. 
A random number generator was then used to select six cells of the 
grid to be sampled, and a GPS point was arbitrarily selected in the 
approximate centre of each cell. Sampling points were evenly divided 
across the ditch/waterway (three per side) and were at least 20 m 
apart. The ditch samples were collected at the mid-slope of the bank. 
Paired samples (immediately adjacent to each other) were collected at 
each sampling point; one for mesofaunal metabarcoding, and the 
other for soil physicochemical analysis. Each of these two samples was 
collected by using a tulip bulb planter to extract two soil cores/sample 

FIGURE 1

Map showing the location of the 12 sites that were sampled in this study. Source: Main map modified from https://www.google.com/earth (accessed 
August 20, 2023), inset map modified from https://d-maps.com/ (accessed February 18, 2025).
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(each approximately 6 cm in diameter and 11 cm deep) that were 
combined in a Ziploc bag, totaling approximately 2.5 L of soil per 
sample. Tree canopy cover was also measured at each sampling point 
using a convex spherical crown densiometer; four measurements were 
taken, one at each cardinal direction, and the mean of these 
measurements was then calculated.

The mesofaunal samples were kept in the fridge overnight, and 
then specimens were extracted on Berlese funnels lined with 
cheesecloth for 4 days using heat from a 60 W bulb, with specimens 
collected into 95% ethanol. Specimens were then filtered through a 
45-μm sieve into 2 mL tubes filled with 95% ethanol and stored at 
−20°C until DNA extraction. Specimens were not cleaned prior to 
DNA extraction, resulting in some sediment being included in 
the extraction.

The soil samples collected for physicochemical analysis were 
stored at −20°C prior to processing. The samples were thawed at 20°C 
for 1 h, sieved through a 2 mm mesh, and then subsampled for 
downstream analyses. Gravimetric moisture was measured by drying 
a 20 g field moist subsample at 105°C for 48 h. A separate 100 g 
subsample was then air dried at 20°C for 1 week. These air-dried 
subsamples were sent to A&L Canada Laboratories Inc., London, ON, 
for physicochemical analysis, which included measurements of 

organic matter (loss on ignition), phosphorus (Bray-P1), total and 
percent base saturation of potassium, magnesium, and calcium 
(ammonium acetate extraction), and cation exchange capacity (CEC).

2.2 Sequencing

DNA was extracted non-destructively from the mesofaunal 
specimens with a Qiagen DNeasy Blood and Tissue kit (Qiagen), 
modified to allow for the recovery of voucher specimens. Specifically, 
the ethanol was first evaporated from the tubes containing specimens 
using a vacuum centrifuge (Vacufuge, V-AL, ambient temperature, 
10 min). 270 μL of buffer ATL and 30 μL of proteinase K were then 
added to the tubes without grinding the specimens, and tubes were 
incubated overnight at 56°C. Following incubation, 200 μL of solution 
was withdrawn from the top and placed into a 1.5 mL tube, being 
careful not to disturb or pipette up any specimens. The tubes 
containing the voucher specimens were then refilled with 95% ethanol 
for storage. The remainder of the DNA extraction steps followed the 
standard kit protocol, with the final elution step repeated once to 
maximize DNA yield, for a total elution volume of 200 μL. Following 
the extraction, the spin column filters were rinsed with 95% ethanol 

FIGURE 2

Representative satellite images and photographs of each of the four habitat types.
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and inspected under a microscope to check for any specimens that 
were drawn up with the extraction buffer; any specimens found 
during this step were added to the voucher specimen tube. Initial PCR 
tests had high failure rates, possibly due to PCR inhibitors from soil 
residue that was extracted with the specimens. Diluting the DNA 
improved PCR results, and it was determined that a 20% dilution was 
most successful across samples; consequently, all DNA extracts were 
diluted with water to 20% prior to sequencing.

Based on the recommendation of Krehenwinkel et  al. (2016), 
we sequenced a 313 bp region of COI, using the mICOIintF (Brandon-
Mong et al., 2015) and FoldR (Arribas et al., 2016) primer pair, with 
modified adapters that had 0–6 “N” bases between the amplicon-
specific primer and the adapter sequence to increase base diversity. 
PCR was replicated 3 times for each DNA extract; therefore, a total of 
216 samples were sequenced (12 sites × 6 sampling points × 3 PCR 
replicates). Two extraction negatives × 3 PCR replicates and 10 PCR 
negatives were also sequenced. Each PCR reaction consisted of 
16.75 μL nuclease-free water, 2.3 μL 10× Titanium buffer, 2.3 μL of 
2 mM dNTPs, 0.575 μL each of the forward and reverse primers, 
0.5 μL Titanium Taq, and 2 μL of DNA. Cycling was conducted in an 
Eppendorf thermocycler, with the following program: 95°C for 3 min, 
40 cycles of 94°C for 30 s, 45°C for 90 s, 72°C for 90 s, and a final 
extension of 72°C for 3 min, before being held at 4°C. The remaining 
steps in the protocol were conducted at the Molecular Technologies 
Laboratory of the Ottawa Research and Development Centre. In brief, 
samples were purified and normalized using an NGS Normalization 
96-Well Kit (Norgen Biotek Corporation, Canada). A second round 
of PCR was then performed wherein samples were tagged using i3 and 
i5 indices of the Nextera Index Kit (Illumina, San Diego, CA, USA), 
followed by PCR clean-up and normalization as above. The samples 
were then pooled, quality was assessed using a Tapestation (Agilent, 
Santa Clara, CA, USA), and quantification was done using a KAPA 
Library Quantification Kit (KAPA Biosystems, Wilmington, MA, 
USA). Finally, next-generation sequencing was performed using a 
single MiSeq v3 600 Kit (Illumina, San Diego, CA, USA). Raw 
sequences were submitted to NCBI Sequence Read Archives 
(BioProject ID PRJNA1197472).

2.3 Bioinformatics and taxon assignment

The raw sequence data were analyzed and grouped into operational 
taxonomic units (OTUs) using the ‘JAMP’ package available in R 
(Elbrecht, 2018). Paired end merging was conducted with USEARCH 
(Edgar, 2010), with a minimum 75% alignment match. Primer 
trimming (maximum error of 0.2) and length filtering (301–319 bp) 
were done using Cutadapt (Martin, 2011). Error filtering was conducted 
with USEARCH (Emax = 1). Finally, singleton reads were discarded 
and OTUs were clustered with 3% similarity using VSEARCH (Rognes 
et  al., 2016). In addition, any replicates that contained less than 5 
mesofaunal OTUs were considered a failed replicate and were excluded 
from the dataset. By these criteria, a total of 34 PCR replicates failed 
and were removed from the dataset; this resulted in the complete 
removal of some samples (two samples from Site NT3 and one sample 
from each of Sites LF1, SF3, and LF3). Two sampling points (Sites 
NT2-3 and NT2-6) were also excluded from the final dataset, as they 
were outliers with far more than the expected number of OTUs; 
examination of the voucher specimens confirmed that the sequencing 

data greatly overestimated the number of mesofaunal OTUs. All 
voucher specimens were databased and submitted to the Canadian 
National Collection of Insects, Arachnids, and Nematodes.

Following OTU clustering, abundance filtering was performed on 
all OTUs, using a dynamic approach; any OTU occurrence with less 
than 0.01% of the total read count in a sample was removed, as well as 
occurrences totaling <0.01% of the total read count for that OTU. To 
reduce the possible impact of tag switching or other sources of 
contamination, the maximum read count for each OTU in the 
negative controls was subtracted from all other instances of that 
OTU. PCR replicates were then pooled for each sample, only including 
OTUs that were present in at least two out of three PCR replicates; 
however, in instances where one or two PCR replicates failed, OTUs 
were kept if they were in a single replicate. OTU read counts were then 
converted to presence-absence data. Finally, taxonomy was assigned 
to each OTU using the BOLDigger program (Buchner and Leese, 
2020) and the Barcode of Life Database (BOLD; Ratnasingham and 
Hebert, 2007); accessed June 2023. OTUs were designated as classified 
(at least to kingdom level) or unclassified (no taxon assigned). 
Taxonomy was assigned according to the best hit selected by 
BOLDigger, using the BOLD API correction tool (Buchner and Leese, 
2020). All figures and the majority of statistical analyses were 
conducted in R (v4.2.3; R Core Team, 2023).

2.4 Statistical analyses

All statistical analyses were conducted on mesofauna taxa only, 
defined for the purposes of this study as those taxa assigned to Acari 
or Collembola. We compared the total mesofaunal OTU richness 
between habitats, as well as the richness of each order of Acari and 
Collembola using generalized linear mixed models (GLMM). Analyses 
were conducted in R, using the lme4 (Bates et al., 2015) and glmmTMB 
packages (Brooks et  al., 2017), with the diagnostics of the model 
(uniformity, dispersion, heteroscedasticity) tested using the DHARMa 
package (Hartig, 2024). Data were initially analyzed using the Poisson 
distribution model, as recommended for count data. However, data 
that were overdispersed (a dispersion ratio of >1.2; Payne et al., 2018), 
or otherwise failed to meet the assumptions of the model, were 
analyzed using negative binomial distribution models, following the 
same diagnostic testing as above. In these cases, the two models were 
compared using AIC, to confirm the better fit of the negative binomial 
model. Each model included fixed effects for “habitat” and random 
intercepts for “site” (to control for sample interdependence among 
sites). The “No Trees” habitat type was selected as the intercept for the 
model. Post-hoc tests were conducted using Estimated Marginal 
Means from the emmeans package in R (Lenth, 2025).

We tested whether the mesofaunal community composition differed 
between habitat types with a nested permutational multivariate analysis 
of variance (PERMANOVA, 1,000 randomizations) using the incidence-
based Sorensen’s dissimilarity metric as implemented by the vegan 
package (Oksanen et al., 2015) in R. We conducted post-hoc testing 
using a nested pairwise PERMANOVA test with the pairwiseAdonis 
package (Martinez Arbizu, 2020). Overlap in mesofaunal OTUs between 
the three sites for each habitat type were compared using Venn diagrams 
constructed with the BioVenn package (Hulsen, 2021). In order to 
visualize differences in mesofaunal community composition, as well as 
the level of correlation with the environmental variables, non-metric 
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multidimensional scaling (NMDS) using Sorenson’s dissimilarity 
calculations for community data (i.e., Acari + Collembola OTUs), and 
correlation vectors of the environmental variables, were constructed 
with the metaMDS function using vegan (Oksanen et al., 2015). The 
number of dimensions for the final NMDS analysis was selected by 
repeating the NMDS analysis with increasing numbers of dimensions 
(from 1 to 10), graphing the stress of each analysis, and determining at 
what number of dimensions a plateau was reached.

To determine whether soil physicochemical properties differed 
between habitats, we used linear mixed models (LMM), implemented 
in R, using the lmerTest package (Kuznetsova et al., 2017). To test 
the assumptions of the model, the Shapiro-Wilks test for normality 
was conducted using base R (R Core Team, 2023), while the Levene 
test for homogeneity of variance was conducted using the DHARMa 
package (Hartig, 2024). Initial analyses used a Gaussian distribution 
model with untransformed values; if the assumptions were not met, 
the data were log-transformed and re-tested with the same model 
and diagnostics as above. Post-hoc tests were conducted using 
Estimated Marginal Means from the emmeans package in R (Lenth, 
2025). Data were only included for those sites that were successfully 
sequenced for mesofauna (n = 65), however one sample from the 
large forest sites was not analyzed successfully by the external 
laboratory, and is thus missing for all parameters except 
gravimetric moisture.

Mantel’s test (10,000 randomizations) was used to assess for 
correlations between geographical distance matrices or soil 
physicochemical properties distance matrices and community 
composition distance matrices (using Sorenson’s dissimilarity based 
on mesofaunal OTU presence-absence) with vegan (Oksanen et al., 
2015). Possible correlations between pairs of soil parameters were also 
examined by calculating the Pearson correlation coefficients for each 
pair of soil parameters using R, with the strength of the relationship 
based on Evan’s table (Evans, 1996).

3 Results

3.1 Overall diversity and community 
composition

After abundance-filtering, a total of 1,036 OTUs were detected 
from over 600,000 reads. Once reads were removed from the PCR and 

extraction negatives, and replicates were pooled, a total of 844 OTUs 
were recovered from all 12 sites; however, only 585 of these could 
be assigned to any taxon (Table 1; Supplementary Table S2). These 
classified OTUs consisted of 19 classes, 37 orders, and 100 families 
(Supplementary Table S2). Of the animal taxa found (551 OTUs), only 
24% (131 OTUs) were assigned to the species level, and many OTUs 
(36%) had no identifications below the family level (Supplementary  
Tables S2, S3).

A total of 390 mesofauna OTUs were detected, of which 70% (273 
OTUs) were Acari and 30% (117 OTUs) were Collembola 
(Supplementary Table S3). Within Acari, Trombidiformes 
(Prostigmata) and Sarcoptiformes (primarily Oribatida) were each far 
more OTU-rich than Mesostigmata (Figure 3). The most OTU-rich 
families were Eupodidae (44 OTUs), Tydeidae (20 OTUs), and 
Oppiidae (16 OTUs), while 14 families were only represented by a 
single OTU (Supplementary Table S3). Twenty-eight Acari OTUs 
(10%) were assigned to species, 57 (31%) were assigned only to the 
genus level, while the majority (47%) could only be assigned to family 
(129 OTUs) or order (59 OTUs) (Supplementary Table S3). For the 
Collembola, the orders Entomobryomorpha and Poduromorpha 
contained the majority of OTUs (52 and 36, respectively) in 
comparison with the other orders (Figure 3; Supplementary Table S3). 
The most OTU-rich families were Isotomidae (32 OTUs) and 
Entomobryidae (11 OTUs), while 2 families were only represented by 
a single OTU. Twenty-six springtail OTUs (22%) were assigned to 
species, 28 OTUs (24%) were assigned only to the genus level, 46 
OTUs (39%) could only be assigned to family, and 17 OTUs (15%) 
were assigned only to order (Supplementary Table S3).

3.2 Habitat comparison

The total mesofauna OTU richness did not differ significantly 
between habitats (Figure 3A; Supplementary Tables S4, S5). At the 
ordinal level, OTU richness was highly variable within each habitat 
(Figures 3B,C), however there were no significant differences between 
the habitats (Supplementary Tables S4, S5).

The PERMANOVA results indicated significantly different 
mesofaunal community composition between habitats (df = 3, 
F = 2.45, R2 = 0.10, p < 0.001), as well as between sites within a 
habitat type (df = 8, F = 1.95, R2 = 0.21, p < 0.001). Post-hoc 
pairwise testing indicated that all habitat types differed 

TABLE 1 Summary of OTUs and reads (following abundance-filtering and pooling) for each habitat type.

Habitat Samples/
PCR 

replicates

All taxa Mesofauna

Total 
OTUs

Total 
reads

Identified 
OTUs

Identified 
reads

Unident. 
OTUs

Unident. 
reads

Total 
OTUs

Total 
reads

No trees 14/34 220 135,490 162 134,426 58 1,064 120 41,496

Scattered trees 17/49 276 174,828 236 172,365 40 2,463 175 40,212

Small forest 17/47 363 179,843 241 174,264 122 5,579 167 77,337

Large forest 16/46 294 144,034 212 125,441 82 18,593 152 65,040

Negatives –/16 – – – – – – – –

All sites 64/192 844 634,195 585 606,496 259 27,699 390 224,085
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significantly in their mesofaunal community composition, as well 
as all sites within each pair of habitats (p < 0.001; Supplementary  
Table S6). This is supported by how few taxa overlap between 
different sites, even within the same habitat type (Figure 4).

Based on preliminary testing, a 3-dimensional solution was 
selected as the best NMDS result; however, the analysis failed to 
converge, even with running up to 100 iterations, and the final stress 
(0.19) was only marginally acceptable (Clarke, 1993). The NMDS 
analysis showed extensive overlap between the sites and habitat 
types, despite the results of the PERMANOVA; there was however 
an apparent distinction between unforested (no trees and scattered 
trees) and forested (large forest and small forest) sites along the 
NMDS2 axis (Figure 5). We did not observe a strong ecological 
signal with respect to habitat across the other axes (NMDS1 or 
NMDS3; Figure 5).

Samples within each site mostly clustered together, however there 
were several exceptions (Figure 5). For example, the samples from 
Sites NT2, SF2, and LF1 were widely dispersed across the ordination. 
The samples from Site NT1 formed two distinct clusters, with four 
samples in one cluster among the unforested sites and two samples 
clustering toward the forested sites. The samples from Site ST1 form 
three clusters, two among the unforested sites, and one sample among 
the forested sites. Samples from Site LF3 also formed two distinct 
clusters, with three samples in one cluster and two samples in the 
other. One sample from Site SF3 was also highly distinct from the rest 
of the site, and the six samples from Site LF2 formed three 
distinct clusters.

3.3 Environmental factors

Significant differences between habitats were only found for 
Potassium. It was lower in forested than unforested habitats, however 
the only significant differences were between the large forests and the 
two unforested habitats (scattered trees and no trees) (Figure 6C, 
Supplementary Tables S7, S8). Although not statistically significant, 
there was an observable pattern of increasing gravimetric moisture 
with increasing tree cover/forest patch size (Figure 6G).

Based on the Mantel tests, there was a significant correlation 
between community composition and organic matter (p = 0.002), 
cation exchange capacity (CEC) (p = 0.008), percent base saturation 
of magnesium (p = 0.004), and calcium (p = 0.005) (Table 2). As well, 
community composition was significantly correlated with the 
geographic distance between samples (p < 0.001) and with tree cover 
(p = 0.001; Table 2). These patterns were also apparent in the NMDS 
graph, which depicts tree cover, gravimetric moisture, and organic 
matter correlation vectors being associated with NMDS2, with all 
three increasing toward the forested sites (Figure  5). Pearson 
coefficients showed a strong correlation between CEC and organic 
matter; correlations were moderate or weak for all other pairs of 
parameters (Supplementary Figure S1).

4 Discussion

4.1 Soil mesofaunal diversity in an 
agricultural landscape

Agricultural ecosystems are home to a large diversity of soil 
organisms, particularly along field edges or other semi-natural 
habitats (Morris et al., 2010; Bennewicz and Barczak, 2020). Gathering 
baseline information on these soil organisms is essential in order to 
monitor and mitigate threats to soil biodiversity (FAO et al., 2020) and 
retain the ecosystem services they provide. However, surveys of soil 
mesofauna are still relatively rare in Canadian agroecosystems, 
particularly with identifications beyond the family level (exceptions 
being Berg and Pawluk, 1984; Osler et al., 2008; Walter et al., 2014; 
Walter and Lumley, 2021). Taxonomic richness is thus more often 
explored at the family or subfamily level, which may mask more fine-
grained patterns of diversity (e.g., Reeleder et al., 2006; Carter and 
Noronha, 2007; Carter et al., 2009; Miller et al., 2014; Miller et al., 
2017; Lupardus et  al., 2021). For the habitats sampled in this 

FIGURE 3

Mean (± SD) number of mesofauna OTUs for each habitat type; 
(A) All mesofauna taxa combined; (B) Acari orders; (C) Collembola 
orders. GLMM analysis did not find any significant differences 
between habitats for the total mesofauna OTU richness, or for OTU 
richness of any order. n.s. = no significant differences.
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agro-ecosystem, metabarcoding enabled the detection of over 1,000 
OTUs (as a proxy for species) belonging to a wide range of taxa, 
including both the target mesofauna, as well as many other soil 
dwelling fauna. From this, 500 arthropod OTUs were detected, of 
which almost 400 OTUs were mesofauna.

The majority of mesofaunal taxa (75%) could not be assigned to 
the species level, and 44% could not be assigned past family. This lack 
of taxonomic resolution is unsurprising considering the number of 
undescribed mesofaunal species; for example, the majority of Acari 
species in Canada have yet to be  described (Lumley et  al., 2013; 
Beaulieu et al., 2019) and it is estimated that only 13% of Canadian 
Collembola have been described (Turnbull and Stebaeva, 2019). A 
lack of species designation for an OTU can also stem from incomplete 
reference sequence libraries, particularly for mesofauna (Young and 
Hebert, 2022; Recuero et al., 2023). For example, it is estimated that 
only 10% of the described Acari species have been assigned Barcode 

Index Numbers (BINs; a formal OTU designation) in BOLD’s COI 
reference library (Beaulieu et  al., 2019). Although many of these 
species may be represented in BOLD, given the >16,000 Acari BINs 
from Canada alone (accessed November 2024), many BINs have yet 
to be identified beyond the family or genus level. Consequently, even 
OTUs that closely match a record in the reference library may not gain 
a lower-level identification. Taxonomic biases likely also exist in the 
database, as noted for Collembola, whose records in BOLD are skewed 
toward larger, surface-dwelling taxa, leaving the smaller soil-dwelling 
taxa far less complete (Turnbull and Stebaeva, 2019).

These taxonomic issues are further exacerbated by the possibility 
of incongruence between OTUs (or BINs in the BOLD database) and 
true biological species. While COI has been used extensively to 
distinguish arthropod species (Hebert et al., 2003; Virgilio et al., 2010; 
Wilson et  al., 2017), it is not always successful for closely related 
species with low interspecific divergences (Kaila and Ståhls, 2006; 

FIGURE 4

Overlap of mesofauna OTUs detected from the three sites within each habitat type.
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FIGURE 5

Three-dimensional non-metric multidimensional scaling (NMDS) of mesofaunal community composition at each site, with soil parameters represented 
as vectors (stress value = 0.19). Red = No trees: circles = NT1, triangles = NT2, squares = NT3. Yellow = Scattered trees: circles = ST2, triangles = ST1, 
and squares = ST3. Blue = Small forest: circles = SF2, triangles = SF1, and squares = SF3. Green = Large forest: circles = LF1, triangles = LF2, and 
squares = LF3.
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Meier et al., 2006; Elias et al., 2007; Carew and Hoffmann, 2015; Keck 
et  al., 2023). Alternatively, species with high intraspecific COI 
variability can be over-split by this method (Lukic et al., 2021; Keck 
et al., 2023), artificially inflating estimates of species richness (Song 
et  al., 2008). Although in some cases these may represent cryptic 
species that have not yet been described (Beaulieu et al., 2019; Zhang 
et  al., 2019), disentangling these alternatives can be  challenging 
without detailed taxonomic work. Clearly, increased efforts are needed 
to update mesofaunal reference libraries, through faunistic surveys, 
assessing concordance between BINs and biological species, 

describing new taxa, and by morphologically identifying BINs that are 
already present in BOLD.

Despite the challenges in obtaining species-level data, evidence 
suggests that higher taxonomic levels can still be highly informative 
from an ecological lens (Bacci et al., 2009; George et al., 2017; Meehan 
et al., 2019). On top of this, OTU richness (even without named taxa) 
can be  used as an effective proxy for species richness, allowing 
detailed comparisons of biological diversity (Ji et  al., 2013), thus 
enabling a fine-grained understanding of ecological relationships 
within the soil.

4.2 Mesofaunal OTU richness in forested 
and unforested field margins

Maintaining natural areas in agricultural landscapes has been 
shown to benefit soil biodiversity (Bennewicz and Barczak, 2020) and 
forested habitats are known to contain more soil mesofaunal 
biodiversity than do unforested areas (Tomlin and Miller, 1987). This 
difference has been attributed not only to increased soil moisture and 
organic matter in forested sites (Arroyo et al., 2013; George et al., 2017; 
Szigeti et al., 2022), but also to the less disturbed soil environments in 
forests (Kuznetsova, 2006), compared to arable land that is, for 
example, tilled seasonally. Even the increased amount of vegetation 
found in shrub habitats, relative to grasslands, was found to 
be  advantageous for soil arthropod diversity, as it increased soil 
moisture and provided microclimates more suitable for these 

FIGURE 6

Mean (± SD) for seven soil parameters in each habitat type. (A) Organic matter; (B) Cation exchange capacity; (C) Percent saturation potassium; 
(D) Phosphorus (Bray-PI); (E) Percent saturation calcium; (F) Percent saturation magnesium; (G) Gravimetric moisture. Bars marked with different 
letters are significantly different, according to an LMM analysis, with post-hoc tests based on estimated marginal means and adjusted p-values for 
multiple comparisons. n.s. = no significant differences.

TABLE 2 Correlation of community similarity with distance, tree cover, 
and soil physicochemical properties, based on Mantel tests.

Property Test statistic p-value

Distance r = 0.16 <0.001*

Tree Cover r = 0.08 0.001*

Organic Matter r = 0.17 0.002*

Gravimetric Moisture r = 0.07 0.08

Cation Exchange Capacity (CEC) r = 0.14 0.008*

% of K r = −0.003 0.50

% of Mg r = 0.14 0.004*

% of Ca r = 0.14 0.005*

Phosphorus r = 0.06 0.13

*Significant p-values.
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organisms (Ferguson, 2001). It was therefore surprising that we did 
not find significant differences in OTU richness between the 
unforested and forested sites in this study.

While the overall patterns of mesofaunal diversity may have 
masked more pronounced patterns among specific taxonomic groups, 
this was not observed, at least at the ordinal level, in our data. For 
example, the three orders of Acari collected in this study 
(Sarcoptiformes [primarily Oribatida], Trombidiformes [Prostigmata] 
and Mesostigmata have widely varying life strategies that should 
respond differently to the habitats we sampled). More specifically, 
Prostigmata and Mesostigmata are primarily made up of “r-selected” 
species, with high fecundity and shorter lifespans (Behan-Pelletier, 
2003); because of this adaptability, it is less surprising that these 
groups had no differences in diversity between habitat types. 
Oribatids, conversely, are “K-selected” soil organisms that reproduce 
relatively slowly, have low fecundity, and have longer lifespans (Behan-
Pelletier, 2003). Consequently, oribatids are often associated with 
more stable and less disturbed environments (Maraun and Scheu, 
2000), but in this study we  found no differences in their richness 
between seemingly very different habitat types (e.g., un-treed field 
ditches vs. forested habitats). Kokořovǎ and Starý (2017) found an 
increase in more tolerant and resilient oribatid species in disturbed 
forested ecosystems; further analysis at a finer taxonomic resolution 
would be necessary to test this hypothesis in this system. However, 
while at an earlier successional stage than the forested habitats, soils 
in the ditch habitats were nonetheless relatively undisturbed and often 
protected by a thick layer of brome grass litter. This observation may 
explain the suitability of ditches as habitat for oribatid mites which are 
known to be abundant and diverse in natural grassland habitats as well 
(Behan-Pelletier and Kanashiro, 2010). Future work comparing the 
ditch and forest mesofaunal communities with those of the adjacent 
cultivated fields would help determine the impact of disturbance on 
these soil communities and illuminate the extent to which adjacent 
habitats influence the in-field taxa.

Despite these observations, the possibility remains that this 
pattern of unchanged OTU richness between habitat types was simply 
due to high sample variability and insufficient sampling effort. Because 
of logistical constraints, we were only able to sample three sites per 
habitat type, and significant variability was found in the number of 
OTUs detected even between the sampling points within each site. 
Increasing the number of sites within each habitat type, as well as the 
number of replicates within each site, would likely improve our 
understanding of species richness patterns in these settings. In 
addition, we were only able to include a single time point in early 
summer for this study. Since Acari and Collembola abundance and 
richness have been shown to change over the year (Ferguson and Joly, 
2002; Rochefort et al., 2006; Kaczmarek et al., 2011), increasing the 
temporal range of sampling would have improved our understanding 
of the species richness at these sites.

4.3 Mesofaunal community composition in 
forested and unforested field margins

Significant differences in mesofaunal community composition 
were detected by PERMANOVA, both between habitat types and 
between sites within a habitat type. However, the NMDS ordination 
revealed considerable overlap in community composition between 

sites and habitats. This discrepancy is likely because PERMANOVA 
methods consider both the centroid and the spread of samples 
(Anderson, 2017). As noted in our OTU richness analysis, these 
samples were also characterized by highly variable community 
composition data. Therefore, the significant differences observed by 
PERMANOVA may reflect changes in the variability within groups, 
in addition to overall community dissimilarity. As well, the high stress 
of the ordination indicates that the pattern of points in the ordination 
space should be considered cautiously; including more dimensions in 
the analysis would likely have improved the fit, but would also become 
increasingly challenging to interpret (McCune and Grace, 2002). This 
further emphasizes the high variability within and between each site.

While we expected microhabitats (and consequently sampling 
points) in forested sites to be heterogeneous, and thus to contain 
more heterogeneous groups of mesofauna (Kuznetsova, 2006), 
unforested sites appeared more homogeneous at the macro-scale, 
and we expected to find a more homogeneous array of fauna in 
these samples. In fact, we found little overlap in species presence 
between sites in any of the habitats, and no distinct clustering of 
the communities. This indicates that the scale at which the 
communities are being structured is more fine-grained than the 
large-scale habitats defined here. For example, despite relative 
homogeneity on a landscape scale, the ditch sites varied in terms 
of grass density, herbaceous species present, and distance to the 
nearest shrub or tree; soil moisture and other physicochemical 
traits also varied across a very small scale. In forested sites, these 
small-scale differences are even more pronounced, with overstory 
trees, understory vegetation, litter layer quality and quantity, and 
dead wood features all varying throughout the habitat. In all 
habitats, therefore, differences in community composition between 
samples could be  attributed to small-scale habitat features or 
associated vegetation of each sampling location (Hansen, 2000; 
Heydari et al., 2020), or in differences in the underlying soil layer 
(George et  al., 2017). Geographical distance can also impact 
mesofaunal species composition (Lehmitz et  al., 2012; Arribas 
et  al., 2020; Andújar et  al., 2022), with the similarity of these 
communities decreasing as spatial distance increases (Gao et al., 
2014); an observation that was supported in our study.

One factor that limited our ability to detect differences in 
community composition is the lack of abundance data for the collected 
taxa. Read counts are likely a poor indicator of abundance due to 
issues arising from primer bias and specimen biomass (Elbrecht and 
Leese, 2015). The very large specimen diversity detected here limited 
the capacity to identify and count all voucher specimens, which would 
have revealed details about richness and evenness at each site, as well 
as specifically which taxa were dominant. Using presence-absence 
data treats all taxa equally, which excludes consideration of abundance 
or strength of association with particular habitats. As well, it is possible 
to detect gut contents of predatory taxa, potentially resulting in higher 
numbers of OTUs for prey species, such as Collembola (Eitzinger 
et  al., 2013). Finally, these methods can detect DNA from dead 
organisms or their remains that are not actively living in that habitat 
(Deiner et al., 2017; van der Heyde et al., 2022). These factors may 
have resulted in more diffuse patterns of community compositions 
within and between sites.

Despite high sample to sample, and site to site variability, 
we  nonetheless found that forested sites (regardless of size) 
contained apparently distinct mesofaunal communities than did 
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the unforested sites (whether with or without scattered trees). 
These communities are strongly associated with increasing tree 
cover, unsurprisingly associated with increased moisture, and to a 
lesser extent, organic matter. This indicates that even small, 
fragmented forest patches are maintaining a forest-like community, 
reinforcing the important ecological role that forest patches play 
in supporting biodiversity in agricultural systems (Hendrickx 
et al., 2007; Vanbergen et al., 2007; Decocq et al., 2016). However, 
even in the larger forest patches, our samples were collected 
relatively near edges, due to logistical constraints. Sampling in the 
interior of large forest patches may have resulted in more distinct 
forest specialist communities (Vanbergen et  al., 2007). 
Consequently, our data do not reveal whether small forest patches 
are similar to larger ones in terms of the mesofaunal communities, 
but rather that they support communities that are distinct from 
unforested field margins. Further work to explore the 
connectedness of habitat patches would be beneficial to understand 
the soil biodiversity patterns in these ecosystems (Rantalainen 
et al., 2005).

Understanding the relationship between soil physicochemical 
parameters and soil mesofauna communities is valuable to predict 
when environmental changes may create shifts in soil community 
composition that alter ecosystem function for both agroecosystems 
and adjacent semi-natural (or natural) areas. Here, we found that 
ecological characteristics associated with forest areas (e.g., high 
canopy cover, elevated soil moisture, and soil organic matter) help 
to structure mesofaunal communities observed from forested sites. 
However, these trends were less pronounced than we predicted, 
further emphasizing the high variability between samples within 
sites, and sites within habitats, both in terms of environmental 
parameters and community composition. The thick layer of grass 
litter in many of the non-forested sites may also have resulted in 
more protected soils than would otherwise be expected in such 
exposed habitats. More detailed work at a finer scale would help 
shed additional light on the mechanistic relationships between soil 
mesofauna and their environment. Expanding sample sizes would 
also be valuable, but challenges remain regarding the identification 
of organisms within soil communities, whether future work relies 
on morphological or molecular techniques, or a combination 
of both.

5 Conclusion

This study examined soil mesofaunal OTU richness and 
community composition from a range of natural features within an 
agriculturally dominated landscape. Gathering this baseline 
information helps fill a knowledge gap in our understanding of 
mesofauna function and habitat in agroecosystems within Canada, 
and perhaps even more broadly across other humid temperate 
regions in the world. This study also highlighted a need for more 
robust taxonomic efforts to be made in order to update mesofaunal 
reference libraries for future metabarcoding work. Differences in 
OTU richness were not detected between the four habitat types or 
between most sites within habitats; however, community composition 
differences were found to be significant. Due to the small scale at 
which the mesofauna operate, community patterns were probably 
influenced more strongly by microhabitats within sites, rather than 

by the macrohabitat scale of this study. Nevertheless, it is clear that 
uncultivated natural features in otherwise arable cropland 
environments are home to a vast diversity of soil organisms. We also 
demonstrated that even small, forested patches can contain 
mesofaunal communities similar to those of larger forested patches, 
highlighting the importance of preserving these features as small yet 
robust sources of biodiversity within an agricultural matrix.
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